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Improvement System Validation Validation Validation Improvement System
Drivers Bus Classes

Isolation Nooks [SOSP 03] 6 1 2

XFI [OSDI 06] 2 1 1

CuriOS [OSDI 08] 2 1 2

Type Safety SafeDrive [OSDI 06] 6 2 3

Singularity [Eurosys 06] 1 1 1

Specification Nexus [OSDI 08] 2 1 2

Termite [SOSP 09] 2 1 2

Recovery Shadow Drivers [OSDI 04] 13 1 3

Static analysis tools Windows SDV [Eurosys 06] All All All

Coverity [CACM 10] All All All

Cocinelle [Eurosys 08] All All All

3

Extensive past work on reliability research

3



Improvement System Validation Validation Validation Improvement System
Drivers Bus Classes

Isolation Nooks [SOSP 03] 6 1 2

XFI [OSDI 06] 2 1 1

CuriOS [OSDI 08] 2 1 2

Type Safety SafeDrive [OSDI 06] 6 2 3

Singularity [Eurosys 06] 1 1 1

Specification Nexus [OSDI 08] 2 1 2

Termite [SOSP 09] 2 1 2

Recovery Shadow Drivers [OSDI 04] 13 1 3

Static analysis tools Windows SDV [Eurosys 06] All All All

Coverity [CACM 10] All All All

Cocinelle [Eurosys 08] All All All

3

Extensive past work on reliability research

3



Improvement System Validation Validation Validation Improvement System
Drivers Bus Classes

Isolation Nooks [SOSP 03] 6 1 2

XFI [OSDI 06] 2 1 1

CuriOS [OSDI 08] 2 1 2

Type Safety SafeDrive [OSDI 06] 6 2 3

Singularity [Eurosys 06] 1 1 1

Specification Nexus [OSDI 08] 2 1 2

Termite [SOSP 09] 2 1 2

Recovery Shadow Drivers [OSDI 04] 13 1 3

Static analysis tools Windows SDV [Eurosys 06] All All All

Coverity [CACM 10] All All All

Cocinelle [Eurosys 08] All All All

3

Extensive past work on reliability research

3



Improvement System Validation Validation Validation Improvement System
Drivers Bus Classes

Isolation Nooks [SOSP 03] 6 1 2

XFI [OSDI 06] 2 1 1

CuriOS [OSDI 08] 2 1 2

Type Safety SafeDrive [OSDI 06] 6 2 3

Singularity [Eurosys 06] 1 1 1

Specification Nexus [OSDI 08] 2 1 2

Termite [SOSP 09] 2 1 2

Recovery Shadow Drivers [OSDI 04] 13 1 3

Static analysis tools Windows SDV [Eurosys 06] All All All

Coverity [CACM 10] All All All

Cocinelle [Eurosys 08] All All All

3

Observation 1: Solutions that limit changes to kernel and 
apply to lots of drivers have real impact 
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Extensive past work on reliability research

Observation 2:  Most systems focus on improving 
isolation and detection and not on recovery
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Driver failure recovery limited to driver restart

★ Restart driver upon failure
★  Safedrive and MINIX approach
★  Can break applications
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Driver failure recovery limited to driver restart

★ Restart driver upon failure
★  Safedrive and MINIX approach
★  Can break applications

Device Driver

Device

Shadow Driver

Driver-Kernel 
Interface

4

Applications

Kernel

★ Restart and replay upon failure
★ Shadow driver approach 
★ Always record state of driver
★ Perform restart and log replay 

upon failure
★ Transparent to applications

Shadow drivers

4



Problem 1: Restart based driver recovery is slow
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Problem 1: Restart based driver recovery is slow
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Shadow drivers restart the driver 
upon failure which can be slow
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Driver re-initialization probes hardware again
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Driver re-initialization probes hardware again

6

★ What does slow device re-initialization hurt?
★ Fault tolerance: Driver recovery
★ Virtualization: Live migration 
★ OS functions: Fast reboot

Allocate device structures

Set chipset specific ops

Map BAR and I/O ports

Register device operations

Detect chipset capabilities

Cold boot device Verify EEPROM checksum

Device self test 

Configure device

Device ready

6



Problem 2: Shadow drivers assume drivers follow class behavior
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★ Class definition includes:
★ Callbacks registered with the bus, 

device and kernel subsystem
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How many drivers follow class behavior 
and how much code does this add and 

★ Class definition includes:
★ Callbacks registered with the bus, 

device and kernel subsystem
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driver
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Problem 2(a): Drivers do behave outside class definitions

★ Non-class behavior that affects recovery:
- procfs/sysfs interactions and unique ioctls

8

$	  echo	  1	  >	  /sys/class/sound/mixer/
device/enable

Windows WLAN card 
config via private ioctls

Linux sound card config via sysfs
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Problem 2(a): Drivers do behave outside class definitions

★ Non-class behavior that affects recovery:
- procfs/sysfs interactions and unique ioctls

8

 At least 16% of drivers have non-class behavior and 
may not recover correctly using shadow drivers

$	  echo	  1	  >	  /sys/class/sound/mixer/
device/enable

Windows WLAN card 
config via private ioctls

Linux sound card config via sysfs
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Problem 2(b): Too many classes 

9
★ “Understanding Modern Device Drivers” ASPLOS 2012
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Class-specific driver recovery leads to a 
large kernel recovery subsystem
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Fine-Grained Fault Tolerance (FGFT)

10

 Fine-grained Isolation

★ Runs driver entry points 
like transactions

★ Relies on code generation 
to limit new code in kernel

★ Requires incremental overhead/changes to drivers

★ Shifts burden of fault tolerance to faulty code

Checkpoint-based recovery

★ Provides fast and correct 
recovery semantics

10
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Checkpoint-based recovery
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Unit of fault tolerance: Driver entry point

12

network
driver

network 
card

probe

xmit

config

12



Unit of fault tolerance: Driver entry point

12

network
driver

network 
card

probe

xmit

config

whole driver isolation

12



Unit of fault tolerance: Driver entry point

12

network
driver

network 
card

probe

xmit

config

12



Unit of fault tolerance: Driver entry point

12

network
driver

network 
card

probe

xmit

config

FGFT isolation

12



Unit of fault tolerance: Driver entry point

12

★ Provide fault tolerance to specific driver entry points

network
driver

network 
card

probe

xmit

config

FGFT isolation

12



Unit of fault tolerance: Driver entry point

12

★ Provide fault tolerance to specific driver entry points

network
driver

network 
card

probe

xmit

config

★ Can be applied to untested code or code marked 
suspicious by static or runtime tools

FGFT isolation

12



netdev

Transactional support through code generation
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netdev

Transactional support through code generation

13

Range Table

Address Access rights

0xffffa000 Read

0xffffa008 Write

0xffffa00a Readnetwork
driver

get ringparam SFI
network

driver

s
t
u
b
s

s
t
u
b
s

netdev

13



netdev

Transactional support through code generation
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Range Table

Address Access rights
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Checkpointing drivers is hard
★Easy to capture memory state
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Checkpointing drivers is hard
★Easy to capture memory state

15

network
driver

network 
card

checkpoint

★ Device state is not captured
★ Device configuration space
★ Internal device registers and counters
★ Memory buffer addresses used for DMA

★ Unique for every device

Intuition: Operating systems already capture 
device state during power management

15



Intuition with power management 

16

★ Refactor power management code for device checkpoints
★ Correct: Developer captures unique device semantics 
★ Fast: Avoids probe and latency critical for applications

★ Ask developers to export checkpoint/restore in their drivers

16



Device checkpoint/restore from PM code
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Device checkpoint/restore from PM code
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Device checkpoint/restore from PM code
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Device checkpoint/restore from PM code

17

Save config state

Save register state

Save DMA state

Restore config state

Restore register state

Restore or reset 
DMA state 

Suspend/resume code provides device 
checkpoint functionality

RestoreCheckpoint
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Synergy of isolation and fast checkpoints
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FGFT provides transactional 
execution of driver entry points
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How does this give us transactional execution?
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★ Atomicity: All or nothing execution
★ Driver state: Run code in SFI module
★ Device state: Explicitly checkpoint/restore state

★ Isolation: Serialization to hide incomplete transactions
★ Re-use existing device locks to lock driver
★ Two phase locking 

★ Consistency: Only valid (kernel, driver and device) states
★ Higher level mechanisms to rollback external actions
★ At most once device action guarantee to applications
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Evaluation platform
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★ Criterion :
★ Latency of recovery: How fast is it?
★ Correctness of recovery: How well does it work?
★ Incremental effort:  How much work is it?
★ Performance: How much does it cost?
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Evaluation platform

21

★ Platform : 
★ Implemented in Linux 2.6.29
★ 2.5 GHz Intel Core 2 Quad 

core w/ 4 GB DDR2 DRAM 
★ Six drivers across three classes

★ Criterion :
★ Latency of recovery: How fast is it?
★ Correctness of recovery: How well does it work?
★ Incremental effort:  How much work is it?
★ Performance: How much does it cost?

Driver Class Bus

8139too net PCI
e1000 net PCI

r8169 net PCI

pegasus net USB

psmouse sound PCI

ens1371 input serio

21



Recovery speedup
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Recovery speedup

22

FGFT provides significant speedup in driver 
recovery and improves system availability
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Static and dynamic fault injection

Driver Injected 
Faults

Native 
Crashes

8139too 43 43
e1000 47 47

r8169 36 36
pegasus 34 33
ens1371 22 21

psmouse 46 46
TOTAL 258 256
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Crashes

8139too 43 43 NONE
e1000 47 47 NONE

r8169 36 36 NONE
pegasus 34 33 NONE
ens1371 22 21 NONE

psmouse 46 46 NONE
TOTAL 258 256 NONE
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FGFT recovers from multiple failures : 1) restores 
non-class state and 2) does not affect other threads
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Programming effort

Driver LOC Isolation annotationsIsolation annotations Recovery additionsRecovery additions

Driver
annotations

Kernel
annotations

LOC Moved LOC 
Added

8139too 1, 904 15 20 26 4

e1000 13, 973 32 32 10
r8169 2, 993 10 17 5
pegasus 1, 541 26 12 22 5
ens1371 2, 110 23 66 16 6
psmouse 2, 448 11 19 19 6
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Driver
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annotations

LOC Moved LOC 
Added

8139too 1, 904 15 20 26 4

e1000 13, 973 32 32 10
r8169 2, 993 10 17 5
pegasus 1, 541 26 12 22 5
ens1371 2, 110 23 66 16 6
psmouse 2, 448 11 19 19 6

24

FGFT requires a loadable kernel module (1200 LOC) and 
38 lines of kernel changes to trap processor exceptions
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FGFT can isolate and recover high bandwidth devices 
at low overhead without adding kernel subsystems
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Summary

26

★ FGFT runs driver code as transactions
★ Provides fault tolerance at incremental 

performance and programmer efforts

★ Introduced device checkpoints
★ Provides fast and complete recovery semantics

★ Fast device checkpoints should be explored in other 
domains like fast reboot, upgrade etc.
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Questions

 Asim Kadav
★ http://cs.wisc.edu/~kadav
★ kadav@cs.wisc.edu
★ Graduating in spring!

27

http://cs.wisc.edu/~kadav
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Extra slides

★ Unlike suspend, devices continue to be accessed after a 
checkpoint
★ Rely on drivers following ACPI specifications for 

correctness 
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Latency for device checkpoint/restore

Driver Class Bus Checkpoint 
Times

Restore 
Times

8139too net PCI 33μs 62μs
e1000 net PCI 32μs 280ms
r8169 net PCI 26μs 30μs
pegasus net USB 0μs 4ms
ens1371 sound PCI 33μs 111ms
psmouse input serio 0μs 390ms

29

Fast checkpoint/restore using 
suspend/resume
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Transforming drivers to run as FGFT

If	  (c==0)	  {
.
print	  (“Driver	  
init”);
}
.
.

Driver with 
annotations

Static modifications
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Transforming drivers to run as FGFT

If	  (c==0)	  {
.
print	  (“Driver	  
init”);
}
.
.
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init”);
}
.
.
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.
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