
Fine-Grained Fault Tolerance
using Device Checkpoints

Asim Kadav
with Matthew Renzelmann and Michael M. Swift

University of Wisconsin-Madison

1

The (old) elephant in the room

2

device
drivers

(majority of
kernel code)

3rd party developers

+

OS
kernel

2

The (old) elephant in the room

2

device
drivers

(majority of
kernel code)

3rd party developers

+

OS
kernel

2

The (old) elephant in the room

2

device
drivers

(majority of
kernel code)

3rd party developers

+

OS
kernel

Recipe
for

disaster

2

Improvement System Validation Validation Validation Improvement System
Drivers Bus Classes

Isolation Nooks [SOSP 03] 6 1 2

XFI [OSDI 06] 2 1 1

CuriOS [OSDI 08] 2 1 2

Type Safety SafeDrive [OSDI 06] 6 2 3

Singularity [Eurosys 06] 1 1 1

Specification Nexus [OSDI 08] 2 1 2

Termite [SOSP 09] 2 1 2

Recovery Shadow Drivers [OSDI 04] 13 1 3

Static analysis tools Windows SDV [Eurosys 06] All All All

Coverity [CACM 10] All All All

Cocinelle [Eurosys 08] All All All

3

Extensive past work on reliability research

3

Improvement System Validation Validation Validation Improvement System
Drivers Bus Classes

Isolation Nooks [SOSP 03] 6 1 2

XFI [OSDI 06] 2 1 1

CuriOS [OSDI 08] 2 1 2

Type Safety SafeDrive [OSDI 06] 6 2 3

Singularity [Eurosys 06] 1 1 1

Specification Nexus [OSDI 08] 2 1 2

Termite [SOSP 09] 2 1 2

Recovery Shadow Drivers [OSDI 04] 13 1 3

Static analysis tools Windows SDV [Eurosys 06] All All All

Coverity [CACM 10] All All All

Cocinelle [Eurosys 08] All All All

3

Extensive past work on reliability research

3

Improvement System Validation Validation Validation Improvement System
Drivers Bus Classes

Isolation Nooks [SOSP 03] 6 1 2

XFI [OSDI 06] 2 1 1

CuriOS [OSDI 08] 2 1 2

Type Safety SafeDrive [OSDI 06] 6 2 3

Singularity [Eurosys 06] 1 1 1

Specification Nexus [OSDI 08] 2 1 2

Termite [SOSP 09] 2 1 2

Recovery Shadow Drivers [OSDI 04] 13 1 3

Static analysis tools Windows SDV [Eurosys 06] All All All

Coverity [CACM 10] All All All

Cocinelle [Eurosys 08] All All All

3

Extensive past work on reliability research

3

Improvement System Validation Validation Validation Improvement System
Drivers Bus Classes

Isolation Nooks [SOSP 03] 6 1 2

XFI [OSDI 06] 2 1 1

CuriOS [OSDI 08] 2 1 2

Type Safety SafeDrive [OSDI 06] 6 2 3

Singularity [Eurosys 06] 1 1 1

Specification Nexus [OSDI 08] 2 1 2

Termite [SOSP 09] 2 1 2

Recovery Shadow Drivers [OSDI 04] 13 1 3

Static analysis tools Windows SDV [Eurosys 06] All All All

Coverity [CACM 10] All All All

Cocinelle [Eurosys 08] All All All

3

Observation 1: Solutions that limit changes to kernel and
apply to lots of drivers have real impact

Extensive past work on reliability research

3

Improvement System Validation Validation Validation Improvement System
Drivers Bus Classes

Isolation Nooks [SOSP 03] 6 1 2

XFI [OSDI 06] 2 1 1

CuriOS [OSDI 08] 2 1 2

Type Safety SafeDrive [OSDI 06] 6 2 3

Singularity [Eurosys 06] 1 1 1

Specification Nexus [OSDI 08] 2 1 2

Termite [SOSP 09] 2 1 2

Recovery Shadow Drivers [OSDI 04] 13 1 3

Static analysis tools Windows SDV [Eurosys 06] All All All

Coverity [CACM 10] All All All

Cocinelle [Eurosys 08] All All All

3

Extensive past work on reliability research

Observation 2: Most systems focus on improving
isolation and detection and not on recovery

3

Driver failure recovery limited to driver restart

★ Restart driver upon failure
★ Safedrive and MINIX approach
★ Can break applications

Device Driver

Device

Driver-Kernel
Interface

4

Applications

Kernel

Shadow drivers

4

Driver failure recovery limited to driver restart

★ Restart driver upon failure
★ Safedrive and MINIX approach
★ Can break applications

Device Driver

Device

Driver-Kernel
Interface

4

Applications

Kernel

Shadow drivers

4

Driver failure recovery limited to driver restart

★ Restart driver upon failure
★ Safedrive and MINIX approach
★ Can break applications

Device Driver

Device

Shadow Driver

Driver-Kernel
Interface

4

Applications

Kernel

★ Restart and replay upon failure
★ Shadow driver approach
★ Always record state of driver
★ Perform restart and log replay

upon failure
★ Transparent to applications

Shadow drivers

4

Problem 1: Restart based driver recovery is slow

5

0ms

500ms

1,000ms

1,500ms

2,000ms

8139too e1000 ens1371 psmouse

Restart times

net net sound input

5

Problem 1: Restart based driver recovery is slow

5

Shadow drivers restart the driver
upon failure which can be slow

0ms

500ms

1,000ms

1,500ms

2,000ms

8139too e1000 ens1371 psmouse

Restart times

net net sound input

5

Driver re-initialization probes hardware again

6

Allocate device structures

Set chipset specific ops

Map BAR and I/O ports

Register device operations

Detect chipset capabilities

Cold boot device Verify EEPROM checksum

Device self test

Configure device

Device ready

6

Driver re-initialization probes hardware again

6

Allocate device structures

Set chipset specific ops

Map BAR and I/O ports

Register device operations

Detect chipset capabilities

Cold boot device Verify EEPROM checksum

Device self test

Configure device

Device ready

6

Driver re-initialization probes hardware again

6

★ What does slow device re-initialization hurt?
★ Fault tolerance: Driver recovery
★ Virtualization: Live migration
★ OS functions: Fast reboot

Allocate device structures

Set chipset specific ops

Map BAR and I/O ports

Register device operations

Detect chipset capabilities

Cold boot device Verify EEPROM checksum

Device self test

Configure device

Device ready

6

Problem 2: Shadow drivers assume drivers follow class behavior

7

★ Class definition includes:
★ Callbacks registered with the bus,

device and kernel subsystem

network
driver

bus

net device
subsystem

kernel

probe

xmit

config
network

card

shadow
drivers

7

Problem 2: Shadow drivers assume drivers follow class behavior

7

How many drivers follow class behavior
and how much code does this add and

★ Class definition includes:
★ Callbacks registered with the bus,

device and kernel subsystem

network
driver

bus

net device
subsystem

kernel

probe

xmit

config
network

card

shadow
drivers

7

Problem 2(a): Drivers do behave outside class definitions

★ Non-class behavior that affects recovery:
- procfs/sysfs interactions and unique ioctls

8

$	 echo	 1	 >	 /sys/class/sound/mixer/
device/enable

Windows WLAN card
config via private ioctls

Linux sound card config via sysfs

8

Problem 2(a): Drivers do behave outside class definitions

★ Non-class behavior that affects recovery:
- procfs/sysfs interactions and unique ioctls

8

 At least 16% of drivers have non-class behavior and
may not recover correctly using shadow drivers

$	 echo	 1	 >	 /sys/class/sound/mixer/
device/enable

Windows WLAN card
config via private ioctls

Linux sound card config via sysfs

8

Problem 2(b): Too many classes

9
★ “Understanding Modern Device Drivers” ASPLOS 2012

ata (1%)

cdrom

ide

md (RAID)

mmc

network RAID

mtd (1.5%)
scsi (9.6%)floppy

tape

acpi
blue tooth

crypto

fire wire

gpu (3.9%)

input
joy stick

key board

mouse

touch screentablet game port

serio

leds

media (10.5%)

isdn (3.4%)

sound (10%)

pcm

midi

mixer

thermal

tty

char (52%)

block (16%)
net (27%)

other (5%)

atm

ethernet

infiniband

wireless

wimax

token ring

Linux

 Device Drivers

gpio

tpm
serial

display

lcd

back light

video (5.2%)

pata

disk

sata

disk

 fiber channel

iscsi

usb-storageosd

raid

drm

vga

bus drivers

xen/lguest

dma/pci libs

video

radio

digital video broadcasting

wan

uwb

driver libraries

9

Problem 2(b): Too many classes

9
★ “Understanding Modern Device Drivers” ASPLOS 2012

ata (1%)

cdrom

ide

md (RAID)

mmc

network RAID

mtd (1.5%)
scsi (9.6%)floppy

tape

acpi
blue tooth

crypto

fire wire

gpu (3.9%)

input
joy stick

key board

mouse

touch screentablet game port

serio

leds

media (10.5%)

isdn (3.4%)

sound (10%)

pcm

midi

mixer

thermal

tty

char (52%)

block (16%)
net (27%)

other (5%)

atm

ethernet

infiniband

wireless

wimax

token ring

Linux

 Device Drivers

gpio

tpm
serial

display

lcd

back light

video (5.2%)

pata

disk

sata

disk

 fiber channel

iscsi

usb-storageosd

raid

drm

vga

bus drivers

xen/lguest

dma/pci libs

video

radio

digital video broadcasting

wan

uwb

driver libraries

Class-specific driver recovery leads to a
large kernel recovery subsystem

9

Fine-Grained Fault Tolerance (FGFT)

10

10

Fine-Grained Fault Tolerance (FGFT)

10

 Fine-grained Isolation

★ Runs driver entry points
like transactions

★ Relies on code generation
to limit new code in kernel

10

Fine-Grained Fault Tolerance (FGFT)

10

 Fine-grained Isolation

★ Runs driver entry points
like transactions

★ Relies on code generation
to limit new code in kernel

Checkpoint-based recovery

★ Provides fast and correct
recovery semantics

10

Fine-Grained Fault Tolerance (FGFT)

10

 Fine-grained Isolation

★ Runs driver entry points
like transactions

★ Relies on code generation
to limit new code in kernel

★ Requires incremental overhead/changes to drivers

★ Shifts burden of fault tolerance to faulty code

Checkpoint-based recovery

★ Provides fast and correct
recovery semantics

10

Outline

11

Introduction

Evaluation and Conclusions

Fine-grained isolation

Checkpoint-based recovery

11

Unit of fault tolerance: Driver entry point

12

network
driver

network
card

probe

xmit

config

12

Unit of fault tolerance: Driver entry point

12

network
driver

network
card

probe

xmit

config

whole driver isolation

12

Unit of fault tolerance: Driver entry point

12

network
driver

network
card

probe

xmit

config

12

Unit of fault tolerance: Driver entry point

12

network
driver

network
card

probe

xmit

config

FGFT isolation

12

Unit of fault tolerance: Driver entry point

12

★ Provide fault tolerance to specific driver entry points

network
driver

network
card

probe

xmit

config

FGFT isolation

12

Unit of fault tolerance: Driver entry point

12

★ Provide fault tolerance to specific driver entry points

network
driver

network
card

probe

xmit

config

★ Can be applied to untested code or code marked
suspicious by static or runtime tools

FGFT isolation

12

netdev

Transactional support through code generation

13

network
driver

get ringparam

netdev

13

netdev

Transactional support through code generation

13

network
driver

get ringparam

netdev

SFI
network

driver

s
t
u
b
s

s
t
u
b
s

13

netdev

Transactional support through code generation

13

network
driver

get ringparam SFI
network

driver

s
t
u
b
s

s
t
u
b
s

netdev

13

netdev

Transactional support through code generation

13

Range Table

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Readnetwork
driver

get ringparam SFI
network

driver

s
t
u
b
s

s
t
u
b
s

netdev

13

netdev

Transactional support through code generation

13

Range Table

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

★ Detects and recovers from:
★ Memory errors like invalid pointer accesses
★ Structural errors like malformed structures
★ Processor exceptions like divide by zero, stack corruption

network
driver

get ringparam SFI
network

driver

s
t
u
b
s

s
t
u
b
s

netdev

13

result

netdev

Transactional support through code generation

13

Range Table

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Read

★ Detects and recovers from:
★ Memory errors like invalid pointer accesses
★ Structural errors like malformed structures
★ Processor exceptions like divide by zero, stack corruption

network
driver

get ringparam SFI
network

driver

s
t
u
b
s

s
t
u
b
s

netdev

netdev

13

Outline

14

Introduction

Conclusion

Fine-grained isolation

Checkpoint-based recovery

14

Checkpointing drivers is hard
★Easy to capture memory state

15

network
driver

network
card

15

Checkpointing drivers is hard
★Easy to capture memory state

15

network
driver

network
card

checkpoint

15

Checkpointing drivers is hard
★Easy to capture memory state

15

network
driver

network
card

checkpoint

★ Device state is not captured
★ Device configuration space

15

Checkpointing drivers is hard
★Easy to capture memory state

15

network
driver

network
card

checkpoint

★ Device state is not captured
★ Device configuration space
★ Internal device registers and counters

15

Checkpointing drivers is hard
★Easy to capture memory state

15

network
driver

network
card

checkpoint

★ Device state is not captured
★ Device configuration space
★ Internal device registers and counters
★ Memory buffer addresses used for DMA

15

Checkpointing drivers is hard
★Easy to capture memory state

15

network
driver

network
card

checkpoint

★ Device state is not captured
★ Device configuration space
★ Internal device registers and counters
★ Memory buffer addresses used for DMA

★ Unique for every device

15

Checkpointing drivers is hard
★Easy to capture memory state

15

network
driver

network
card

checkpoint

★ Device state is not captured
★ Device configuration space
★ Internal device registers and counters
★ Memory buffer addresses used for DMA

★ Unique for every device

Intuition: Operating systems already capture
device state during power management

15

Intuition with power management

16

★ Refactor power management code for device checkpoints
★ Correct: Developer captures unique device semantics
★ Fast: Avoids probe and latency critical for applications

★ Ask developers to export checkpoint/restore in their drivers

16

Device checkpoint/restore from PM code

17

Save config state

Save register state

Disable device

Save DMA state

Suspend device

Restore config state

Restore register state

Restore or reset
DMA state

Re-attach/Enable
device

Device Ready

Suspend Resume

17

Device checkpoint/restore from PM code

17

Save config state

Save register state

Save DMA state

Suspend device

Restore config state

Restore register state

Restore or reset
DMA state

Re-attach/Enable
device

Device Ready

Suspend Resume

17

Device checkpoint/restore from PM code

17

Save config state

Save register state

Save DMA state

Restore config state

Restore register state

Restore or reset
DMA state

Re-attach/Enable
device

Device Ready

Suspend Resume

17

Device checkpoint/restore from PM code

17

Save config state

Save register state

Save DMA state

Restore config state

Restore register state

Restore or reset
DMA state

Re-attach/Enable
device

Device Ready

Suspend Resume

17

Device checkpoint/restore from PM code

17

Save config state

Save register state

Save DMA state

Restore config state

Restore register state

Restore or reset
DMA state

Re-attach/Enable
device

Device Ready

Resume Checkpoint

17

Device checkpoint/restore from PM code

17

Save config state

Save register state

Save DMA state

Restore config state

Restore register state

Restore or reset
DMA state

Re-attach/Enable
device

Resume Checkpoint

17

Device checkpoint/restore from PM code

17

Save config state

Save register state

Save DMA state

Restore config state

Restore register state

Restore or reset
DMA state

Resume Checkpoint

17

Device checkpoint/restore from PM code

17

Save config state

Save register state

Save DMA state

Restore config state

Restore register state

Restore or reset
DMA state

RestoreCheckpoint

17

Device checkpoint/restore from PM code

17

Save config state

Save register state

Save DMA state

Restore config state

Restore register state

Restore or reset
DMA state

Suspend/resume code provides device
checkpoint functionality

RestoreCheckpoint

17

Synergy of isolation and fast checkpoints

18

netdev

network
driver

netdev

18

Synergy of isolation and fast checkpoints

18

xmit

netdev

network
driver

netdev

18

Synergy of isolation and fast checkpoints

18

netdev

network
driver

netdev

get ringparam

18

Synergy of isolation and fast checkpoints

18

netdev

network
driver

netdev

C

get ringparam

18

Synergy of isolation and fast checkpoints

18

netdev

network
driver

netdev

SFI
network

driver

s
t
u
b
s

s
t
u
b
s

C

get ringparam

18

Synergy of isolation and fast checkpoints

18

netdev

network
driver

netdev

SFI
network

driver

s
t
u
b
s

s
t
u
b
s

C

get ringparam

18

Synergy of isolation and fast checkpoints

18

netdev netdev
netdev

network
driver

SFI
network

driver

s
t
u
b
s

s
t
u
b
s

C

get ringparam

18

Synergy of isolation and fast checkpoints

18

netdev netdev
netdev

network
driver

SFI
network

driver

s
t
u
b
s

s
t
u
b
s

C

get ringparam

18

Synergy of isolation and fast checkpoints

18

netdev netdev
netdev Range Table

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Readnetwork
driver

SFI
network

driver

s
t
u
b
s

s
t
u
b
s

C

get ringparam

18

Synergy of isolation and fast checkpoints

18

netdev netdev
netdev Range Table

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Readnetwork
driver

SFI
network

driver

s
t
u
b
s

s
t
u
b
s

C

get ringparam

18

Synergy of isolation and fast checkpoints

18

netdev netdev
netdev Range Table

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Readnetwork
driver

SFI
network

driver

s
t
u
b
s

s
t
u
b
s

C

get ringparam

18

Synergy of isolation and fast checkpoints

18

err R

netdev netdev
netdev Range Table

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Readnetwork
driver

SFI
network

driver

s
t
u
b
s

s
t
u
b
s

C

get ringparam

18

Synergy of isolation and fast checkpoints

18

err R

FGFT provides transactional
execution of driver entry points

netdev netdev
netdev Range Table

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Readnetwork
driver

SFI
network

driver

s
t
u
b
s

s
t
u
b
s

C

get ringparam

18

How does this give us transactional execution?

19

19

How does this give us transactional execution?

19

★ Atomicity: All or nothing execution
★ Driver state: Run code in SFI module
★ Device state: Explicitly checkpoint/restore state

19

How does this give us transactional execution?

19

★ Atomicity: All or nothing execution
★ Driver state: Run code in SFI module
★ Device state: Explicitly checkpoint/restore state

★ Isolation: Serialization to hide incomplete transactions
★ Re-use existing device locks to lock driver
★ Two phase locking

19

How does this give us transactional execution?

19

★ Atomicity: All or nothing execution
★ Driver state: Run code in SFI module
★ Device state: Explicitly checkpoint/restore state

★ Isolation: Serialization to hide incomplete transactions
★ Re-use existing device locks to lock driver
★ Two phase locking

★ Consistency: Only valid (kernel, driver and device) states
★ Higher level mechanisms to rollback external actions
★ At most once device action guarantee to applications

19

Outline

20

Introduction

Evaluation & Conclusions

Fine-grained isolation

Checkpoint-based recovery

20

Evaluation platform

21

★ Criterion :
★ Latency of recovery: How fast is it?
★ Correctness of recovery: How well does it work?
★ Incremental effort: How much work is it?
★ Performance: How much does it cost?

21

Evaluation platform

21

★ Platform :
★ Implemented in Linux 2.6.29
★ 2.5 GHz Intel Core 2 Quad

core w/ 4 GB DDR2 DRAM
★ Six drivers across three classes

★ Criterion :
★ Latency of recovery: How fast is it?
★ Correctness of recovery: How well does it work?
★ Incremental effort: How much work is it?
★ Performance: How much does it cost?

Driver Class Bus

8139too net PCI
e1000 net PCI

r8169 net PCI

pegasus net USB

psmouse sound PCI

ens1371 input serio

21

Recovery speedup

22

8139too e1000 pegasus r8169 ens1371 psmouse
0ms

500ms

1,000ms

1,500ms

2,000ms
Restart recovery
FGFT recovery

Recovery
times

22

Recovery speedup

22

8139too e1000 pegasus r8169 ens1371 psmouse
0ms

500ms

1,000ms

1,500ms

2,000ms

680.00

1030.00

120.00150.00

1800.00

310.00

Restart recovery
FGFT recovery

Recovery
times

22

Recovery speedup

22

8139too e1000 pegasus r8169 ens1371 psmouse
0ms

500ms

1,000ms

1,500ms

2,000ms

680.00

1030.00

120.00150.00

1800.00

310.00
410.00

115.00
0.045.00

295.00

0.07

Restart recovery
FGFT recovery

Recovery
times

22

Recovery speedup

22

FGFT provides significant speedup in driver
recovery and improves system availability

8139too e1000 pegasus r8169 ens1371 psmouse
0ms

500ms

1,000ms

1,500ms

2,000ms

680.00

1030.00

120.00150.00

1800.00

310.00
410.00

115.00
0.045.00

295.00

0.07

Restart recovery
FGFT recovery

Recovery
times

22

Static and dynamic fault injection

Driver Injected
Faults

Native
Crashes

8139too 43 43
e1000 47 47

r8169 36 36
pegasus 34 33
ens1371 22 21

psmouse 46 46
TOTAL 258 256

23

23

Static and dynamic fault injection

Driver Injected
Faults

Native
Crashes

FGFT
Crashes

8139too 43 43 NONE
e1000 47 47 NONE

r8169 36 36 NONE
pegasus 34 33 NONE
ens1371 22 21 NONE

psmouse 46 46 NONE
TOTAL 258 256 NONE

23

23

Static and dynamic fault injection

Driver Injected
Faults

Native
Crashes

FGFT
Crashes

8139too 43 43 NONE
e1000 47 47 NONE

r8169 36 36 NONE
pegasus 34 33 NONE
ens1371 22 21 NONE

psmouse 46 46 NONE
TOTAL 258 256 NONE

23

FGFT recovers from multiple failures : 1) restores
non-class state and 2) does not affect other threads

23

Programming effort

Driver LOC Isolation annotationsIsolation annotations Recovery additionsRecovery additions

Driver
annotations

Kernel
annotations

LOC Moved LOC
Added

8139too 1, 904 15 20 26 4

e1000 13, 973 32 32 10
r8169 2, 993 10 17 5
pegasus 1, 541 26 12 22 5
ens1371 2, 110 23 66 16 6
psmouse 2, 448 11 19 19 6

24

24

Programming effort

Driver LOC Isolation annotationsIsolation annotations Recovery additionsRecovery additions

Driver
annotations

Kernel
annotations

LOC Moved LOC
Added

8139too 1, 904 15 20 26 4

e1000 13, 973 32 32 10
r8169 2, 993 10 17 5
pegasus 1, 541 26 12 22 5
ens1371 2, 110 23 66 16 6
psmouse 2, 448 11 19 19 6

24

FGFT requires a loadable kernel module (1200 LOC) and
38 lines of kernel changes to trap processor exceptions

24

Throughput with isolation and recovery

Native
FGFT-‐I/O-‐all
FGFT-‐off-‐I/O
FGFT-‐I/O-‐1/2

netperf on Intel quad-core machines
25

25

Throughput with isolation and recovery

0

25

50

75

100

T
hr

ou
gh

pu
t

%
ag

e
(B

as
el

in
e

84
4

M
bp

s)

e1000 Network Card

Native
FGFT-‐I/O-‐all
FGFT-‐off-‐I/O
FGFT-‐I/O-‐1/2

netperf on Intel quad-core machines
25

25

Throughput with isolation and recovery

0

25

50

75

100
100

T
hr

ou
gh

pu
t

%
ag

e
(B

as
el

in
e

84
4

M
bp

s)

e1000 Network Card

Native
FGFT-‐I/O-‐all
FGFT-‐off-‐I/O
FGFT-‐I/O-‐1/2

netperf on Intel quad-core machines
25

CPU: 2.4%

25

Throughput with isolation and recovery

0

25

50

75

100
100

93

T
hr

ou
gh

pu
t

%
ag

e
(B

as
el

in
e

84
4

M
bp

s)

e1000 Network Card

Native
FGFT-‐I/O-‐all
FGFT-‐off-‐I/O
FGFT-‐I/O-‐1/2

netperf on Intel quad-core machines
25

CPU: 2.4% 2.4%

25

Throughput with isolation and recovery

0

25

50

75

100
100

93
100

T
hr

ou
gh

pu
t

%
ag

e
(B

as
el

in
e

84
4

M
bp

s)

e1000 Network Card

Native
FGFT-‐I/O-‐all
FGFT-‐off-‐I/O
FGFT-‐I/O-‐1/2

netperf on Intel quad-core machines
25

CPU: 2.4% 2.4% 3.4%

25

Throughput with isolation and recovery

0

25

50

75

100
100

93
100

96

T
hr

ou
gh

pu
t

%
ag

e
(B

as
el

in
e

84
4

M
bp

s)

e1000 Network Card

Native
FGFT-‐I/O-‐all
FGFT-‐off-‐I/O
FGFT-‐I/O-‐1/2

netperf on Intel quad-core machines
25

CPU: 2.4% 2.4% 2.9%3.4%

25

Throughput with isolation and recovery

0

25

50

75

100
100

93
100

96

T
hr

ou
gh

pu
t

%
ag

e
(B

as
el

in
e

84
4

M
bp

s)

e1000 Network Card

Native
FGFT-‐I/O-‐all
FGFT-‐off-‐I/O
FGFT-‐I/O-‐1/2

netperf on Intel quad-core machines
25

CPU: 2.4% 2.4% 2.9%3.4%

FGFT can isolate and recover high bandwidth devices
at low overhead without adding kernel subsystems

25

Summary

26

26

Summary

26

★ FGFT runs driver code as transactions
★ Provides fault tolerance at incremental

performance and programmer efforts

★ Introduced device checkpoints
★ Provides fast and complete recovery semantics

★ Fast device checkpoints should be explored in other
domains like fast reboot, upgrade etc.

26

Questions

 Asim Kadav
★ http://cs.wisc.edu/~kadav
★ kadav@cs.wisc.edu
★ Graduating in spring!

27

http://cs.wisc.edu/~kadav
http://cs.wisc.edu/~kadav
mailto:kadav@cs.wisc.edu
mailto:kadav@cs.wisc.edu

Extra slides

★ Unlike suspend, devices continue to be accessed after a
checkpoint
★ Rely on drivers following ACPI specifications for

correctness

28

Latency for device checkpoint/restore

Driver Class Bus Checkpoint
Times

Restore
Times

8139too net PCI 33μs 62μs
e1000 net PCI 32μs 280ms
r8169 net PCI 26μs 30μs
pegasus net USB 0μs 4ms
ens1371 sound PCI 33μs 111ms
psmouse input serio 0μs 390ms

29

Fast checkpoint/restore using
suspend/resume

29

Transforming drivers to run as FGFT

If	 (c==0)	 {
.
print	 (“Driver	
init”);
}
.
.

Driver with
annotations

Static modifications
30

30

Transforming drivers to run as FGFT

If	 (c==0)	 {
.
print	 (“Driver	
init”);
}
.
.

Driver with
annotations

Static modifications
30

User supplied
annotations

Source transformation
(adds driver transactions)

30

Transforming drivers to run as FGFT

If	 (c==0)	 {
.
print	 (“Driver	
init”);
}
.
.

Driver with
annotations

Static modifications
30

If	 (c==0)	 {
.
print	 (“Driver	
init”);
}
.
.

If	 (c==0)	 {
.
print	 (“Driver	
init”);
}
.
.

User supplied
annotations

Source transformation
(adds driver transactions)

Main driver
module

SFI driver
module

SFI = software fault
isolated

30

Transforming drivers to run as FGFT

If	 (c==0)	 {
.
print	 (“Driver	
init”);
}
.
.

Driver with
annotations

Static modifications Run-time support
30

If	 (c==0)	 {
.
print	 (“Driver	
init”);
}
.
.

If	 (c==0)	 {
.
print	 (“Driver	
init”);
}
.
.

User supplied
annotations

Source transformation
(adds driver transactions)

Main driver
module

SFI driver
module

SFI = software fault
isolated

30

Transforming drivers to run as FGFT

If	 (c==0)	 {
.
print	 (“Driver	
init”);
}
.
.

Driver with
annotations

Communication
and recovery

support

Static modifications Run-time support
30

If	 (c==0)	 {
.
print	 (“Driver	
init”);
}
.
.

If	 (c==0)	 {
.
print	 (“Driver	
init”);
}
.
.

1200 LOC

User supplied
annotations

Source transformation
(adds driver transactions)

Object tracking

Marshaling/
Demarshaling

Kernel
undo log

Main driver
module

SFI driver
module

SFI = software fault
isolated

30

