Paper #56 - Eurosys2012 https://www.submission-eurosys2012.com/paper.php?p=56&afterLogin...

Eu r03y52012 Paper H#56 mjr@cs.wisc.edu Profile | Help | Sign out
Main Edit Your submissions ~ (All) Search

#56 SymbDrive: Testing Drivers without Devices

7 COMMENT Submitted A 263kB Thursday 20 Oct 2011 9:06:27pm CEST |
NOTIFICATION 8eac2e8ef295bde169a9d5d94637a2755a898979
If selected, you will receive email
when updated comments are You are an author of this paper.
available for this paper.
+ ABSTRACT + AUTHORS
Device driver development and testing M. Renzelmann, A. Kadav, M. Swift
is a complex and error-prone details
undertaking. For example, dozens of
driver patches are committed to the + ToriCcs AND OPTIONS
Linux kernel include the comment
[more]

OveMer RevExp

Review #56A 4 2
Review #56B 3 2
Review #56C 2 2
Review #56D 3 1
Review #56E 4 2
Edit paper | ' Add response

A Reviews in plain text

Review #56A Modified Saturday 5 Nov 2011 12:20:36am A Plain text

CET
PAPER SUMMARY N
SymbDrive allows extensive testing of kernel device drivers
without
actually needing the device hardware. It does this by running
the
kernel in a VM, and using symbolic execution to test as many
code

paths as possible. SymDrive has techniques to prune the search
space to improve efficiency (in terms of coverage of specific
functions).

PAPER STRENGTHS

The paper identifies an important problem, and I think the
use of symbolic execution to avoid the need to test drivers
on real devices is a clever and promising one. The approach
seems to work on real systems, and it doesn't seem to take
very long to test a driver (once someone has written the
required checkers and annotations).

PAPER WEAKNESSES
There's a lot of detail here, but the ideas behind SymDrive

10of8 12/23/2011 9:25 AM

Paper #56 - Eurosys2012 https://www.submission-eurosys2012.com/paper.php?p=56&afterLogin...

are sometimes hard to follow.

There are some important limitations (e.g., no support for
multicore CPUs).

OVERALL MERIT (?) REVIEWER EXPERTISE (7)

4. Accept 2. Some familiarity

COMMENTS FOR AUTHOR

While the paper is generally well-written, in several places

I really wished for a few concrete examples, since the text
was rather abstract. For example, in section 2.1.2 -- especially
since some of this is apparently non-trivial. In general, I

think I would prefer less detail about the "how" and more
insight into the ideas behind SymDrive.

It also wasn't clear to me if SymDrive has any way to check
that the values sent from the driver to the device are correct.
For example, if a driver patch causes it to set the wrong bit
in a port I/0O instruction, would this be detected? Only

via the execution-differencing feature?

Review #56B Modified Tuesday 15 Nov 2011 6:00:00pm A Plain text
CET

PAPER SUMMARY

The paper describes SymDrive -- a system that uses symbolic
execution

to find bugs in device drivers without the actual device.

The system uses source code instrumentation and various
heuristics to

increase the scalability of symbolic execution for the purpose of
testing device drivers. In addition, it includes a framework to
test

the driver which relies on checkers written by the programmer
and

a mechanism to identify differences in the I/O path of
different versions of a device driver. The paper reports on the
authors' experience in applying the tool to various device
drivers

which resulted in finding 23 bugs.

PAPER STRENGTHS
A solid solution to an important problem.

Good results, showing the practicality of the approach.

PAPER WEAKNESSES
Unclear what the main / most novel insight behind this work is.

The tester must write these checker functions, and the more

20f8 12/23/2011 9:25 AM

Paper #56 - Eurosys2012

30f8

https://www.submission-eurosys2012.com/paper.php?p=56&afterLogin...

elaborate

they are (i.e., close to a full spec) the more effective the
technique is.

OVERALL MERIT (?) REVIEWER EXPERTISE (?)

3. Weak accept 2. Some familiarity

COMMENTS FOR AUTHOR

The interesting contribution of this paper is that it presents a
series of techniques that effectively circumvent the limitations
of

existing symbolic execution-based testing tools, when applied to
the

scenario of testing device drivers.

The proposed system addresses an important problem - device
driver

reliability - and does a good job at it. The approach described in
the

paper seems to be effective at finding device driver bugs and
reasonably practical for the programmer.

In particular, the solution had to overcome a few interesting
challenges, namely allowing for testing device drivers in a
reasonably

fast manner while avoiding the need to have the device itself, to
reimplement the device driver, or to extensively annotate the
device

driver source code.

There are also two main negative points worth highlighting.

The first is that while the system seemed to effectively address
a

series of engineering challenges behind getting the proposed
solution

to work in a practical way, it is unclear what the main insight or
the

general or principled ideas and solutions that can be extracted
from

the work. Highlighting such points would make for a stronger
submission.

Second, the proposed testing system tests the drivers for safety
violations (e.g., hangs, crashes, API violations) but because it
does

not have access to the specification of the device it cannot
ensure

that the driver actually performs the expected good actions - for
example, regardless of the return value given back to the
kernel, the

network driver should actually send packets through the
network when

12/23/2011 9:25 AM

Paper #56 - Eurosys2012 https://www.submission-eurosys2012.com/paper.php?p=56&afterLogin...

instructed to do so. This essentially boils down to a tradeoff
between

how complex and difficult to write the checker functions are,
and how

complete the specification being tested is.

Detailed points:

It's not completely clear why avoiding the need to code the
consistency plugin manually is so important. Can you elaborate
on what

this entails?

Given the various heuristics used by this approach there seem
to be

some types of bugs and bugs in certain locations that may be
harder or

impossible to detect by this approach. Perhaps the paper could
have a

discussion section that attempts to give readers a better idea of
which are the bugs that can be found by this approach and
which are

the bugs unlikely to be found.

In 2.1.1, I got slightly confused when the paper says that
because S2E

is limited to a uniprocessor SymDrive is not able to detect data
races. For general applications, given that there can various
possible

thread interleavings, data races can occur even in uniprocessor
machines. In other words, by injecting an interrupt, for
instance, a

data race can be easily triggered. This point should be clarified.

As a suggestion, in Table 4, the mechanism that detected the
various

bugs could be listed (illegal operations, checker or execution
differencing).

Also, it would be nice if the evaluation could try to highlight
how effective the paper's proposed optimizations are. How does
the

system perform with and without each of these?

| |
Review #56C Modified Friday 18 Nov 2011 10:45:03am CeT A Plain text
PAPER SUMMARY
uses a symbolic execution based tool to check driver code.
PAPER STRENGTHS ™
driver code is pretty broken. it'd be good to find errors in it. I

4 0of 8 12/23/2011 9:25 AM

Paper #56 - Eurosys2012

50f8

https://www.submission-eurosys2012.com/paper.php?p=56&afterLogin...

PAPER WEAKNESSES
few bugs, few drivers. it's not clear what is really novel here.

OVERALL MERIT (?) REVIEWER EXPERTISE (?)

2. Weak reject 2. Some familiarity

COMMENTS FOR AUTHOR
the paper takes an existing tool and applies a SLAM like
approach to writing driver checkers.

useful to do, but there's not a lot of novelty. i don't know what i
learned, other than it appears really hard to push code through
their system.

there has already been other papers on checking drivers w/
symbolic execution! you need to talk about how you differ.

it's good to see some coverage results. but: you only have 13
drivers, the fact that you didn't do them all makes me
suspicious. and this weird notion of only counting coverage in
touched functions is sketchy --- if you screw up and don't
explore a path that calls foo() you don't in fact count foo's
statements against your coverage. i can't tell how good this
coverage actually is. there is no eval of the search strategies
they have compared to what's in the tools they use.

i would like to see more bugs and more drivers.

the writing makes me wonder how much they understand of the
techniques they are using. e.g., "no false negatives" --- you do
realize the underlying system you use has many false
negatives? such as it only checks code on paths it can execute.
people have used symbolic execution to check drivers already
(including efforts they do not cite). they have low driver counts
and low bug counts.

section 2 talks about symdrive doing a lot of things that it, in
fact, is not doing, but are entirely the acts of the code it is built
on.

the comparision to static analysis needs work, since their
statements undermine confidence in the authors' grasp of the
field. there are some tools that don't handle procedure calls, but
there are plenty that do. plus, if you look at the raw bug counts
of static tools they dwarf the tiny number in this paper. from
what i can tell you were checking properties that were already
done by static (e.g., functions happen in certain orders or
certain contexts, you check X before Y, etc). it's hard to tell, but
it's far from clear that static wouldn't find the bugs this paper
does. it would be able to handle way more than 13 drivers with
much less effort than a couple of hours per driver. there are
plenty of problems with static; focus on those.

12/23/2011 9:25 AM

Paper #56 - Eurosys2012 https://www.submission-eurosys2012.com/paper.php?p=56&afterLogin...

- —_ » .y
Review #56D Modified Thursday 15 Dec 2011 1:25:16am A Plain text
CET

PAPER SUMMARY

The paper proposes using a symbolic execution engine called
SymbDrive to exercise driver code without having access to the
actual devices for said device driver. The authors extend the
existing S2E tool to allow speedily testing the drivers. They
provide an augmented execution engine, a tool for transforming
code in order to speed up testing as well as a test framework
that allows for easy invoking checkers to verify driver code. The
authors uncover 23 bugs (or potential bugs) not previously
known. They are able to write support for testing a new driver
in under two hours.

PAPER STRENGTHS

- The paper is well written and easy to follow; it has a good
structure.

- The tool has uncovered a number of bugs in existing drivers.

PAPER WEAKNESSES

Not really any that I can think of.

OVERALL MERIT (?) REVIEWER EXPERTISE (?)

3. Weak accept 1. No familiarity

COMMENTS FOR AUTHOR

I do not have much to add to the paper contents. It was nice to
read, well written and easy to follow. The results are promising.

- The paper is a bit lacking in figures and some parts of the text
might be easier to understand if they would be accompanied by
a good figure illustrating what is happening.

- It is unclear to me what the consequence is of reducing the
paths that are explored. What are the odds you are missing out
on a bug?

Other remarks

- The text at the start of Section 5.5 and the header in Table 5
do not use the same terminology. Please correct this. It is not
hard to follow to which columns the text refers, yet having the
same wording in place would be much nicer.

i
Review #56E wModified Friday 23 Dec 2011 2:51:39am CeT A Plain text
PAPER SUMMARY
This paper proposes debugging device drivers through symbolic
execution. Symbolic execution enables SymDrive to emulate all
possible ™
m

6 of 8 12/23/2011 9:25 AM

Paper #56 - Eurosys2012

70f8

https://www.submission-eurosys2012.com/paper.php?p=56&afterLogin...

values that a (physically nonexistent but under emulation)
device can

possibly return. The paper evaluates this strategy with 13 Linux
drivers

and identifies 23 bugs.

PAPER STRENGTHS

Neat application of S2E and symbolic execution to testing
drivers.
Real system, with real results.

PAPER WEAKNESSES
Not sure how effective the system is.

OVERALL MERIT (?) REVIEWER EXPERTISE (7)

4. Accept 2. Some familiarity

COMMENTS FOR AUTHOR

I really enjoyed this paper. Symbolic execution is a powerful
technique, though it can entail such high overheads to become
impractical if used naively. This paper describes a practical and
principled approach to testing drivers without their associated
devices.

The biggest weakness of any bug finding paper is that the
universe of

bugs seems to be infinite. So I'm not sure how to contextualize
"23

bugs found." Is this a high number? Is it a low number? What
would

other techniques find?

One thing that would help provide better context would be to
have a

panel of (properly motivated!) programmers examine a given
driver, and

compare their results against the tool.

Another thing I worry about in bug-finding papers is that they
tend to

describe only those efforts that yielded results, as opposed to
the

total effort. Did you develop checkers that failed to uncover
bugs?

Overall, however, I found the paper a joy to read -- it's of
interest

to the EuroSys community as well as SIGOPS in general and it
describes

a novel and practical application of symbolic execution.

Response

12/23/2011 9:25 AM

Paper #56 - Eurosys2012

8 of 8

https://www.submission-eurosys2012.com/paper.php?p=56&afterLogin...

The authors’ response is intended to address reviewer concerns and correct
misunderstandings. The response should be addressed to the program committee,
who will consider it when making their decision. Don’t try to augment the paper’s

content or form—the conference deadline has passed. Please keep the response short
and to the point.

Y This response should be sent to the reviewers.

Save

HotCRP Conference Management Software

12/23/2011 9:25 AM

