
SymDrive: Testing Drivers without Devices
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
SymDrive: Who Needs a Device to Test a Driver?

MatthewJ. Renzelmann,AsimKadavandMichaelM. SwiftComputerSciencesDepartment,Universityof Wisconsin–Madison{mjr,kadav,swift}@cs.wisc.eduAugust 15, 2012

Abstract

Device-driver development and testing is a complex
and error-prone undertaking. For example,testing
error-handlingcodeis difficult, becauseit requiresfaulty
inputsfrom thedevice. In addition,a single driver may
support dozens of devices, and a developer may not
have access to any of them.Consequently

::
As

::
a
::::::
result,

many Linux driver patches include the comment “com-
pile tested only.”

::::::::::::
Furthermore,

:::::::
testing

:::::::::::::
error-handling

::::
code

:::
is

::::::::
difficult,

:::
as

::
it

::::::::
requires

::::::
faulty

::::::
inputs

::::::
from

:::
the

::::::
device.

:

SymDrive is a system for testing Linux and FreeBSD
drivers without their devicespresent. The system uses
symbolic execution to remove the need for hardware,
and provides three new features beyond prior symbolic-
testing tools. First, SymDrive greatly reduces the ef-
fort of testing a new driver with a static-analysis and
source-to-source transformation tool. Second, SymDrive
checkersare ordinary C code

::::::
allows

::::::::
checkers

:::
to

:::
be

::::::
written

:::
as

::::::::
ordinary

::
C

:
and execute in the kernel, where

they have full access to kernel and driver state. Finally,
SymDrive provides an execution-tracing tool to identify
how a patch changes I/O to the device and to compare
device-driver

::::::
device

:::::
driver

:
implementations. In applying

SymDrive to 21 Linux drivers and 5 FreeBSD drivers, we
found 39 bugs.

1 Introduction
Device drivers are critical to operating-system reliabil-
ity, yet are difficult to test and debug. They run in kernel
mode, which prohibits the use of many runtime program-
analysis tools available for user-mode code, such as Val-
grind [?]. The need for hardware can prevent testing al-
together:Linux andFreeBSDkernel developers often do
not have access to the device needed by a driver, and
thus over two dozen driver patches include the comment
“compile tested only,” indicating that the developer was
unable or unwilling to run the driver.

Even with hardware, it is difficult to test error-
handling code that runs in response to a device error or
malfunction. A single driver may support dozens of de-
vices with different code paths. For example, one of the
18 supported medium access controllers in the E1000
network driver requires an additional EEPROM read op-
eration while configuring flow-control and link settings.
Testing error handling in this driver requires the specific

device, and consideration of its specific failure modes.
In addition, thorough testing of failure-handling code is
time consuming and requires exhaustive fault-injection
tests with a range of faulty inputs.

Static
:::::
While

:::::
static

:
analysis tools such as Coverity [?]

and Microsoft’s Static Driver Verifier [?] can find many
bugsquickly. However, these tools are tuned for fast anal-
ysis of large amounts of code and miss large aspects of
driver behavior, such as bugs that propagate across mul-
tiple invocations of the driver.

We address these challenges usingsymbolic execution
to test device drivers. This approach executes driver code
on all possible device inputs, and allows (i) driver code
to execute without the device present, and (ii) more thor-
ough coverage of driver code, including error handling
code. While DDT [?] and S2E [?] applied symbolic
execution to driver testingpreviously, these systems did
not address the many complexities of symbolic execu-
tion as evidenced bytheir applicationto

::::::
testing

:
only a

few drivers in two classes. Testinga wider variety of
drivers

::
on

::::
one

::::
bus.

::::::::
Testing

:::::::::
additional

:::::::
drivers,

:::::::
classes

::
of

:::::::
drivers,

::
or

::::::
drivers

:::
on

:::::
other

::::::
buses requires substantial de-

veloper effort to encode the driver/bus interfaces into the
testing tool.

This paper presentsSymDrive, a system to test Linux
and FreeBSD drivers without devices. Compared with
prior symbolic execution tools, SymDrive greatly re-
duces developer effort. SymDrive uses static analysis to
identify key features of the driver code, such as entry-
point functions and loops.With

::::::
Based

:::
on

:
this anal-

ysis, SymDrive produces an instrumented driver with
callouts to test codethat allows many drivers to ,

::::
and

::::
hints

:::
to

:::::::
improve

:::::::
testing

::::::::::::
performance.

:::
As

::
a

::::::
result,

:::::
many

::::::
drivers

::::
can

:
be tested with no modifications. The re-

mainder require a few annotationsto assistsymbolic
executionatlocationsthat

:
at

:::::::::
locations

:::::::::
identified

::
by

:
Sym-

Drive identifies
::
to

:::::
assist

:::::::::
symbolic

:::::::::
execution.

We designed SymDrive for three purposes. First, a
driver developer can use SymDrive to testdriver patches
by thoroughlyexecutingall branchesthrough

:
a

:::::
patch

:::
and

:::::
target

:::::::::
thorough

::::::::::
exploration

:::
of

:
the changed code. Sec-

ond, a developer can use SymDrive as a debugging tool
to compare the behavior of a functioning driver against
a non-functioning driver. Third, SymDrive can serve as
a general-purpose bug-finding tool, similar to static anal-
ysis tools, and perform broad testing of an entire driver

1



with little developer input.
SymDrive is built with the S2E system by Chipounov

et al. [?] , which can make any data within a virtual ma-
chine symbolic and explore its effect. SymDrive makes
device inputs to the driver symbolic, thereby eliminat-
ing the need for the device and allowing execution on
the complete range of device inputs. In addition, S2E
enables SymDrive to further enhance code coverage by
making other inputs to the driver symbolic, such as data
from the applications and the kernel. When it detects a
failure, either through an invalid operation or an explicit
check, SymDrive reports the failure location and inputs
that trigger the failure.

SymDrive extends S2E with three major components.
First, SymDrive usesSymGen, a static-analysis and code
transformation tool, to analyze and instrument driver
code before testing. SymGen automatically performs
nearly all the tasks previous systems left fordevelopers

:
a

:::::::::
developer, such as identifying the driver/kernel interface,
and also provides

:
as

:::::
well

:::
as

:::::::::
providing

:
hints to S2E to

speed testing.Consequently
::
As

::
a
::::::
result, little effort is

needed to apply SymDrive to additional drivers,driver
classes

::::::
classes

:::
of

:::::::
drivers, or buses. As evidence, we

have applied SymDrive to eleven classes of drivers on
five buses in two operating systems.

Second, SymDrive provides atest frameworkthat al-
lows checkersthat validate driver behavior to be writ-
ten as ordinary C code and execute in the kernel. These
checkers have access to kernel state and the parameters
and results of calls between the driver and the kernel.
A checker can make pre- and post-condition assertions
over driver behavior, and raise an error if the driver mis-
behaves. Using bugs and kernel programming require-
ments culled from code, documentation, and mailing
lists, we wrote 49 checkers comprising 564 lines of code
to enforce rules that maintainers commonly check during
code reviews: matched allocation/free calls across entry
points, no memory leaks, and proper use of kernel APIs.

In addition, SymDrive provides anexecution-tracing
mechanism for logging the path of driver execution, in-
cluding the instruction pointer and stack traceof

:::
for

:
ev-

ery I/O operation. These traces can be used to compare
execution across different driver revisions and imple-
mentations. For example, a developer can debug where a
buggy driver diverges in behavior from a previous work-
ing one. We have also used this facility to compare driver
implementations across

::::::::
different operating systems.

We demonstrate SymDrive’s value by applying it to 26
drivers, andfind

:::::
found

:
39 bugs, including two security

vulnerabilities. We alsofind
:::::
found

:
two driver/device in-

terface violations when comparing Linux and FreeBSD
drivers. To the best of our knowledge, no symbolic exe-
cution tool has examined as many drivers. In addition,
SymDrive achieved over 80% code coverage in most

drivers, which is largely limited by the ability of user-
mode tests to invoke driver entry points. Whenwe use
to executecodechangedby

:::::::
applied

::
to

:
driver patches,

SymDriveachieves
::::::::
achieved over 95% coverage on 12

patches in 3 drivers.

2 Motivation
The goal of our work is to improve driver quality through
more thorough testing and validation. To be successful,
SymDrive must demonstrate (i) usefulness, (ii) simplic-
ity, and (iii) efficiency. First, SymDrive must be able to
find bugs that are hard to find using other mechanisms,
which consist both of other tools as well as testing on real
hardware. Second, SymDrive must minimize developer
effort to test a new driver and therefore support many de-
vice classes, buses, and operating systems. Finally, Sym-
Drive must be fast enough that developers can apply it to
each of their patches.

:::
We

:::::
have

::::
two

:::
use

::::::
cases

:::
for SymDrive

:
:
:::::::
deeper

::::::
testing

::
of

:::::::
drivers,

::::
by

:::::::::
providing

::::::
high

::::::::
coverage

:::
of

::::::::::
individual

:::::::
patches,

::::
and

:::::::
broader

::::::
testing

::
of

::::::
drivers

:::
by

::::::::
allowing

:::::
more

::::::
people

::
to

::::
test

::::::
drivers

::::
and

::::
find

:::::
bugs.

:

2.1 Symbolic Execution

SymDrive uses symbolic execution to execute device-
driver code without the device being present. Symbolic
execution allowsaprogram’s input

::::::::
program

::::::
inputs to be

replaced with asymbolic value, which represents all pos-
sible values the data may have. Asymbolic-execution en-
gineruns the code and tracks which values are symbolic
and which haveconcrete(i.e., fully defined) values, such
as initialized variables. When the program compares a
symbolic value, the engine forks execution into multiple
paths, one for each outcome of the comparison. It then
executes each path with the symbolic valueconstrained
by the chosen outcome of the comparison. For example,
the predicatex > 5 forks execution by copying the run-
ning program. In one copy, the code executes the path
wherex≤ 5 and the other executes the path wherex > 5.
Subsequent comparison can further constrain a value. In
places where specific values are needed, such as printing
a value, the engine canconcretizedata, by producing a
single value that satisfies all constraints over the data.

Symbolic execution detects bugs either through ille-
gal operations, such as dereferencing a null pointer, or
through explicit assertions over behavior, and showsthe
stateof theexecutingpath

:
a
:::::
stack

:::::
trace

:
at the failure site

before resuming execution of another path.

Symbolic execution with S2E. SymDrive is built on a
modified version of the S2E symbolic execution frame-
work. S2E executes a complete virtual machine as the
program under test. Thus, symbolic data can be used
anywhere in the operating system, including drivers and
applications. S2E is a virtual machine monitor (VMM)

2



that tracks the use of symbolic data within an execut-
ing virtual machine. The VMM tracks each executing
path within the VM, and schedules CPU time between
paths.Eachpathis logically similar to athreadexecuting
a different outcomeof a branch,and the scheduler()
periodicallyswitchesexecutionto adifferentpath.

S2E supportsplug-ins, which it invokes to record in-
formation or to modify execution. SymDrive relies on
plugins to implement symbolic hardware, path schedul-
ing, and code coverage monitoring.

2.2 Why Symbolic Execution?

Symbolic execution is often used to achieve high cover-
age of code by testing on all possible inputs. For device
drivers, symbolic execution provides an additional ben-
efit: executing without the device. Unlike most code,
driver code can not be loaded and executed without its
device present. Furthermore, it is difficult to force the
device to generate specific inputs, which makes it diffi-
cult to thoroughly test a driver.

Symbolic execution eliminates the hardware require-
ment, because it can use symbolic data for all device in-
put. Alternative testing approaches rely on a programmer
to create a device model [?]. Models allow driver/device
interface verification, but requirea large

:::::
much

:::::
more

:
ef-

fort to faithfully replicate device behavior.

In contrast, symbolic execution uses the driver itself as
a model of device behavior: any device behavior used by
the driver will be exposed as symbolic data. As Sym-
Drive executes the driver code, it effectively builds a
model of the device’s behavior by tracking successful
and failing execution paths, and finds bugs as it does so.

Symbolic execution will provide inputs thatcorrectly
functioningdevices

:
a

:::::::::
correctly

::::::::::
functioning

:::::::
device

:
may

not. However, because hardware can provide unexpected
or faulty driver input

:::::
input

::
to

:::
the

::::::
driver [?], this uncon-

strained device behavior is reasonable: drivers should not
crash simply because the device provided an errant value.

In comparison
:::::::
contrast

:
to static analysis tools, sym-

bolic execution provides several benefits. First, it uses
existing kernel code as a model of kernel behavior rather
than requiring a programmer-written model. Second,
because driver and kernel code actually execute, it can
reuse kernel debugging facilities, such as deadlock de-
tection, and existing test suites. Thus, many bugs can be
found without any explicit description of correct driver
behavior. Third, symbolic execution invokes many driver
entry points in series, allowing it to find bugs that span
invocations, such as resource leaks. In contrast, static
analysis tools tend to focus on bugs within a single entry
point.

2.3 Why not Symbolic Execution?

While symbolic execution has previously been applied to
drivers with DDT and S2E, there remain open problems
that preclude its widespread use:

Efficiency. The engine creates a new path for every
comparison, and branchy code may create hundreds or
thousands of paths, calledpath explosion. It is useful
to distinguish and prioritize paths that successfully com-
plete successfully. For example,if driver initialization
fails, the operatingsystemcould not otherwiseinvoke
most driver entry points

:::::::::::
initialization

:::::
and

::::::
allow

::::
the

:::::::::
remainder

:::
of

:::
the

::::::
driver

:::
to

:::::::
execute. S2E and DDT re-

quire complex, manually written annotations to provide
this information. These annotations depend on kernel
function names and behavioral details, which are dif-
ficult for programmers to provide.For example,the
annotationsoften examinekernel function parameters,
andmodify thememoryof thecurrentpathon thebasis
of the parameters. The path-scheduling strategies in
DDT and S2E favor exploring new code, but may not
execute far enough down a path to test all functionality,
such as unloading a driver, because of path explosion.

Simplicity. Existing symbolic testing tools require ex-
tensive developer effort to test a single class of drivers,
plus additional effort to test each individual driver. For
example, supporting Windows NDIS drivers in S2E re-
quires over 1,000

:::::
2,230

:
lines of codespecific to this

driver class. Thus, these tools have only been applied
to a few driver classes and drivers. Expanding testing to
many more drivers requires new techniques to automate
most or all of the testing effort.

Specification. Finally, symbolic execution by itself
does not provide any specification of correct behavior.
A “hello world” driver is correct but does not initialize
a network device. In existing tools, tests must be coded
like debugger extensions, with calls to read and write re-
mote addresses, rather than as normal test code. Allow-
ing developers to write tests in the familiar kernel envi-
ronment simplifies specification.

Thus, our work focuses on improving the state of the
art to greatly simplify the use of symbolic execution for
testing, and broaden its applicability to almost any driver
in any class on any bus.

3 Design
The SymDrive architecture focuses on thorough testing
of drivers to ensure the code does not crash, hang, or in-
correctly use the kernel/driver interface.We target

:::::
Thus,

SymDrive
::::::::::
specifically

::::::
targets

:
test situations where the

driver code is available, and uses that code to simplify
testing by combining symbolic execution, static source-
code analysis and transformation, and a fine-grained test
framework.

3


	Introduction
	Motivation
	Symbolic Execution
	Why Symbolic Execution?
	Why not Symbolic Execution?

	Design

