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Abstract
Hardware devices can fail, but many drivers assume they do
not. When confronted with real devices that misbehave, these
assumptions can lead to driver or system failures. While major
operating system and device vendors recommend that drivers
detect and recover from hardware failures, we find that there are
many drivers that will crash or hang when a device fails. Such
bugs cannot easily be detected by regular stress testing because
the failures are induced by the device and not the software load.

This paper describes Carburizer, a code-manipulation tool
and associated runtime that improves system reliability in the
presence of faulty devices. Carburizer analyzes driver source
code to find locations where the driver incorrectly trusts the
hardware to behave. Carburizer identified almost 1000 such
bugs in Linux drivers with a false positive rate of less than 8
percent. With the aid of shadow drivers for recovery, Carbur-
izer can automatically repair 840 of these bugs with no pro-
grammer involvement.

To facilitate proactive management of device failures, Car-
burizer can also locate existing driver code that detects de-
vice failures and inserts missing failure-reporting code. Finally,
the Carburizer runtime can detect and tolerate interrupt-related
bugs, such as stuck or missing interrupts.

1 Introduction
Reliability remains a paramount problem for operating
systems. As computers are further embedded within
our lives, we demand higher reliability because there are
fewer opportunities to compensate for their failure. At
the same time, computers are increasingly dependent on
attached devices for the services they provide.

Applications invoke devices through device drivers.
The device and driver interact through a protocol spec-
ified by the hardware. When the device obeys the spec-
ification, a driver may trust any inputs it receives. Un-
fortunately, devices do not always behave according to
their specification. Some failures are caused by wear-out
or electrical interference [25]. In addition, internal soft-
ware failures can occur in devices that execute embedded
firmware, sometimes up to millions of lines of code [50].

Studies of Windows servers at Microsoft demonstrate
the scope of the problem [2]. In one study of Windows
servers, eight percent of systems suffered from a storage
or network adapter failure [2]. Many of these failures

are transient: hardware vendors repeatedly report that the
majority of returned devices operate correctly and retry-
ing an operation often succeeds [1, 3, 31]. In total, 9%
of all unplanned reboots of servers at Microsoft during a
separate study were caused by adapter or hardware fail-
ures. Most importantly, when running platforms with
the same adaptersand software that tolerates hardware
faults, reported device failures rates drop from 8 percent
to 3 percent [2]. This evidence suggests that (1)device
failure is a major cause of system crashes, (2) transient
device failures are common, and (3)drivers that tolerate
device failures can improve reliability. Without address-
ing this problem, the reliability of operating systems is
limited by the reliability of devices.

Device hardware failures cause system hangs or
crashes when drivers cannot detect or tolerate the failure.
The Linux kernel mailing list contains numerous reports
of drivers waiting forever and reminders from kernel ex-
perts to avoid infinite waits [26]. Nevertheless, this code
persists. For example, the code below from the 3c59x.c
network driver in the Linux 2.6.18.8 kernel will loop for-
ever if the device never returns the right value:

while (ioread16(ioaddr + Wn7_MasterStatus))

& 0x8000)

;

To address this problem, major OS vendors have is-
sued recommendations on how to harden drivers to de-
vice failures [16, 41, 20]. These recommendations in-
clude validating all inputs from a device, ensuring that all
code waiting for a device will terminate, and reporting all
hardware failures. Despite these recommendations, we
found that a large number of Linux drivers do not prop-
erly tolerate hardware failures. We see two reasons for
this: (1) testing drivers against hardware failures is dif-
ficult, and (2) hardening drivers by hand is challenging.
Common testing procedures, such as stress testing, will
not detect failures related to hardware. Instead, fault-
injection testing is required [2, 17, 52]. Unlike other
software testing, device drivers require that an instance
of the device be present, which limits the number of ma-
chines that can run tests.

Previous work on driver fault tolerance has concen-
trated on two major approaches: static bug finding [4, 6,
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12, 32] and run-time fault tolerance [48, 46, 18, 51, 44].
Static approaches check for bugs in the interface between
the driver and the kernel to ensure that the driver does
not violate kernel-programming rules, such as by failing
to release a lock. But, these tools do not verify that the
driver validates inputs received from the device.

Systems that tolerate faults at run time, such as Safe-
Drive [51] and Nooks [44], either instrument driver code
or execute it in an isolated environment. These systems
detect faults, including hardware-induced faults, dynam-
ically and trigger a recovery mechanism. However, these
systems have had limited deployment, perhaps due to the
heavyweight nature of the solution.

This paper presents Carburizer,1 a code-manipulation
tool and associated runtime that automaticallyhardens
drivers. A hardened driver is one that can survive the
failure of its device and if possible, return the device
to its full function. Carburizer implements three major
hardening recommendations: (1) validate inputs from the
device, (2) verify device responsiveness, and (3) report
hardware failures so that an administrator can proactively
manage the failing hardware [2, 16, 20, 41].

Carburizer analyzes driver code to find where it ac-
cepts input from the device. If the driver uses device data
without checking its correctness, Carburizer modifies the
driver to insert validation code. If the driver checks de-
vice data for correctness, Carburizer inserts code to re-
port a failure if the data is incorrect. Finally, the Carbur-
izer runtime detects stuck interrupts and non-responsive
devices and causes the driver to poll the device. To auto-
matically repair bugs, Carburizer also invokes a generic
recovery service that can reset the device. We rely on
shadow drivers [43] to provide this recovery service.

Despite the common application of static analysis
tools to the Linux kernel [9], Carburizer uncovers a large
number of problems. Carburizer identified 992 bugs
in existing Linux drivers where a hardware failure may
cause the driver to crash or hang. With manual inspec-
tion of a random subset, we determined that the false
positive rate is 7.4%, for approximately 919 true bugs
found. Discounting for false positives, Carburizer repairs
approximately 845 real bugs by inserting code to detect
hardware failures and recover at runtime. When run with
common I/O workloads, drivers modified by Carburizer
perform similarly to native drivers.

In the remainder of this paper, we first discuss hard-
ware failures and OS vendor guidelines for hardening
drivers. We then present the three major functions of
Carburizer in Sections3, 4 and5. Section6 presents the
overhead of our code changes, and we finish with related
work in Section7 and conclusions.

1

Carburizing is a process of hardening steel through heat treatment.

2 Device Hardware Failures
In this section, we describe the problem of hardware de-
vice failures and vendor recommendations on how to tol-
erate and manage device failures.

2.1 Failures Types

Modern CMOS devices are prone to internal failures and
without significant design changes, this problem is ex-
pected to worsen as transistors shrink. Prior studies indi-
cate that these devices experience transientbit-flip faults,
where a single bit changes value; permanentstuck-at
faults, when a bit assumes a fixed value for an extended
period; andbridging faultswhen an adjacent pair of bits
are electrically mated, causing a logical-and or logical-or
gate between the bits [47, 25]. Environmental conditions
such as electromagnetic interference and radiation can
cause transient faults. Wear-out and insufficient burn-in
may result in stuck-at and bridging faults in the devices.

In addition, when a device contains embedded
firmware, or even an embedded operating system [50],
any software-related failure is possible, such as out-of-
resource errors from memory leaks or concurrency bugs.

Failure manifestations Device drivers observe fail-
ures when they access data generated by the device. For
PCI drivers, which perform I/O through memory or I/O
ports, the driver reads incorrect values from the device.
For USB drivers, which use a request/response protocol,
a device failure may cause a response packet to contain
incorrect data [25]. Sources at Microsoft report that de-
vice hangs and interrupt storms are common manifesta-
tions of faulty hardware [14].

Many hardware failures are likely to manifest as cor-
rupt values in device registers. A single bit-flip inter-
nal to a device controller may propagate to other internal
registers before the device driver reads a garbled value
exposed through a device register. Similarly, an internal
stuck-at failure may result in a transient corruption in a
device register, a stuck value in a register, a stuck inter-
rupt request line, or unpredictable DMA accesses. Bugs
in device firmware may manifest as incorrect output val-
ues or timing failures, when a device does not respond
within the specified time period.

2.2 Vendor Recommendations

Major OS vendors provide recommendations to driver
writers on how to tolerate device failures [2, 16, 20, 41].
Table1 summarizes the recommendations of Microsoft,
IBM, Intel, and Sun on how to prevent faulty hardware
from causing system failures. The advice can be con-
densed to four major actions:

1. Validate. All input from a device should be treated
as suspicious and validated to make sure that values
lie within range.
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Validation
Input validation. Check pointers, array indexes, packet

lengths, and status data received from hardware [41, 16, 20].
F
Unrepeatable reads.Read data from hardware once. Do not
reread as it may be corrupt later [41]
DMA protection.Ensure that the device only writes to valid
DMA memory [41, 20]
Data corruption. Use CRCs to detect data corruption if

higher layers will not also check [41, 20]
Timing
Infinite polling. Ensure that spinning while waiting on the

hardware can time out, and bound all loops [41, 20, 16]. F
Stuck interrupts. Handle interrupts that cannot be dis-

missed [17, 41] F
Lost request.Use a watchdog to verify hardware respon-

siveness [2, 16] F
Excessive delay.Avoid delaying the OS, busy waiting, and

holding locks for extended periods [2, 16]
Unexpected events.Handle out-of-sequence events [20, 16]
Reporting
Report hardware failures.Notify the operating system of

errors, log all useful information [2, 16, 20, 41] F
Recovery
Handle all failures. Handle error conditions, including

generic and hardware-specific errors [2, 16, 41] F
Cleanup properly. Ensure the driver cleans up resources

after a fault [41, 20] F
Conceal failure. Hide recoverable faults from applica-

tions [16] F
Do not crash.Avoid halting the system [2, 16, 20, 34] F
Test drivers.Test driver using fault injection [52, 17, 20]
Wrap I/O memory access.Use only wrapper functions to

perform programmed/memory-mapped I/O [41, 20, 34]

Table 1: Vendor recommendations for hardening drivers
against hardware failures. Recommendations addressed by
Carburizer are marked with a F.

2. Timeout. All interaction with a device should be
subject to timeouts to prevent waiting forever when
the device is not responsive.

3. Report.All suspect behavior should be reported to
an OS service, allowing centralized detection and
management of hardware failures.

4. Recover.The driver should recover from any device
failure, if necessary by restarting the device.

The goal of our work is toautomatically implement
these recommendations. First, we seek to make drivers
tolerate and recover from device failures, so device fail-
ures do not lead to system failures. For this aspect of our
work, we focus on transient failures that do not recur af-
ter the device is reset. Second, we seek to make drivers
report device failures so that administrators learn of tran-
sient failures and can proactively replace faulty devices.

Carburizer addressesall four aspects of vendor recom-
mendations described above. Section3 addresses bugs
that can be found through static analysis, including in-
finite polling and input validation. Section4 addresses
reporting hardware failures to a centralized service. Sec-
tion 5 addresses runtime support for tolerating device
failures, including recovery, stuck interrupts, and lost re-
quests. The recommendations that Carburizer can apply
automatically are marked in Table1. The remaining rec-
ommendations can be addressed with other techniques,
such as an IOMMU for DMA memory protection, or can-
not be applied without semantic information about the
device.
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Figure 1: The Carburizer architecture. Existing kernel
drivers are converted to hardened drivers and execute with
runtime support for failure detection and recovery.

3 Hardening Drivers
This section describes how Carburizer finds and fixes
infinite polling and input validation bugs from Table1.
These arehardware dependencebugs that arise because
the software depends on the hardware’s correctness for
its own correctness. The goal of our work is to (1) find
places where driver code uses data originating from a de-
vice, (2) verify that the driver checks the data for validity
before performing actions that could lead to a crash or
hang, and if not, (3) automatically insert validity or tim-
ing checks into the code. These checks invoke a generic
recovery mechanism, which we describe in Section5.
When used without a recovery service, Carburizer iden-
tifies bugs for a programmer to fix.

Figure1 shows the overall architecture of our system.
Carburizer takes unmodified drivers as input and with a
set of static analyses produces (1) a list of possible bugs
and (2) a driver with these bugs repaired, i.e. drivers that
validate all input coming from hardware before using it
in critical control or data flow paths. The Carburizer run-
time detects additional hardware failures at runtime and
can restore functionality after a hardware failure.

We implement Carburizer with CIL [30]. CIL reads in
pre-processed C code and produces an internal represen-
tation of the code suitable for static analysis. Tools built
with CIL can then modify the code and produce a new
pre-processed source file as output.

We next describe the analyses for hardening drivers in
Carburizer and our strategies for automatically repairing
these bugs. We experiment with device drivers from the
Linux 2.6.18.8 kernel.

3.1 Finding Sensitive Code

Carburizer locates code that is dependent on inputs from
the device. When a driver makes a control decision, such
as a branch or function call, based on data from the de-
vice, the control code issensitivebecause it is dependent
on the correct functioning of the device. If code uses
a value originating from a device in an address calcula-
tion, for example as an array index, use of the address
is dependent on the device. Carburizer finds hardware-
dependent code that is incorrect for some device inputs.

1 static int amd8111e_read_phy(.......)
2 {
3 .
4 reg_val = readl(mmio + PHY_ACCESS);
5 while (reg_val & PHY_CMD_ACTIVE)
6 reg_val = readl( mmio + PHY_ACCESS );
7 .
8 }

Figure 2: The AMD 8111e network driver (amd8111e.c)
can hang if the readl() call in line 6 always returns the same
value.

Carburizer’s analyses are performed in two passes.
The first pass is common to all analyses and identifies
variables that aretainted, or dependent on input from the
device. Carburizer consults a table of functions known to
perform I/O, such asreadl for memory-mapped I/O or
inb for port I/O. Initially, Carburizer marks all heap and
stack variables that receive results from these functions
as tainted. Carburizer then propagates taint to variables
that are computed from or aliased to the tainted variables.
Carburizer considers the static visibility of variables but
does not consider possible calling contexts. For com-
pound variables such as structures and arrays, the analy-
sis is field insensitive and assumes that the entire struc-
ture is tainted if any field contains a value read from the
device. We find that in practice this occurs rarely, and
therefore yields a simpler analysis that is almost as pre-
cise as being sensitive to fields.

The output of the first pass is a table containing all
variables in all functions indicating if the variable is
tainted. Carburizer also stores a list of tainted functions
that return values calculated from device inputs. The ta-
ble from the first pass is used by second-pass analyses
described below.

3.1.1 Infinite Polling

Drivers often wait for a device to enter a given state by
polling a device register. Commonly, the driver sits in
a tight loop reading the device register until a bit is set
to the proper value, as shown in Figure2. If the device
never setsthe proper value, this loop will cause the sys-
tem to hang. Driver developers are expected to ensure
these loops will timeout eventually. We find, though, that
in many cases device drivers omit the timeout code and
loops terminate only if the device functions correctly.

To identify these unbounded loops, we implement an
analysis to detect control paths that wait forever for a
particular input from the device. Carburizer locates all
loops where the terminating conditions are tainted (i.e.,
dependent on the device). For each loop, Carburizer
computes the set of conditions that cause the loop to
terminate throughwhile clauses as well as conditional
break, return andgoto statements. If all the terminating
conditions for a loop are hardware dependent, the loop
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1 static void __init attach_pas_card(...) {
2 .
3 if ((pas_model = pas_read(0xFF88)))
4 {
5 char temp[100];
6

7 sprintf(temp,
8 "%s rev %d",
9 pas_model_names[(int) pas_model],

10 pas_read(0x2789));
11 .
12 }

Figure 3: The Pro Audio Sound driver (pas2card.c) uses
the pas model variable as an array index in line 9 without
any checks.

may iterate infinitely when the device misbehaves. Fig-
ure2 shows a bug detected by our analysis. The code in
lines 5-6 can loop infinitely ifreadl, a function to read
a device register, never returns the correct value. While
this is a simple example, our analysis can detect complex
cases, such as loops that containcase statements or that
call functions performing I/O.

3.1.2 Checking Array Accesses

Many drivers use inputs from a device to index into
an array. When the range of the variable (e.g., 65536
for a short) is larger than the array, an incorrect index
can lead to reading an unmapped address (for large in-
dices) or corrupting adjacent data structures. Figure3
shows a loop in the Pro Audio sound driver (pas2card.c)
that does not check for bounds while accessing an array.
While many drivers always check array bounds, some
drivers are not as conscientious. Furthermore, a single
driver may be inconsistent in its checks.

We implement an analysis in Carburizer to determine
whether tainted variables are used as array indices in
static arrays. If the array is accessed using a tainted vari-
able, Carburizer flags the access as a potential hardware
dependence bug. The analysis can detect when values
returned by one function are used as array indices in an-
other. In addition, when an array index is computed from
multiple variables, Carburizer checks whether all the in-
put variables are untainted.

Carburizer also detects dynamic (variable-sized) array
dereferencing with tainted variables. CIL converts all dy-
namic array accesses into pointer arithmetic and mem-
ory dereferencing, so it requires a separate analysis from
static arrays (those declared as arrays with a fixed size).
In the second analysis pass, Carburizer detects whether
a tainted variable is used for pointer arithmetic or as the
address of a memory dereference. In both cases, Carbur-

1 static void orc_interrupt(...) {
2 .
3 bScbIdx = ORC_RD(hcsp->HCS_Base,
4 ORC_RQUEUE);
5

6 pScb = (ORC_SCB * ) ((ULONG)
7 hcsp->HCS_virScbArray
8 + (ULONG)
9 (sizeof(ORC_SCB) * bScbIdx));

10

11 pScb->SCB_Status = 0x0;
12

13 inia100SCBPost((BYTE * )
14 hcsp, (BYTE * ) pScb);
15 .
16 }

Figure 4: The pScbIdx variable is used in pointer arith-
metic in line 11 without any check in the a100 SCSI driver
(a100u2w.c).

1 void hptiop_iop_request_callback( ... ) {
2 .
3 p = (struct hpt_iop_cmd __iomem * )req;
4 arg = (struct hi_k * )
5 (readl(&req->context) |
6 ((u64) readl(&req->context_hi32)<<32));
7

8 if (readl(&req->result) == IOP_SUCCESS) {
9 arg->result = HPT_IOCTL_OK;

10 }
11 .
12 }

Figure 5: The HighPoint RR3xxx SCSI driver (hptiop.c)
readsarg from the controller in line 5 and dereferences it
as a pointer in line 9.

izer detects a potentially unsafe memory reference. We
report a bug where the pointer arithmetic is performed
rather than where a dereference occurs; this is the loca-
tion where a bounds check is required, as the offset may
not be available when memory is actually dereferenced.
If the pointer is never used, this may result in a false pos-
itive.

Figure 4 shows driver code where unsafe data from
device is used for pointer arithmetic. At line 3,bScbIdx
is assigned value from theORC RD macro, which reads
a 32-bit value from the device. At line 9, this value is
used as an offset for pointerpScb. If a single bit of the
incoming data is flipped, the pointer dereference in line
11 could cause memory corruption or, if the address is
unmapped, a system crash.

While rare, drivers may also read a pointer directly
from a device. Figure5 shows an example from a SCSI
driver where the driver reads a 64-bit pointer in lines 5
and 6 and dereferences it in line 9. Carburizer also flags
this use of pointers as a bug.
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3.1.3 Removing False Positives

False positives may arise when the driver has a time-
out in a loop or validates input that our analysis does
not detect. From the suspect loops, Carburizer deter-
mines whether the programmer has already implemented
a timeout mechanism by looking for the use of atimeout
counter. A timeout counter is a variable that is (1) either
incremented or decremented in the loop, (2) not used as
an array index or in pointer arithmetic, and (3) used in a
terminating condition for the loop, such as awhile clause
or in anif before abreak, goto, or return statement. If
a loop contains a counter, Carburizer determines that it
will not loop infinitely. We also detect the use of the ker-
neljiffies clock as a counter.

False positives for unsafe pointer dereferencing and ar-
ray indexing may occur if the driver already validates the
pointer or index with a comparison to NULL or a shift/-
mask operation on the incoming pointer data from the
device. Carburizer does not flag a bug when these op-
erations occur between the I/O operation and the pointer
arithmetic or pointer dereference.

Carburizer removes false positives that occur when a
tainted variable is used multiple times without an inter-
vening I/O operation and when a tainted variable is re-
assigned with an untainted value. We keep track of where
in the code a variable becomes tainted, and only detect a
bug if the pointer dereference or array index occurs after
the taint.

We find that the false positive techniques have been
helpful. Identifying validity checks and repeated use of a
variable reduced the number of detected dynamic-array
access bugs from 650 to 150, and the other techniques
further reduced it by almost half. For infinite polling,
these techniques identified half the results as false posi-
tives where the driver correctly broke out of the loop.

3.2 Repairing Sensitive Code

Finding driver bugs alone is valuable, but reliability does
not improve until the bug is fixed. After finding a bug,
Carburizer in many cases can generate a fix. Repair-
ing sensitive code consists of inserting a test to detect
whether a failure occurred and code to handle the fail-
ure. To recover, Carburizer inserts code that invokes a
generic recovery function capable of resetting the hard-
ware. While repeating a device read operation may fix
the bug, this is not safe in general because device-register
reads can have side effects. As recovery affects perfor-
mance, we ensure it will not be invoked unless an unhan-
dled failure occurs and the driver could otherwise crash
or hang.

Carburizer relies on a generic recovery function com-
mon to all drivers. However, some drivers already im-
plement recovery functionality. For example, the E1000
gigabit Ethernet driver provides a function to shutdown

1 static int amd8111e_read_phy(.......)
2 {
3 .

4 unsigned long long delta = (cpu/khz/HZ) * 2;
5 unsigned long long _start = 0;
6 unsigned long long _cur = 0;
7 timeout = rdtscll(start) + delta ;

8 reg_val = readl(mmio + PHY_ACCESS);
9 while (reg_val & PHY_CMD_ACTIVE) {

10 reg_val = readl( mmio + PHY_ACCESS );
11

12 if (_cur < timeout) {
13 rdtscll(_cur);
14 } else {
15 __shadow_recover();
16 }

17 .
18 }

Figure 6:The code from Figure2 fixed by Carburizer with
a timeout counter.

and resume the driver when it detects an error. For such
drivers, it may be helpful to modify Carburizer to gener-
ate code invoking a driver-specific function instead.

Fixing infinite polling When Carburizer identifies a
loop where a driver may wait infinitely, it generates code
to break out of the loop after a fixed delay. We se-
lected maximum delays based on the delays used in other
drivers. For loops that do not sleep, we found that most
drivers wait for two timer ticks before timing out; we
chose five ticks, a slightly longer delay, to avoid incor-
rectly breaking out of loops. For loops that invoke a
sleep function such asmsleep, we insert code that breaks
out of loops after five seconds, because the delay does
not impact the rest of the system. This is far longer than
most devices require and ensures that if our analysis does
raise false positives, the repair will not break the driver.
As shown in Figure6, for tight loops Carburizer gener-
ates code to read the processor timestamp counter before
the loop and breaks out of the loop after the specified
time delay. When the loop times out, the driver invokes
a generic recovery function. This repair will only be in-
voked after a previously infinite loop times out, ensuring
that there will not be any falsely detected failures.

Fixing invalid array indices When array bounds are
known, Carburizer can insert code to detect invalid array
indices with a simple bounds check before the array is
accessed. Carburizer computes the size of static arrays
and inserts bounds checks on array indices when the in-
dex comes from the device. When an array index is used
repeatedly, Carburizer only inserts a bounds check before
the first use of the tainted array indice.

For dynamically sized arrays, the bound is not avail-
able. Carburizer reports the bug but does not generate
a repair. With programmer annotations indicating where
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1 static void __init attach_pas_card(...)
2 {
3 .
4 if ((pas_model = pas_read(0xFF88)))
5 {
6 char temp[100];
7
8 if ((int )pas_model < 0 ||
9 (int )pas_model >= 5) {

10 __shadow_recover();
11 }

12 sprintf(temp,
13 "%s rev %d",
14 pas_model_names[(int) pas_model],
15 pas_read(0x2789));
16 .
17 }

Figure 7:The code from Figure3 fixed by Carburizer with
a bounds check.

1 void hptiop_iop_request_callback( ... ) {
2 .
3 p = (struct hpt_iop_cmd __iomem * )req;
4 arg = (struct hi_k * )
5 (readl(&req->context) |
6 ((u64) readl(&req->context_hi32)<<32));
7

8 if (readl(&req->result) == IOP_SUCCESS) {

9 if (arg == NULL)
10 __shadow_recover();

11 arg->result = HPT_IOCTL_OK;
12 }
13 .
14 }

Figure 8:The code from Figure5 after repair. Carburizer
inserts a null-pointer check in line 9.

array bounds are stored [15, 51], Carburizer could also
generate code for dynamic bounds checking.

Figure7 shows the code from Figure3 after repair. In
this code, the array size is declared statically and Carbur-
izer automatically generates the appropriate range check.
This check will only trigger a recovery if the index is out-
side the array bounds, so it never falsely detects a failure.

When repairing code that reads a pointer directly from
a device, Carburizer does not know legal values for the
pointer. As result, it only ensures that the pointer is non-
NULL. Unlike other fixes, this only prevents a subset
of crashes, because legal values of the pointer are not
known. Figure8 shows repaired code where data from
device is dereferenced.

Fixing driver panics Carburizer can also fix driver
code that intentionally crashes the system when hard-
ware fails. Many drivers invokepanic when they en-
counter abnormal hardware situations. While OS ven-
dors discourage this practice, it is used when driver de-
velopers do not know how to recover and ensures that
errors do not propagate and corrupt the system. If a re-

covery facility is available then crashing the system is
not necessary. Carburizer incorporates a simple analysis
to identify calls topanic, BUG, ASSERT and other system
halting functions and replace them with calls to the re-
covery function.

3.3 Summary

The static analysis performed by Carburizer finds many
bugs but is neither sound nor complete: it may produce
false positives, and identify code as needing a fix when
it is in fact correct, and false negatives by missing some
bugs. Nonetheless, we find that it identifies many true
bugs.

False positives may occur when the driver already con-
tains a validity check that Carburizer does not recognize.
For example, if the timeout mechanism for a loop is im-
plemented in a separate function, Carburizer will not find
it and will falsely mark the loop as a bug. Carburizer only
detects counters implemented as standard integer types.
When drivers use custom data-types, Carburizer does not
detect the counter and again falsely marks the loop as an
error. For array indexing, Carburizer does not consider
shift operations as a validity check because, if the array
is not a power of two in size, some index values will
cause accesses past the end of the array.

False negatives can occur because our interprocedural
analysis only passes taint through return values. When
a tainted variable is passed as an argument, Carburizer
does not detect its use as sensitive code. Carburizer also
cannot detect silent failures that occur when the hardware
produces a legal but wrong value, such as in incorrect
index that lies within the bounds of the array.

3.4 Analysis Results

We ran our code across all drivers in the Linux 2.6.18.8
kernel distribution. In total, we analyzed 6359 source
files across thedrivers andsound directories. For major
driver classes, Table2 shows the number of bugs found
of each type. Despite analyzing over 2.8 million lines of
code, on a 2.4 GHz Core 2 processor the analysis only
takes thirty seven minutes to run, output repaired source
files and compile the driver files.

The results show that hardware dependence bugs are
widespread, with 992 bugs found across various driver
classes. Of these, Carburizer can automatically repair
the 903 infinite loop and static array index bugs. Only
the 89 dynamic-array dereferences require programmer
involvement.

We estimate the false positive rate by randomly sam-
pling bugs and inspecting the code. With weighted sam-
pling across all classes of bugs, we compute that Carbur-
izer is able to detect bugs at a false positive rate of 7.4%±
4.3% with 95% confidence.For the infinite loop bugs, we
inspected 140 cases and found only 5 false positives. In
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Driver Infinite Polling Static Array Dynamic Array Panic
Class Found Found Found Fixed

net 117 2 21 2
scsi 298 31 22 121
sound 64 1 0 2
video 174 0 22 22
other 381 9 57 32

Total 860 43 89 179

Table 2:Instances of hardware dependencies by modern Linux device drivers.(2.6.18.8 kernel)

these cases, the timeout mechanism was implemented in
a function separate from the loop, which Carburizer does
not detect. However, Carburizer’s timeout wasmore re-
laxed than the driver’s, and as a result did not harm the
driver. This low false positive rate demonstrates that a
fairly simple and fast analysis can detect infinite loops
with high accuracy.

For static arrays, we randomly sampled 15 identified
bugs and found 6 true bugs that could cause a system
crash if the hardware experienced a transient failure, such
as a single bit flip in a device register. Most of the re-
maining false positives occurred because the array was
exactly the size of the index’s range, for example 256 en-
tries for an unsigned byte index. However, even in the
case of false positives, the code added by Carburizer cor-
rectly checked array bounds and does not falsely detect
a failure. The only harm done to the driver is the over-
head of an unnecessary bounds check. More advanced
analysis could remove these false positives.

For dynamic arrays and memory dereferencing, we
sampled 35 bugs and found 25 real bugs for a program-
mer to fix. Most false positives manifested in drivers that
use mechanisms other than a mask or comparison for ver-
ifying an index. For example, the Intel i810audio driver
uses the modulo operation on a dynamic array offset. The
SIS graphic driver calls a function to validate all inputs,
and Carburizer’s analysis cannot detect validation done
in a separate function. Better interprocedural analysis is
needed to prevent these false positives.

Overall, we found that 498 driver modules out of the
1950 analyzed contained bugs. The bugs followed two
distributions. Many drivers had only one or two hard-
ware dependence bugs. The developers of these drivers
were typically vigilant about validating device input but
forgot in a few places. A small number of drivers per-
formed very little validation and had a large number of
bugs. For example, Carburizer detected 24 infinite loops
in the telespci ISDN driver and 80 in the ATP 870 SCSI
driver.

These bugs demonstrate that language or library con-
structs can improve the quality of driver code. For ex-
ample, constructs to wait for a device condition safely,
with internally implemented timeouts, reduce the prob-

lem of hung systems due to devices. Past work on lan-
guage support for concurrency in drivers has investigated
providing similar language features to avoid correctness
violations [8] .

3.5 Experimental Results

We verify that the Carburizer’s repair transformation
works by testing it on three Ethernet drivers. Testing
every driver repair is not practical because it would re-
quire obtaining hundreds of devices. We focus on net-
work drivers because we have only implemented the re-
covery mechanism for this driver class. We test whether
carburized drivers, those modified by Carburizer, can de-
tect and recovery from hardware faults.

Of the devices at our disposal, through physical
hardware or emulation in a virtual machine, only two
100Mbps network interface cards use drivers that had
bugs according to our analysis: a DEC DC21x4x card
using the de4x5 driver, and a 3Com 3C905 card us-
ing the 3c59x driver. We also tested the forcedeth
driver for NVIDIA MCP55 Pro gigabit devices because
it places high performance demands on the system (see
Section6). In the case of forcedeth, since there are no
bugs in the driver, we emulate problematic code by man-
ually inserting bugs, running Carburizer on the driver,
and testing the resulting code.

We inject hardware faults with a simple fault injection
tool that modifies the return values of theread(b,w,l)
andin(b,w,l) I/O functions. We modified the forcedeth
driver by inserting code that returns incorrect output for
a specific device read operation on a device register. We
then simulated a series of transient faults in the register
of interest. We injected hardware read faults at three lo-
cations in the de4x5 driver to induce an infinite-loop in
interrupt context. The loop continued even if the hard-
ware returned 0xffffffff, a code used to indicate that the
hardware is no longer present in the system. We injected
a similar set of faults into the 3c59x driver to create an
infinite loop in the interrupt handler and trigger recov-
ery. We did not test all the bugs in each driver, because a
single driver may support many devices, and some bugs
only occur for a specific device. As a result, we could
not force the driver through all buggy code paths with a
single device.
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1 static int phy_reset(...) {
2 .
3 while (miicontrol & BMCR_RESET) {
4 msleep(10);
5 miicontrol = mii_rw(...);
6 if (tries++ > 100)
7 return -1;
8 }
9 .

10 }

Figure 9: The forcedeth network driver polls the
BMCR RESET device register until it changes state or un-
til a timeout occurs. The driver reports only a generic error
message at a higher level and not the specific failure where
it occurred.

In each test, we found that the driver quickly detected
the failure with the generated code and triggered the re-
covery mechanism. After a short delay while the driver
recovered, it returned to normal function without inter-
fering with applications. We stopped injecting faults in
the de4x5 and 3c59x drivers after they each recovered
four times. The forcedeth driver successfully recovered
from more than ten of these transient faults. These tests
demonstrate that automatic recovery can restart drivers
after hardware failures.

4 Reporting Hardware Failures
A transient hardware failure, even while recoverable, re-
duces performance and may portend future failures [31].
As a result, OS and hardware vendors recommend mon-
itoring hardware failures to allow proactive device repair
or replacement. For example, the Solaris Fault Manage-
ment Architecture [40] feeds errors reported by device
drivers and other system components into a diagnosis en-
gine. The engine correlates failures from different com-
ponents and can recommend a high-level action, such as
disabling or replacing a device. In reading driver code,
we found Linux drivers only report a subset of errors and
often omit the failure details.

When Carburizer repairs a hardware dependence bug,
it also inserts error-reporting code. Thus, a centralized
fault management system can track hardware errors and
correlate hardware failures to other system reliability or
performance problems. Currently, we useprintk to
write to the system log, as Linux does not have a fail-
ure monitoring service.

To support administrative management of hardware
failures, Carburizer will also insert monitoring code into
existing drivers where the driver itself detects a failure.
Carburizer in this case relies on the driver to detect hard-
ware failures, through the timeouts and sanity checks.
Figure 9 shows code where the driver detects a failure
with a timeout and returns an error, but does not report
any failure. In this case, Carburizer will insert logging

code where the error is returned and include standard in-
formation, such as the driver name, location in the code,
and error type (timeout or corruption). If the driver al-
ready reports an error, then we assume its report is suf-
ficient and Carburizer does not introduce additional re-
porting.

We implement analyses in Carburizer to detect when
the driver either detects a failure of the hardware or re-
turns an error specifically because of a value read from
the hardware. These analyses depend on the bug-finding
capabilities from the preceding section to find sensitive
code. In this case, what would have been a false positive,
because the failureis handled by the driver, becomes the
condition to search.

4.1 Reporting Device Timeouts

Carburizer detects locations where a driver correctly
times out of a polling loop. This code indicates that a
device failure has occurred because the device did not
output the correct value within the specified time. This
analysis is the same as the false-positive analysis used
for pruning results for infinite loops, except that the false
positives are now the code we seek. Figure9 shows
an example of code that loops until either a timeout is
reached or the device produces the necessary value. Car-
burizer detects whether a logging statement, which we
consider a function taking a string as a parameter, oc-
curs either before breaking out of the loop or just after
breaking out. If so, Carburizer determines that the driver
already reports the failure.

Once loops that timeout are detected, Carburizer iden-
tifies the predicate that holds when the loop breaks due
of a timeout. Carburizer identifies any return statements
based on such predicates and places a reporting statement
just before the return. The resulting code is shown in Fig-
ure10. If the test is incorporated intowhile or for loop
predicate then Carburizer inserts code into the loop to re-
port a failure if the expression holds. CIL convertsfor
loops intowhile(1) loops withbreak statements so that
code can be inserted between the variable update and the
condition evaluation. Thus, the driver will test the ex-
pression, report a failure, test the expression again, and
break out of the loop.

4.2 Reporting Incorrect Device Outputs

Carburizer analyzes driver code to find driver functions
that return errors due to hardware failures. This covers
range tests on array indices and explicit comparisons of
status or state values. Carburizer identifies that a hard-
ware failure has occurred when the driver returns an error
as a result of reading data from a device. Specifically, it
identifies code where three conditions hold: (a) a driver
function returns a negative integer constant; (b) the error
return value is only returned based on the evaluation of a
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1 static int phy_reset(...) {
2 .
3 while (miicontrol & BMCR_RESET) {
4 msleep(10);
5 miicontrol = mii_rw(...);
6 if (tries++ > 100) {

7 printk("...");

8 return -1;
9 }

10 }
11 .
12 }

Figure 10:Carburizer inserts a reporting statement auto-
matically in the case of a timeout, which indicates the device
is not operating according to specification.

Driver Device Timeout Incorrect Output
Class found/fixed found/fixed

net 483/321 249/97
scsi 302/249 137/110
sound 359/297 81/53
other 411/268 361/207

Total 1555/1135 828/467

Table 3: Instances of device-reporting code inserted by
Carburizer. Each entry shows the number of device fail-
ures detected by the driver, followed by the number where
the driver did not report failures and Carburizer inserted
reporting code.

conditional expression, and (c), the expression references
variables that were read from the device. We further ex-
pand the analysis to detect sites where an error variable
is set, such as when the driver sets the return value and
jumps to common cleanup code. If these conditions hold,
Carburizer inserts a call to the reporting function just be-
fore the return statement to signify a hardware failure.

4.3 Results

Table3 shows the result of our analysis. In total, Car-
burizer identified 1555 locations where drivers detect a
timeout. Of these, drivers reported errors only 420 times,
and Carburizer inserted error-reporting code 1135 times.
Carburizer detected 828 locations where the driver de-
tected a failure with comparisons or range tests. Of these,
the driver reported a failure 361 times and Carburizer in-
serted an error report 467 times.

We evaluate the effectiveness of Carburizer at in-
troducing error-reporting code by performing the same
analysis by hand to see whether it finds all the locations
where drivers detect a hardware failure. For the drivers
listed in Table4, we identified every location where the
original driver detects a failure and whether it reports the
failure through logging.

We manually examined the three drivers, one from
each major class, and counted as an error any code that

Driver Class Actual errors Reported Errors

bnx2 net 24 17
mptbase scsi 28 17
ens1371 sound 10 9

Table 4:Instances of fault-reporting code inserted by Car-
burizer compared against all errors detected in the driver.
Each entry shows the actual number of errors detected in
the driver followed by the number of errors reported using
Carburizer.

clearly indicated the hardware was operating outside of
specification. This code performs any of the following
actions on the basis of a value read from the device: (1)
returning a negative value, (2) printing an error message
indicating a hardware failure, or (3) detecting a failed
self-test. We did not count errors found in any code re-
moved during preprocessing, such asASSERT statements.

Table4 shows the number of failures the driver detects
(according to our manual analysis), whether reported or
not, compared with the number of errors reported by Car-
burizer. In these three drivers, Carburizer did not produce
any false positives: all of the errors reported did indicate
a device malfunction. However, Carburizer missed sev-
eral places where the driver detected a failure. Out of 62
locations where the driver detected a failure, Carburizer
identified 43.

We found three reasons for these false negatives. First,
some drivers, such as the bnx2 network driver, wrap sev-
eral low-level read operations in a single function, and
return the tainted data via an out parameter. Carburizer
does not propagate taint through out parameters. Sec-
ond, Carburizer’s analysis is not sophisticated enough to
track tainted structure members across procedure bound-
aries. The mptbase SCSI driver reads data into a member
variable in one procedure and returns an error based on
its value in another, and we do not detect the member
as tainted where the failure is returned. Finally, some
drivers detect a hardware failure and print a message but
do not subsequently return an error. Thus, Carburizer
does not identify that a hardware failure was detected.

To verify the operation of the reporting statements, we
injected targeted faults designed to cause the carburized
driver to report a failure. We tested four drivers with
fault injection to ensure they reported failures. We in-
jected synthetic faults into the ens1371 sound driver and
the de4x5, 8139cp, and 8139too network drivers using
the tool from Section3. We verified that targeted fault
injection triggered every reporting statement that applies
to these hardware devices.

The only false positive we found occurred in the
8139too network driver during during device initializa-
tion. This driver executes a loop that is expected to
time out, and Carburizer falsely considers this a hard-
ware fault. The other carburized drivers do not report
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any false positives. We injected faults with a fixed prob-
ability every time the driver invoked a port or I/O mem-
ory read operation, both during driver initialization and
while running a workload. The drivers did not report
any additional errors compared to unmodified drivers un-
der these conditions, largely because none of the injected
faults would lead to a system crash. As future work, we
plan to examine the problem of reporting if a device is
malfunctioning even if the malfunction does not cause a
crash.

Overall, we found that Carburizer was effective at in-
troducing additional error logging to drivers where log-
ging did not previously exist. While it does not detect
every hardware failure, Carburizer increases the number
of failures logged and can therefore improve an admin-
istrator’s ability to detect when hardware is failing, as
compared to driver failures caused by software.

5 Runtime Fault Tolerance
The Carburizer runtime provides two key services. First,
it provides an automatic recovery service to restore
drivers and devices to a functioning state when a failure
occurs. Second, it detects classes of failures that cannot
be addressed by static analysis and modification of driver
code, such as tolerating stuck interrupts.

5.1 Automatic Recovery

Static analysis tools have proved useful as bug finding
tools. But, programmers must still write code to repair
the bugs that are found. Carburizer circumvents this limi-
tation by relying onautomatic recoveryto restore drivers
and devices to a functioning state when a failure is de-
tected. The driver may invoke a recovery function at any
time, which will reset the driver to a known-good state.
For stuck-at hardware failures, resetting the device can
often correct the problem. We rely on the same mech-
anism to recover from transient failures, although a full
reset may not be required in every case.

We leverage shadow drivers [43] to provide automatic
recovery because they conceal failures from applications
and the OS. A shadow driver is a kernel agent that mon-
itors and stores the state of a driver by intercepting func-
tion calls between the driver and the kernel. During
normal operation, the shadow drivertaps all function
calls between the driver and the kernel. In thispassive
mode, the shadow driver records operations that change
the state of the driver, such as configuration operations
and requests currently being processed by the driver.

Shadow drivers are class drivers, in that they are cus-
tomized to the driver interface but not to its implemen-
tation. Thus, a separate shadow driver is needed to re-
cover from failures in each unique class, such as network,
sound, or SCSI. We have only implemented recovery for
network drivers so far, although other work shows that

they work effectively for sound, storage [43] and video
drivers [23] .

When the driver invokes the recovery function, the
shadow driver transitions intoactive mode, where it per-
forms two functions. First, it proxies for the device
driver, fielding requests from the kernel until the driver
recovers. This process ensures that the kernel and appli-
cation software is unaware that the device failed. Second,
shadow drivers unload and release the state of the driver
and then restart the driver, causing it to reinitialize the
device. When starting this driver, the shadow driver uses
its log to configure the driver to its state prior to recov-
ery, including resubmitting pending requests. Once this
is complete, the shadow driver transitions back to passive
mode, and the driver is available for use.

The shadow driver recovery model works when reset-
ting the device clears a device failure. For devices that
fail permanently or require a full power cycle to recover,
shadow drivers will detect that the failure is not transient
when recovery fails and can notify a management agent.

We obtained the shadow driver implementation used
for virtual machine migration [22] and ported the recov-
ery functions for network device drivers to the 2.6.18.8
kernel. However, we did not port the entire Nooks
driver isolation subsystem [44]. Nooks prevents memory
corruption and detects failures through hardware traps,
which are unnecessary for tolerating hardware failures.
Nooks’ isolation also causes a performance drop from
switching protection domains, which Carburizer avoids.
The remaining code consists of wrappers around the ker-
nel/driver interface, code to log driver requests, and code
to restart and restore driver state after a failure. In addi-
tion, we export the shadow recover function from the
kernel, which a driver may call to initiate recovery after
a hardware failure.

5.2 Tolerating Missing Interrupts

In addition to providing a recovery service, the Carbur-
izer runtime also detects failures that cannot be detected
through static modifications of driver code. Devices may
fail by generating too many interrupts or by not generat-
ing any. The first case causes a system hang, because no
useful work can occur while the interrupt handler is run-
ning, while the second case can result in an inoperable
device.

To address the scenario in which the device stops gen-
erating interrupts, Carburizer monitors the driver and in-
vokes the interrupt handler automatically if necessary.
With monitoring, an otherwise operative device need not
generate interrupts to provide service. Unlike other hard-
ware errors, we do not force the driver to recover in this
case because we cannot detect precisely whether an in-
terrupt is missing. Instead, the Carburizer runtime pro-
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actively calls the driver’s interrupt handler to process any
pending requests

The Carburizer runtime increments a counter each
time a driver’s interrupt handler is called. Periodically,
a low priority kernel thread checks this counter. If
the counter value has changed, Carburizer does nothing
since the device appears to be working normally. If, how-
ever, the interrupt handler has not been executed, the de-
vice may not be delivering interrupts.

The Carburizer runtime detects whether there has been
recent driver activity that should have caused an interrupt
by testing whether driver code has been executed. Rather
than recording every driver invocation, Carburizer polls
the reference bits on the driver’s code pages. If any of
the code pages have been referenced, Carburizer assumes
that a request may have been made and that the interrupt
handler should be called soon.

Because every driver is different, Carburizer imple-
ments a dynamic approach to increase or decrease the
polling interval exponentially, depending on whether
previous calls were productive or not. By default, Car-
burizer checks the referenced bits every 16ms. We chose
this value because it provides a relatively good response
time in the event of a single missing interrupt. If Carbur-
izer’s call to the interrupt handler returnsIRQ NONE, in-
dicating the interrupt was spurious, then Carburizer dou-
bles the polling interval, up to a maximum of one second.
Conversely, if the interrupt handler returnsIRQ HANDLED,
indicating that there was work for the driver, then Car-
burizer decreases the polling interval to a minimum of
4ms. Thus, Carburizer calls the interrupt handler repeat-
edly only if it detects that the driver is doing useful work
during the handler.

Relying on the handler return value to detect whether
the handler was productive works for devices that sup-
port shared interrupts. Spurious interrupt handler invo-
cations can occur with shared interrupts because the ker-
nel cannot detect which of the devices sharing the inter-
rupt line needs service. However, some drivers report
IRQ HANDLED even if the device does not require service,
leading Carburizer to falsely detect that it has missed an
interrupt. We are examining alternate mechanisms to dis-
tinguish productive and unproductive calls to interrupt
handlers to improve performance and reduce unneces-
sary polling, such as timing the duration of the handler
or detecting which code pages are accessed during the
handler.

Carburizer’s polling mechanism adds some overhead
when the kernel invokes a driver but does not cause the
device to generate an interrupt. For network drivers, this
occurs when the kernel invokes an ethtool management
function. The Carburizer runtime will call the interrupt
handler even though it is not necessary for correct opera-
tion. The driver treats this call to its interrupt handler as

spurious. Because Carburizer decreases the polling in-
terval in these cases, there is little unnecessary polling
even when many requests are made of a driver that do
not generate interrupts.

Some Linux network drivers, through thenapi inter-
face, already support polling. In addition, many network
drivers implement a watchdog function to detect when
the device stops working. For these drivers, it may be
sufficient to direct the kernel to poll rather than relying
on a separate mechanism. However, this approach only
works for network drivers, while the Carburizer runtime
approach works across all driver classes.

5.3 Tolerating Stuck Interrupts

The Carburizer runtime detects stuck interrupts and re-
covers by converting the device from interrupts to polling
by periodically calling the driver’s exported interrupt
function. A stuck interrupt occurs when the device does
not lower the interrupt request line even when directed to
do so by the driver. The Carburizer runtime detects this
failure when a driver’s interrupt handler has been called
many times without intervening progress of other system
functions, such as the regular timer interrupt. The Linux
kernel can detect unhandled interrupts [27], but it recov-
ers by disabling the device rather than enabling it to make
progress.

Similar to missing interrupts, the Carburizer runtime
does not trigger full recovery here (although that is pos-
sible), but instead disables the interrupt request line with
disable IRQ. It then relies on the polling mechanism pre-
viously described to periodically call the driver’s inter-
rupt handler.

5.4 Results

We experiment with stuck and missing interrupts using
fault injection on the E1000 gigabit Ethernet driver, the
ens1371 sound driver, and a collection of interdependent
storage drivers: ide-core, ide-generic, and ide-disk. On
all three devices, we simulate missing interrupts by dis-
abling the device’s interrupt request line. We simulate
stuck interrupts with the E1000 by inserting a command
to generate an interrupt from inside the interrupt handler.
For E1000, we compare throughput and CPU utilization
between an unmodified driver, a driver undergoing mon-
itoring for stuck/disabled interrupts, and a driver whose
interrupt line has been disabled.

In the case of E1000, we found that the Carburizer
runtime was able to detect both failures promptly, and
that the driver continued running in polling mode. Be-
cause interrupts occur only once every 4ms in the steady
state, receive throughput drops from 750 Mb/s to 130
Mb/s. With more frequent polling, the throughput would
be higher. Similarly, Carburizer detected both failures
for the IDE driver. The IDE disk operated correctly in
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NVIDIA MCP55 Pro gigabit NIC (forcedeth)
System Throughput CPU Utilization

Linux 2.6.18.8 Kernel 940 Mb/s 31%
Carburizer Kernel 935 Mb/s 36%

(with shadow driver)

Intel Pro /1000 gigabit NIC (E1000)
System Throughput CPU Utilization

Native Kernel 721 Mb/s 16%
Carburizer Kernel 720 Mb/s 16%

(with shadow driver)

Table 5: TCP streaming send performance with netperf
for regular and carburized drivers with automatic recovery
mechanism for the E1000 and forcedeth drivers.

polling mode but throughput decreased by 50%. The
ens1371 driver in polling mode played back sound with a
little distortion, but otherwise operated normally. These
tests demonstrate that Carburizer’s stuck and missing in-
terrupt detection mechanism works and can keep devices
functioning in the presence of a failure.

6 Overhead Evaluation
The primary cost of using Carburizer is the time spent
running the tool and fixing bugs that cannot be automati-
cally repaired. However, the code transformations intro-
duced by Carburizer, shadow driver recovery, and inter-
rupt monitoring introduce a small runtime cost. In this
section we measure the overhead of running carburized
drivers.

We measure the performance overhead on gigabit Eth-
ernet drivers, as they are the most performance-intensive
of our devices: a driver may receive more than 75,000
packets to deliver per second. Thus, any overhead of
Carburizer’s mechanisms will show up more clearly than
on lower-bandwidth devices. Past work on Nooks and
shadow storage drivers showed a greater difference in
performance than for the network, but the CPU utiliza-
tion differences were far greater for network drivers [43].

We measure performance with netperf [21] between
two Sun Ultra 20 workstation with 2.2Ghz AMD
Opteron processors and 1GB of RAM connected via a
crossover cable. We configure netperf to run enough ex-
periments to report results accurate to 2.5% with 99%
confidence.

Table5 shows the throughput and CPU utilization for
sending TCP data with a native Linux kernel and one
with the Carburizer runtime with shadow driver recovery
enabled and a carburized network driver. The network
throughput with Carburizer is within one-half percent of
native performance, and CPU utilization increases only
five percentage points for forcedeth and not at all for the
E1000 driver. These results demonstrate that supporting

Intel Pro /1000 gigabit NIC (E1000)
System Throughput CPU %

Native Kernel - TCP 750 Mb/s 19%
Carburizer Monitored - TCP 751 Mb/s 19%

Native Kernel - UDP-RR 7328 Tx/s 6%
Carburizer Monitored - UDP-RR 7310 Tx/s 6%

Table 6:TCP streaming and UDP request-response receive
performance comparison of the E1000 between the native
Linux kernel and a kernel with the Carburizer runtime
monitoring the driver’s interrupts.

the generic recovery service, even for high-throughput
devices, has very little runtime cost.

Table6shows performance overhead of interrupt mon-
itoring but with no shadow driver recovery. The table
shows the TCP receive throughput and CPU utilization
for the E1000 driver on the native Linux kernel, and on
a kernel with Carburizer interrupt monitoring enabled.
The TCP receive and transmit socket buffers were left
at their default sizes of 87,380 and 655,360 bytes, re-
spectively. The table also shows UDP request-response
performance with 1-byte packets, a test designed to high-
light driver latency. While these results are for receiving
packets, we also compared performance with TCP and
UDP-RR transmit benchmarks and found similar results:
the performance of the native kernel and the kernel with
monitoring are identical.

These two sets of experiments demonstrate that the
cost of tolerating hardware failures in software, either
through explicit invocation of a generic recovery service
or through run-time interrupt monitoring, is low. Given
this low overhead, Carburizer is a practical approach to
tolerate even infrequent hardware failures.

7 Related work
Carburizer draws inspiration from past projects on driver
reliability, bug finding, automatic patch generation, de-
vice interface specification, and recovery.

Driver reliability Past work on driver reliability has
focused on preventing driver bugs from crashing the sys-
tem. Much of this work can apply to hardware failures,
as they manifest as a bug causing the driver to access in-
valid memory or consume too much CPU. In contrast to
Carburizer, these tools are all heavyweight: they require
new operating systems (Singularity [37], Minix [ 18],
Nexus [48]), new driver models (Windows UMDF [29],
Linux user-mode drivers [24]), runtime instrumentation
of large amounts of code (XFI [46] and SafeDrive [51]),
adoption of a hypervisor (Xen [13] and iKernel [45]),
or a new subsystem in the kernel (Nooks [44]). Car-
burizer instead fixes specific bugs, which reduces the
code needed in the kernel to just recovery and not fault
detection or isolation. Thus, Carburizer may be easier
to integrate into existing kernel development processes.
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Furthermore, Carburizer detects hardware failures before
they cause corruption, while driver reliability systems us-
ing memory detection may not detect it until much later,
after the corruption propagates through the system.

Bug finding Tools for finding bugs in OS code through
static analysis [5, 6, 12] have focused on enforcing
kernel-programming rules, such as proper memory al-
location, locking and error handling. However, these
tools enforce kernel API protocols, but do not address
the hardware protocol. Furthermore, these tools only find
bugs but do not automatically fix them.

Hardware dependence errors are commonly found
through synthetic fault injection [2, 17, 41, 52]. This
approach requires a machine with the device installed,
while Carburizer operates only on source code. Further-
more, fault injection is time consuming, as it requires
injection of many possible faults into each I/O operation
made by a driver.

Automatic patch generation Carburizer is comple-
mentary to prior work on repairing broken error handling
code found through fault injection [42]. Error handling
repair is an alternate means of recovering when a hard-
ware failure occurs by re-using existing error handling
code instead of invoking a generic recovery function.
Other work on automatically patching bugs has focused
on security exploits [10, 35, 36]. These systems also ad-
dress how to generate repair code automatically, but fo-
cus on bugs used for attacks, such as buffer overruns, and
not the infinite loop problems caused by devices.

Hardware Interface specification Several projects,
such as Devil [28], Dingo [33], HAIL [ 39], Nexus [48],
Laddie [49] and others, have focused on reducing faults
on the driver/device interface by specifying the hardware
interface through a domain specific language. These lan-
guages improve driver reliability by ensuring that the
driver follows the correct protocol for the device. How-
ever, these systems all assume that the hardware is per-
fect and never misbehaves. Without runtime checking
they cannot verify that the device produces correct out-
put.

Recovery Carburizer relies on shadow drivers [43]
for recovery. However, since our implementation of
shadow drivers does not integrate any isolation mech-
anism, the overhead of recovery support is very low.
Other systems that recover from driver failure, including
SafeDrive [51], and Minix [18], rely on similar mecha-
nisms to restore the kernel to a consistent state and re-
lease resources acquired by the driver could be used as
well. CuriOS provides transparent recovery and further
ensures that client session state can be recovered [11].
However, CuriOS is a new operating system and requires
specially written code to take advantage of its recovery

system, while Carburizer works with existing driver code
in existing operating systems.

To achieve high reliability in the presence of hard-
ware failures, fault tolerant systems often use multiple
instances of a hardware device and switch to a new de-
vice when one fails [7, 19, 38]. These systems provide an
alternate recovery mechanism to shadow drivers. How-
ever, this approach still relies on drivers to detect failures,
and Carburizer improves that ability.

8 Conclusions
System reliability is limited by the reliability of devices.
Evidence suggests that device failures cause a measur-
able fraction of system failures, and that most hardware
failures are transient and can be tolerated in software.
Carburizer improves reliability byautomatically harden-
ing drivers against device failures without new program-
ming languages, programming models, operating sys-
tems, or execution environments. Carburizer finds and
repairs hardware dependence bugs in drivers, where the
driver will hang or crash if the hardware fails. In addi-
tion, Carburizer inserts logging code so that system ad-
ministrators can proactively repair or replace hardware
that fails.

In an analysis of the Linux kernel, Carburizer iden-
tified over 992 hardware dependence bugs with fewer
than 8% false postives. Discounting for false positives,
Carburizer could automatically repair approximately 845
real bugs by inserting code to detect when a failure oc-
curs and invoke a recovery service. Repairs made to
false positives have no correctness impact. In perfor-
mance tests, hardening drivers had almost no visible per-
formance overhead.

There are still more opportunities to improve device
drivers. Carburizer assumes that if a driver detects a
hardware failure, it correctly responds to that failure. In
practice, we find this is often not the case. In addition,
Carburizer does not assist drivers in handling unexpected
events; we have seen code that crashes when the device
returns a flag before the driver is prepared. Thus, there
are yet more opportunities to improve driver quality.
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