A i

Symbrive:Testing Drivers-without DevicesSymDrive: Who Needs a Device to Test a D

ral M

an Ncet)ana mean N Q a A
”, h I \/ \/ -\

Abstract device, and consideration of its specific failure modes.
Device-driver development and testing is a complexln addition, thorough testing of failure-handling code is

and error-prone undertaking. For examplesting time consuming and requires exhaustive fault-injection

| | leis diffioultt o tests with a range of faulty inputs.

- ice. e a single driver may StaticWhile staticanalysis tools such as Coverity] [
support dozens of devices, and a developer may nd@nd Microsoft's Static Driver Verifier]] can find many

have access to any of thenCensequentlis a result bugsuickly-Hewever, these tools are tuned for fast anal-
many Linux driver patches include the comment “com-yS_iS of Iarge_amounts of code and miss large aspects of
pile tested only” Furthermore testing error-handling driver behavior, such as bugs that propagate across mul-

codeis difficult, as it requiresfaulty inputs from the lPl€ invocations of the driver.
device. We address these challenges usigmbolic execution

SymDrive is a system for testing Linux and FreeBSD 10 test device drivers. This approach executes driver code
drivers without their devicgsesent. The system uses O all possible device inputs, and allows (i) driver code
symbolic execution to remove the need for hardware !0 execute without the device present, and (ii) more thor-
and provides three new features beyond prior symbolicough coverage of driver code, including error handling
testing tools. First, SymDrive greatly reduces the ef-code. While DDT] and SE [?] applied symbolic
fort of testing a new driver with a static-analysis and €xecution to driver testingevieusly, these systems did
source-to-source transformation tool. Second, SymDrivd10t address the many complexities of symbolic execu-
checkersare-ordinary-C-code-allows checkersto be tion as evidenced bheir-applicationto-testingonly a
written as ordinary C and execute in the kernel. where few drivers in two classesFestinga-widervariety-of
they have full access to kernel and driver state. Finally&¥iversn onebus. Testingadditionaldrivers, classesf
SymDrive provides an execution-tracing tool to identify drivers,or driverson otherbuses requires substantial de-
how a patch changes /O to the device and to Compargeloper effort to encode the driver/bus interfaces into the
device-driverdevicedriverimplementations. In applying testing tool.

SymDrive to 21 Linux drivers and 5 FreeBSD drivers, we This paper presen8ymDrive a system to test Linux

found 39 bugs. and FreeBSD drivers without devices. Compared with
. prior symbolic execution tools, SymDrive greatly re-
1 Introduction duces developer effort. SymDrive uses static analysis to

Device drivers are critical to operating-system reliabil- identify key features of the driver code, such as entry-
ity, yet are difficult to test and debug. They run in kernel point functions and loops.With-Basedon this anal-
mode, which prohibits the use of many runtime program-ysis, SymDrive produces an instrumented driver with
analysis tools available for user-mode code, such as Vakallouts to test codbat-allews-many-driverste-, and
grind [?]. The need for hardware can prevent testing al-hintsto improvetestingperformance As aresult, many
together:Linux-andFreeBSBkernel developers often do drivers can be tested with no modifications. The re-
not have access to the device needed by a driver, andainder require a few annotatiots-assistsymbelic
thus over two dozen driver patches include the commenexecutioratiocationsthatatlocationsdentifiedby Sym-
“compile tested only,” indicating that the developer was Drive identifiego assistsymbolicexecution.
unable or unwilling to run the driver. We designed SymDrive for three purposes. First, a
Even with hardware, it is difficult to test error- driver developer can use SymbDrive to tdsitzerpatches
handling code that runs in response to a device error obythereughlyexeeutingalt-brancheshroughapatchand
malfunction. A single driver may support dozens of de-targetthoroughexplorationof the changed code. Sec-
vices with different code paths. For example, one of theond, a developer can use SymDrive as a debugging tool
18 supported medium access controllers in the E1008o compare the behavior of a functioning driver against
network driver requires an additional EEPROM read op-a non-functioning driver. Third, SymDrive can serve as
eration while configuring flow-control and link settings. a general-purpose bug-finding tool, similar to static anal-
Testing error handling in this driver requires the specificysis tools, and perform broad testing of an entire driver

with little developer input. drivers, which is largely limited by the ability of user-
SymbDrive is built with the 3E system by Chipounov mode tests to invoke driver entry points. Whea-use
et al. [?] , which can make any data within a virtual ma- te-exeeutecedechangedby-appliedto driver patches,
chine symbolic and explore its effect. SymDrive makesSymDrive achievesachieved over 95% coverage on 12
device inputs to the driver symbolic, thereby eliminat- patches in 3 drivers.
ing the need for the device and allowing execution on
the complete range of device inputs. In additioRES
enables SymDrive to further enhance code coverage byhe goal of our work is to improve driver quality through
making other inputs to the driver symbolic, such as datamore thorough testing and validation. To be successful,
from the applications and the kernel. When it detects &ymDrive must demonstrate (i) usefulness, (ii) simplic-
failure, either through an invalid operation or an explicit ity, and (iii) efficiency. First, SymDrive must be able to
check, SymDrive reports the failure location and inputsfind bugs that are hard to find using other mechanisms,
that trigger the failure. which consist both of other tools as well as testing on real
SymDrive extends 4 with three major components. hardware. Second, SymDrive must minimize developer
First, SymDrive useSymGena static-analysis and code effort to test a new driver and therefore support many de-
transformation tool, to analyze and instrument drivervice classes, buses, and operating systems. Finally, Sym-
code before testing. SymGen automatically performdDrive must be fast enough that developers can apply it to
nearly all the tasks previous systems leftdievelopera each of their patches.
developer, such as identifying the driver/kernel interface, We havetwo usecasegor SymDrive deepertesting

aﬂdﬁ}s@p{gﬂd@smmmnts to €E to ofmh coverageof individual
speed testing.Censequentlyts a result, little effort is atchesandbroadertestingof driversby allowing more
needed to apply SymDrive to additional driveesiver eopleto testdriversandfind bugs.

classesclassesof drivers, or buses. As evidence, we 5 ¢ Symbolic Execution

have applied SymDrive to eleven classes of drivers on i) _)
five buses in two operating systems. SymbDrive uses symbolic execution to execute device-

Second, SymDrive providestast frameworkhat al- driver (_:ode without the devi_ce being pres_ent. Symbolic
lows checkersthat validate driver behavior to be writ- €Xecution allows:pregrams-inpatprograminputs to be
ten as ordinary C code and execute in the kernel. TheskPlaced with aymbolic valuewhich represents all pos-
checkers have access to kernel state and the paramet&iBle values the data may have spmbolic-execution en-
and results of calls between the driver and the kernel9/N€runs the code and tracks which values are symbolic

A checker can make pre- and post-condition assertion@nd Which haveoncrete(i.e., fully defined) values, such
over driver behavior, and raise an error if the driver mis-2S initialized variables. When the program compares a

behaves. Using bugs and kernel programming requiresymbolic value, the engine forks execution into multiple

ments culled from code, documentation, and mailingPaths one for each outcome of the comparison. It then
lists, we wrote 49 checkers comprising 564 lines of codeSxecutes each path with the symbolic vatemstrained

to enforce rules that maintainers commonly check duringfy the chosen outcome of the comparison. For example,

code reviews: matched allocation/free calls across entri!€ Predicatex> 5 forks execution by copying the run-

points, no memory leaks, and proper use of kernel APIsNNG Program. In one copy, the code executes the path

In addition, SymDrive provides aexecution-tracing wherex < 5 and the other executes the path wheres.

mechanism for logging the path of driver execution, in- Subsequent compgr_ison can further constrain a valu_e. _In
cluding the instruction pointer and stack trasfefor ev- places where SP?C'“C values are needed, such as printing
ery 1/0O operation. These traces can be usedwtvc;z:ompar% value, the engine .ca_(mncret|zedate.1, by producing a
execution across different driver revisions and imple_smgle vall_Je that sa_t|sf|es aIIconstramt_s over the datg.
mentations. For example, a developer can debug where a Symboll_c execution detects bugs_ either through lle-
buggy driver diverges in behavior from a previous work- gal operatlons_, such as dereferencmg a null pointer, or
ing one. We have also used this facility to compare drivefifoUgh explicit assertions over behavior, and shives
implementations acrogiifferent operating systems. sta%eeﬁheexgeuﬂngaa%h@ﬁggkl@gqat the failure site

We demonstrate SymDrive’s value by applying it to 26 before resuming execution of another path.
drivers, andfird-found 39 bugs, including two security Symbolic execution with $E. SymbDrive is built on a
vulnerabilities. We alséind-foundtwo driver/device in- modified version of the Z& symbolic execution frame-
terface violations when comparing Linux and FreeBSDwork. SE executes a complete virtual machine as the
drivers. To the best of our knowledge, no symbolic exe-program under test. Thus, symbolic data can be used
cution tool has examined as many drivers. In addition,anywhere in the operating system, including drivers and
SymDrive achieved over 80% code coverage in mosapplications. &E is a virtual machine monitor (VMM)

2 Motivation

that tracks the use of symbolic data within an execut-2.3 Why not Symbolic Execution?

ing virt.ua'l machine. The VMM tracks eagh executing While symbolic execution has previously been applied to
path within the _VM’ _and sghgdules CPU time be_tweendrivers with DDT and &E, there remain open problems

paths.Eaehpath%le@eaHysnmﬁHe»a#rre&dexeetmng that preclude its widespread use:

periodicallyswitchesexecutiorto-adifferentpath. Efficiency. The engine creates a new path for every

) _ L _ comparison, and branchy code may create hundreds or
S°E supportsplug-ins which it invokes to record in- thoysands of paths, callgzhth explosion It is useful
formation or to modify execution. SymDrive relies on 14 gistinguish and prioritize paths that successfully com-

plugins to implement symbo!ic hardware, path SChedm'pletesueeessfuu%Fepexampleu,ﬁ»dﬂvepmlahzanen
ing, and code coverage monitoring. fails,-the-operatingsystemecould-not-otherwiseinvoke
moest-driver—entry—peintgnitialization and allow the

2.2 Why Symbolic Execution? remainderof the driver to execute. & and DDT re-
quire complex, manually written annotations to provide
Symbolic execution is often used to achieve high coverthis information. These annotations depend on kernel
age of code by testing on all possible inputs. For devicgunction names and behavioral details, which are dif-
drivers, symbolic execution provides an additional ben-ficult for programmers to provide Forexamplethe

efit: executing without the device. Unlike most code, annetationsoften-examinekerneHunction-parameters,

driver code can not be loaded and executed without itndmedify-the memeryof thecurrentpathonthebasis
device present. Furthermore, it is difficult to force the of-the-parameters—The path-scheduling strategies in

device to generate specific inputs, which makes it diffi-DDT and $E favor exploring new code, but may not
cult to thoroughly test a driver. execute far enough down a path to test all functionality,

Symbolic execution eliminates the hardware require-SUch @s unloading a driver, because of path explosion.

ment, because it can use symbolic data for all device inSimplicity. Existing symbolic testing tools require ex-
put. Alternative testing approaches rely on a programmetensive developer effort to test a single class of drivers,
to create a device mode?]|[Models allow driver/device plus additional effort to test each individual driver. For
interface verification, but requirelargemuchmoreef- example, supporting Windows NDIS drivers iRESre-
fort to faithfully replicate device behavior. quires ever-1000-2,230 lines of codepecificto-this

In contrast, symbolic execution uses the driver itself a . Thus, these tools have only been applied

a model of device behavior: any device behavior used b);o a few driver.classes a_nd drivers. Expanding testing to
the driver will be exposed as symbolic data. As Sym_many more drivers requires new techniques to automate

Drive executes the driver code, it effectively builds a MOSt or all of the testing effort.

model of the device’s behavior by tracking successfulSpecification. Finally, symbolic execution by itself
and failing execution paths, and finds bugs as it does sodoes not provide any specification of correct behavior.
A “hello world” driver is correct but does not initialize

: levicesa correctly functioning devicemay a network device. In existing tools, tests must be coded

not. However, because hardware can provide unexpecte%(e debugger extensions, with calls to read and write re-
mote addresses, rather than as normal test code. Allow-

or faulty griverinputinput to the driver [?], this uncon- . . . - .
strained device behavior is reasonable: drivers should no”fIg developers to write tests in the familiar kernel envi-

crash simply because the device provided an errant valué(.)nment simplifies speuflcatlo_n. .
Thus, our work focuses on improving the state of the

In eemparisencontrastto static analysis tools, sym- art to greatly simplify the use of symbolic execution for
bolic execution provides several benefits. First, it usesesting, and broaden its applicability to almost any driver
existing kernel code as a model of kernel behavior rathemn any class on any bus.
than requiring a programmer-written model. Second, .
because driver and kernel code actually execute, it caﬁ’ Design
reuse kernel debugging facilities, such as deadlock dethe SymDrive architecture focuses on thorough testing
tection, and existing test suites. Thus, many bugs can bef drivers to ensure the code does not crash, hang, or in-
found without any explicit description of correct driver correctly use the kernel/driver interfad&/etargetThus,
behavior. Third, symbolic execution invokes many driver SymDrive specifically targetstest situations where the
entry points in series, allowing it to find bugs that spandriver code is available, and uses that code to simplify
invocations, such as resource leaks. In contrast, statitesting by combining symbolic execution, static source-
analysis tools tend to focus on bugs within a single entrycode analysis and transformation, and a fine-grained test
point. framework.

Symbolic execution will provide inputs thabrreetly

	Introduction
	Motivation
	Symbolic Execution
	Why Symbolic Execution?
	Why not Symbolic Execution?

	Design

