€

.

wd

{

T
PQLO

@Jl@ HYow colve
F{'Q\@\ug_w O

g N Abstract -

7

quality by enabling (i) Broader testing of dnvers because

(\LQ&@ émff Cbm? /\4"53\(\

LT der (/\awv«%

g) ““‘3 5 3} SymD: 1ve- Testing Drlver Without Devices Ll—Qu@ 1 V%D . d
D .o MatthewJ Renzelmann, Asim Kadav'qnd Michael M. Swift Ve
%— N E ,ﬁ e Lomputer Sciences\Department, Umvem?y\ Wzsconsm—Madzsoﬁ“!""‘ @- &‘VIA,O%\ “{'@
“"%? % ‘S} ‘ _é’ % mjr,kadav,swifft @cs.wisc.eal . % \m ¢ & ,}_ &
SR < 9 L Lo (&QL\@;}

% o

Device-driver development and testing is a complex and
error -prone undertaking. For example, a single driver
ay support dozens of devices, and a developer may not
have access to any of them. As a result, many Linux
driver patches include the comment “compile tested
only” Furthermore, testing error-handling code is dif-
ficult, as it requires faulty inputs from the device,
SymDrive Is a system for testing Linux drivers with-
out their devices. The system uses symbolic execution
to remove the need for hardware, and provides three new
features beyond prior symbolic-testing tools. First, Sym-
Drive greatly reduces the effort of testing a new driver
with a static-analysis and source-to-source transforma-
tion tool. Second, SymDrive allows checkers to be writ-
ten as ordinary C and execute in the kernel, where they
have full access to kernel and driver state. Finally, Sym-
Drive provides an execution-differencing tool to identify
how a patch changes I/0 to the device. In applying Sym-
=Drive to 21 Linux drivers in 11 classes using 5 buses, we
fournd3-bugs. :

Mw <

1 Introduction

3™ Device drivers are critical je=€peta ting-system reliabil-
ity, yet are difficult to tes};/é?i debug\They run in kernel
mode, which prohibits the use of many*program-analysis
tools available for user-fnode code, snch as Valgrind [30].
The need for hardwafe can prevent testing altogether:
kernel developers oft¢n do not have access to the device
needed by a driver, apd thus many driver patches include
the comment “compile tested only,” indicating that the
eveloper was unable or unwilling to run the driver.
Even with hardware, it is difficult to test error-
handling code that guns in response to a device error or
malfunction. Furth fmore, a single driver may support
. dozens of devices with different code aths. For exam-
ple, cne of the 18 su&a\ M accesSjcontrollers
{n the ETO00AFVET requifes an addjfional BEPROM read
operation while conﬁgurfi\lg‘ﬂ'@i@mtrol and link set-
tings. Testing error handling in this driver requires the
specific device, and consideration of its specific failure
modes,

This paper presents SymDrive, a system to test Linux
drivers without devices. A developer can compile the
driver for SymDrive, load it into SymDrive’s virtual ma-
chine, and run,stafidard fést8y SymDrive improves driver

Un ~ CCCesy ’

ré Q&jﬂff‘%‘ :

nga%-f Ainy W

{

wred
A0t v

@(G}{wé Crear

anybody can test almost &ny diiver, and (if) deeper testing
of drivers, by exploring eigor-handling code more thor-
oughly.

We built SymDrive oft S?E{12], a system that pro-
vides system-level symbolif Brecution. SymDrive uses
the symbolic execution capability of $?E to simulate all
possible hardware inputs to a device driver, thereby elim-
inating the need for the device. In addition, S2E can fur-
ther enhance test coverage by making other inputs to the
device symbolic, such as data from the applications and
the kernel. When it detects a failure, either through an
invalid operation or an explicit check, SymDrive reports
the failure location and inputs that trigger the failure,

SymDrive consists of three components: (i) a gfodi-
fied version of the S2E symbolic-execution enginé; (ii)
SymGen, a static-analysis and code transformation tool
that analyzes and prepares drivers for testing; and (iii)
a test framework that invokes checkers for verifying and
validating driver behavior. SymDrive extends S*E’s Lini=
ited support for driver testing to include more forms of
1/0, including memory-mapped /O and DMA, and more
classes of drivers. At present, SymDrive supports five
buses and has been tested with eleven driver classes.

While prior systems enabled symbolic execution Ofge.,

drivers, they did not provide the ability to do large
numbers of drivers or a wide variety of drivers, as ev-
idenced by t e‘r testing of only a few drivers in two
classes (23,/12]. These systems require extensive pro-
grammer effort to annotate program code features and to

encode the program’s interface. The major contribution™™

of SymDrive is to greatly reduce this effort with Sym-
Gen, which uses static analysis to identify key features
of the driver and code generation to produce an instru-
mented driver with callouts to test code and with hints to
S2E to speed execution. Many drivers can be tested with-
out any modifications to the driver, while others require
a few annotations at locations identified by SymDrive to
assist symbolic execution,

The test framework complements symbolic execution
by detecting incorrect driver behavior, The framewor
invokes checkers, which are short C functions with ac-

cess to kernel state and the parameters and results of ..

calls between the driver and the kemel. A checker can
make pre- and post-condition assertions over driver be-
havier, and raise an error if the driver misbehaves. Us-

C&Q g%am&@v’&\-i“@’ﬁﬁ %Of‘@u (ﬂ.{w}

hJ{ Kthﬁ ode”’

A
N

vy

from code, documentation, and mailing lists, we wrote
49 checkers comprising 312 lines of code to enforce
rules that maintainers commonly check during code re-
views: matched allocation/free calls across entry points,
no memory leaks, a (Eproper use of kernel APIs.
Finally, SymDriv[% provides an execution-differencing
mechanism for comparing execution across different
driver revisions. is facility can ensure that patches
leave certain functipnality unchanged such as the order
of I/O operations, and can help diagnose driver failures

nism for programmers to verify driver behavior, and
often requirgs little effort beyond writing an asser-
tion in C.

10 other tool besides static analysiy has ex-
apiined as many drivers for bugs. In addifion, symDrive
achieved over 80% code coverage in most drivers, and is

7 " largely limited by the ability of user-mode tests to invoke
// driver entry points,

S ANTAY

2 Related Work ' S
. . %, gg(‘ﬁ@i{‘ (? C‘i" 4718
SymDrive draws on\pii;[work'in a variet¥ of areas, in-

cluding symbolic execution, static and dynamic analysis,
test frameworks, and formal Qc\igiation.

DDT and S?E. Most recently, the.DDT and S2E

getng

?

systems havg)been used- for finding bugs i’ﬁ@

drivers {23/'14]. SymDrivé is built upon S?E but sig-
nificantly” extends its capabilities in four ways. First
and most important, SymDrive automatically detects the
driver/kernel interface and generates code to interpose
checkers at that interface. In contrast, S*E requires pro-
grammers to identify the interface manually and write
plugins that execute outside the kernel, where kernel
symbols are not available, Second, SymDrive automati-
cally detects and annotates loops, which in S2E must be
identified manually and specified as virtual addresses. As
a result, the effort to test a driver is much reduced com-

t0-8%E-Third, SymDrive supports many (11) driver
classes witlylittle eg%; as well as many different buses
(5). In contrast, S*E only supports a single driver class,
network drivers, on a single bus, PCI. Fourth, checkers in

\(tHe et by Yover,

(N%&se wer?,

SymDrive are implemented as standard C code executing
in the kemnel, making them easy to write, and are only
necessary for kernel functions of interest. In addition,
when the kernel interface changes, only the checkers af-
fected by interface changes must be modified. In con-
trast, checkers in $?E are again written as plugins out-
side the kernel, and the consistency mode! plugins must

(‘?cn r

be updated for all changed functions in the driver inter-

face, not just those relevant to checks.

Symbolic testing. Thers M—
proaches 1 mboticEiaeion [8, 9. 11. 17,73, 357

40, However, most apply to standalone programs
with Timited environmental interaction. Drivers, in con-
trast, execute as a library and make frequent calls into
the kernel. BitBlaze supports environment interaction
but not I/O or drivers [33].

To limit symbolic execution to a manageable amount
of state, previous work limited the set of symbolically ex-
ecuted paths by applying smarter search heuristics and/or
by limiting program inputs [10, 18, 23, 24, 25], which is
similar to SymDrive)s path pruning and prioritization,

Other sy%U Ihing static analysis with symbolic
execution [#4, 3 16]4 These systems use the anal
ysis to identify code afid paths for additional symbolic
testing, while SymDrive uses it to inform the symbolic
execution engine of program features. Execution Synthe-
sis [40] combines symbolic execution with static analy-
sis, but is designed to reproduce existing bug reports, and
is thus complementary to SymDrive.

Static analysis tools. Static analysis tools can find spe-
cific kinds of bugs common to large classes of drivers,
such as misuses of the driver/kemel [2, 4, 31, 28, 3] or

N
T arence wetco o

becauve i~ Blreconels

driver/device interface [22] and ignored error codes [20,

37]. Static bug-finding tools are often faster and more
scalable than symbolic execution [7].

. We see three key advantages of testing drivers with
symbolic execution, First, symbolic execution is better
able to find bugs that arise from multiple invocations of
the driver, such as when state is corrupted during one
call and accessed during another. Second, symbolic exe-
cution has full access to driver and kernel state, making
it possible to use this state in checking driver behavior.
Furthermore, checkers that verify behavior can be writ-
ten as ordinary C code, which enables more program-
mers to write checkers. Symbolic execution also sup-
ports the full functicnality of C including pointer arith-
metic, aliasing, inline assembly code, and casts. In con-
trast, most static analysis tools operate on a restricted
subset of the language. As a result, symbolic execu-
tion often leads to fewer false positives. Finally, static
tools require a model of kernel behavior, which in Linux
changes regularly [19]. In contrast, SymDrive executes
checkers written in C and has no need for an operating

%((fﬁva_c‘ &

T LC)J\" Qs"‘ odS (Dme levied DE o &Q(e e, e
(\ofe {‘OQ wer e (eeud To e ueeded @or ea ol
T —— AL \alhéﬂ C:J(l VZD lour

",
system mot;;};)mce it executes kernel code symboh-

Vlrtual

———
e can also execute existing test suites, 1 Machine Te.*".".".’-"g’.a’."s?

&‘iwﬂh‘["“ /

wh1ch allows verification of functionality unique to a
driver or class of drivers.

{;ly

tﬁ Test frameworks. Test frameworks such as the Linux

"’6 Test {;\e/a@m [21] and Microsoft’s Driver Verifier
Qi

(DV) [2/26] can invoke drivers and verify their behay-
ior, bitf require the device be present. In addition, L.TP
tests at the system-call level and thus cannot verify prop-
erties of individual driver entry peints. SymDrive can
§ use these frameworks, either as checkers, in the case of
DV (also used by DDT), or in the case of LTP, as a test

< program.
y Formal specifications for drivers. Formal specifica-

E: W W tions express a device's or a driver’s operatignal require-
t"’ ;5&4 ments. Once specified, other parts of the {éti;%can ver-
-t that a driver operates correctly[38,/44 owever,
C? Ospemﬁcatlons must be created forteath driver or device.
E\ébJOnce created, though, they could be used in SymDrive to

verify driver behavior.

O Q“’QIS Design
Uhe S Tive architecture mmg@ug}i testing

rivers to ensure the code does not crash, hang, or in-
correctly use the kernel/driver interface. Thus, S iy e

wiolees
?l@ ‘e

(i

LY

Symbolle Execution Engine (S2E)

et

:5:

S

Figure 1: The SymDrive architecture. A developer pro-
duces the transformed driver with SymGen and can write
checkers and test programs to verify correctness.

of the comparison, each with the symbolic value con-
strained by the chosen cutcome of the comparison. For
example, when used in a conditional statement, the pred-
icate x > 5 forks execution by copying the running pro-
gram. In one copy, the code executes the path where
x < 5 and the other executes the path where x > 5. In
places where specific values are needed, such as produc-
ing output to the screen, symbolic execution can con-
cretize data, by producing a single value that satisfies all
constraints over the data.

specifically targets test situations where the,
is available, and uses that code to simplify testing,

We have two goals for SymDrive: (1) allow the devel-
oper to verify and validate any relevant part or parts of
a driver to the greatest extent possible, while (i} mini-
mizing the developer effort for testing each new driver.
The first goal enables deeper testing of drivers for higher
quality code, while the second goal enables broader test-
ing of drivers by eliminating the requirements for hard-
ware.

. SymDrive addresses these goals using symbolic exe-
cution, static source-code analysis and transformation,
and a fine-grained test framework. The design of Sym-
Drive is shown in Figure 1. The OS kemel and driver
under test, as well as user-mode test programs, execute
in a virtual machine, The symbolic execution engine
provides symbolic devices for the driver. SymDrive pro-
vides stubs that invoke checkers on every call into or out
of the driver. A test framework tracks execution state
and passes information to pluging running in the engine
to speed testing and improve test coverage.

3.1 Symbolic Execution

SymDrive uses symbolic execution to execute device-
driver code without the device being present. As a driver
executes, any input from the device is replaced with a
symbolic value, which represents all possible values the
data may 113)@,_9 When symbolic values are compared,

SYmDﬁwn and executes all branches

Symbolic execution with S?E, SymDrive is built on a
modified version of the S2E symbalic execution frame-
work. $%E executes a complete virtual machine as the
program under test. Thus, symbolic data can be used
anywhere in the operating system, drivers, or applica-
tions. S?E is a modified QEMU virtual machine monitor
(VMM) that tracks the use of symbolic data within an
executing virtual machine. The VMM tracks each exe-
cuting path within the VM, and schedules CPU time be-
tween paths.

S®E supports plug-ins, which it invokes to record in-
formation or to modify execution. SymDrive relies on
plugins to implement symbolic PCI hardware, path se-
lection, and minor features such as monitoring code cov-
erage.

Open problems in symbolic execution While sym-
bolic execution has previously been applied to drivers
with DDT and $2E, there remain open problems that pre-
clude its widespread use:

o Simplicity. Dxisting symbolic testing tools require
extensive developer effort to test a single class of
drivers, plus additional effort to test each individual
driver because of the efficiency problem described
below. For example, supporting Windows NDIS
drivers in S2E requires 2,230 lines of code. Thus,
these tools have only been applied to a few driver
classes and a small set of drivers. Tn addition, tests
must be coded like debugger extensions, with calls

OQQ YOu gves

:)D C’V\(Z

(&

o

ﬂ'mavﬂaﬂfgﬁw%‘\“ _(‘ngﬁ\%@(‘ oo
UQCLW(‘\{‘D ?(mfﬁr?-*? cuecelS and /&:‘.
| b times Lallve’ \&N‘

©

c bot
L@/wg(,

culty executing deeply into ihe\(igde. Existing path- the kernel, which means that the kernel will not gener-
scarch strategies in DDT and S°E, favor exploring ate additional paths. When the driver invokes the ker-
new code, but may not execuie far™e gugh down nel, though, SymDrive does not concretize any data or
a path to test all functionality, soch as unleading 2 _terminate paths. Third, SymDrive can prioritize paths
driver, because of path explosion. that execute successfully, to allow the developer (o target
Information. The symbolic execution engine needs ™% driver testing within particular functions. Finally, Sym-
information about the code executing to test it ef- Gen is fully automatic. Developers do not need to write
ficiently. For example, it may be helpful to dis- any code to test drivers in other classes or that use new
tinguish which paths through a driver successfully kemel functionality.

complete initialization and which do not. SE and
DDT can test binary drivers, but at the cost of com-
plex, manually-written annotations that depend on Drivers interact with devices according to well-defined,
kernel function names and behavioral details, which ~ narrow interfaces. For PCI device drivers, this interface

7

3 o to read and wyite remote addresses, rather than as SymDrive uses this instrupiented driver to address
— normal test co&e. Expanding testing to many more the open problems discussed; previously in four ways.
é drivers requires flew techniques to automate mostor Firs(, within the driver, SymDriveexplores many code
{ all of the testing effqrt. paths, However, when returning contyol to the kernel,
Oﬁ” (S e Efficiency. Symbolic sgecution creates many paths SymDrive terminates all paths bupody. Second, Sym-
” _S through a driver, and consequently may have diffi- Drive concretizes all symbolic data*when returning to

e DA
dorle

7.
th

Yoo
bt Coced (n &a’{“& Nevetvree?

3.3 Symbolic Devices

‘ -{ are difficult for programmers to provide. Thus, little is comprised of I/O memory accessed via normal loads

V information is available to the engine. and stores, port /O instructions, bus operations, DMA

o Symbolic hardware. Both $°E and DDT rely on memory, and interrupts. Other driver types, such as SPI

S plug-and-play functionality in PCI to create sym- and I°C, use wrapper functions for these similar primi-
bolic hardware. Other buses, particularly those used tives operations.

in smartphones and embedded devices, statically To provide symbolic hardware, S2E provides symbolic

c'onﬁgure devices and t%lus require additional tech- data of the appropriate size each time the driver performs

niques. Furthermore, S°E and DDT do not support 3 read operation using memory or port /O, Similarly, the

Qé the full range of I/O behavior, including all forms of VMM treats the contents of DMA. memory, indicated
Th

ceve alron Eugr

ot

memory-mapped 1/0 and DMA and buses beyond through DMA mapping functions, as symbolic. The
PCIL VMM does not insert symbolic interrupts; instead, Sym-
us, our work focuses on improving the state of the art ~ Drive invokes the driver’s interropt handler each time
to greatly simplify the use of symbolic execution for test- control passes from the driver to the kernel. For buses
ing, and broaden its applicability to almost any driver in ~ such as I?C that use [/O wrapper functions, SymDrive
any class on any bus. SymDrive provides solutions to all ~ rewrites the wrappers to return symbolic data,
four open problems through its combined use of static
analysis and code generation, symbolic hardware, and _
the test framework. g SymbDrive relies on a test framework, executing within
the virtual machine, to verify and validate driver behav-
ior (see Figure 1). The test framework provides three
SymDrive relies on driver source to simplify testing with ~ services to support testing. First, it invokes checkers that
the SymGen tool. SymGen analyzes driver code to iden- verify driver behavior. Second, it provides a support k-
tify events relevant to testing, such as function bound- brary that simplifies the writing of checkers, Finally, it

ov feally

Lo

3.4 Test Framework

g
ofe

3.2 Static Analysis and Code Géneration

do
4

aries and loops. At the entry and exit of every func- notifies the VMM of the current state of execution for
ion in the driver or imported from the kernel, SymGen pruning paths and for tracing driver execution,
generates code to invoke a stub function. The stub can A checker is a function that executes when transi-

invoke test code, for example to verify pre- and post- tioning between the driver and the kernel and that ver-
conditions, and can notify S?E to prune paths. SymGen ifies assertions over driver behavior. Each function in
also identifies loops and inserts notifications to $2E to the driver/kemel interface can, but need not, have its
facilitate faster execution by limiting the number of it- own checker. Drivers inveke the test framework from
erations. For complex code that slows testing, SymGen stubs, described above, which call separate checkers at
supports programmet-supplied annotations to simplify or ~ every function in the driver/kernel interface, or even ev-
disable the code during testing. For example, a driver ery function in the driver. For example, the precondition
that verifies a checksum over device data may need to be checker for a lock function could verify that the lock has
modified to allow any checksum value. been initialized. '

ﬂuréf)

A-(’: £t 1%0u6£4+ F wac

-
~ g 0
< ' J
: P o
“g v 3 3
§333
J—l
1S
359 ¢
Component . LoC as symbolic Yalues are compared against each other. All
Changes to S°E 1,954 driver and kernel code, including the test framework, ex-
iym;}en . 3,442 ecutes within the S°E VM.
est ramewor 3,760 We augment S°E with new opcodes for the test frame-
Checkers 312 k that pass information into the VMM and its pl
Linux kemel changes 153 work that pass information into the and its plu-

& oins. $2F uses invalid x86 opcodes for communication
between code within the virtual machine and the VMM.

. : SymDrive adds opcodes to provide additional control
The test framework provides a support library that‘aover the executing code. These opcodes are either in-
simplifies authoring checkers by providing much of the serted into driver code by SymGen or invoked by the
functionality needed. First, it provides state variables _§ fest framework. The new opcodes fall into three cate-
ot o 0 k1 ket % Yo i, s o e e
. : . R regions are symbolic, and are used when mapping data
whether it can be rescheduled, The llbrary also prOVIdesc',I: for DMA and when entering the kernel, in which case all
an object tracker to record kernel objects currently in use ¥ :
by the driver. This object tracker provides an easy mech-
anism to track whether locks have been initialized and
to discover memory leaks. Finally, the library provides
generic checkers for common classes of kernel objects,
such as locks and allocators. The generic checkers en-

Table 1: Implementation size of SymDrive.

data becomes concrete. Second, a set of opcodes control

path scheduling by adjusting priority, search strategy, or

__ killing other paths. We discuss their use in the follow-
8' ing sections. Finally, a set of opcodes provide tracing for
¢ execution differencing.

s 4.1.1 Symbolic Hardware

code the semantics of these objects, and thus do much of
the work. For example, checkers for 2 mutex lock and
a spin lock use the same generic checker, as they share
semantics.

Finally, the test framework notifies the VMM of ev-
ery function entry and exit. This information is used for
path pruning and prioritization, and to provide additional

pares the I/O behavior of two versions of a driver, similar
to delta execution [15]. On every function call and return,
the test framework notifies S2E of the current call stack.
A plugin within $2E records each I/O and the call stack
of the operation. These traces can then be compared to
see how exccution differs across patches.

ey (O At

+

(

4 Implementation

{9_) We implemented SymDrive for the Linux kernel, as it
provides the largest number of drivers to test. The design
applies to any operating system supported by S2E, and
only the test framework code is specialized to Linux, We
made small changes to Linux under conditional compi-
lation to print failures and panics to the S?E log, as well
as to register the module under test with S2E. The break-
down of SymDrive code is shown in Table 1.

We next describe the implementation of SymDrive’s
three major components: the modified S?E virtual ma-
chine, the SymGen tool, and the test framework.

4.1 Virtual Machine

SymDrive uses SE [12] version 1.1-10.09.2011, itself
based on QEMU [6] and KLEE [9], for symbolic execu-
tion. S*E provides the execution environment and con-
straint solving capability necessary for symbolic execu-
tion. It also implements the path forking that takes place

o (AHee hevd to Pate.

SymDrive provides symbolic devices for the driver under
test, while at the same time emulating the other devices in

J_,the system. A symbolic device provides three major be-

haviors. First, it must be discovered, so the kernel loads
the appropriate driver. Second, it must provide methods
to read and write data to the device. Third, it must sup-

symbolic data to increase coverage. It also provides a {3 port interrupts and DMA when needed. SymDrive cur-
stack trace for execution differencing, a feature that com- Y rently supports 5 buses: PCI (and its variants), I2C (in-

cluding SMBus), Serial Peripheral Interface (SPI), Gen-
eral Purpose I/O (GPIOQ), and Platform, although not
USB.

Discovering devices. When possible, SymDrive cre-

ates symbylic devices in the S2E virtual machine and lets

tifiers, both easilylocated infdriver source code. This
device triggers the PCI code in Linux to load the driver,

Not all buses support this plug-and-play functional-
ity. For some buses, such as I2C, the kernel or another
driver normally creates a statically configured device ob-
ject during initialization. For such devices, we created a
small kernel module that invokes the kernel to create the
desired symbolic device.

SymDrive can also make the device configuration
space symbolic after loading the driver by returning sym-
bolic data from PCI bus functions with the test frame-
work. PCI devices use this region of /O memory for
plug-and-play information, such as the vendor and de-
vice identifiers. If this memory is symbolic, the driver
will execute different paths for each of its supported de-
vices. Other buses have similar configuration data, such

ok wliidh ore et yto locecte

AR

rYes I

P26

Ve

‘;ﬂ]v_}\o}
2422 ca] ‘)o
v

—
—

L‘%a'ﬂhnw 'aab\éq
Pr9= 349501 B2 \iogy

JaNzz

(13

” on the SPI bus. A developer can copy
this data from the kernel source and provide it when cre-
ating the device qbject, or make it symbolic for addi-
tional code covera

Symbolic I/0. Mo¥t Linux drivers do a mix of pro-
grammed I/O and D (described below). SymDrive
suppoits two forms of programmed 1/0. For drivers that
perform I/O through hardware instructions, such as inb,
or through memory-mappgd I/0, SymDrive directs S?E
to ignore write operations apd return symbolic data from
reads. For drivers that invokg a bus function to perform
I/0, such as 12C, the test fraynework overrides the bus

funetion to return symbol@r_eais and to s11é?1ﬂ37>

drop writes,

Symbolic interrupts and DMA. The test framework
provides additional symbolic interrupt and DMA sup-
port. When a driver requests an interrupt, the test frame-
work invokes the interrupt handler on every subsequent
transition from the driver into the kernel. This ensures
the interrupt handler is called often enough to keep the
driver executing successfully. Each stub generates at
most 5 interrupts, to prevent loops from slowing testing.

‘When a driver invokes a DMA mapping function, such
83 dma.alloc_coherent, the test framework directs
S?E to make the memory act like a memory-mapped
J/O region: each read returns a new symbolic value, and
writing to the memory has no effect. This approach re-
flects the ability of the device to write the data via DMA
at any time. When the driver unmaps the memory, the
test framework directs S“E to revert the region to normal
symbolic data, so data written is available to subsequent
reads and constraints persist across writes.

4.2 SymGen

SymDrive employs SymGen, based on CIL [29], to ana-
vze and transform driver code for testing. SymGen gen-
erates stubs and instruments driver functions to interpose
stubs on all function calls.

Stubs. SymDrive interposes on all calls into and out
of the driver with stubs that call the test framework and
checkers. For each function in the driver, SymGen gen-
erates two stubs: a preamble, invoked at the top of the
function, and a postscript, invoked at the end. The gen-
erated code passes the function’s parameters and retumn
value to these stubs, to be used by checkers. In addition,
for each kernel function the driver imports, SymGen gen-
erates a stub function with the same signature that wraps
the function. These stubs ensure that the test framework
can interpose on all calls within the driver as well as calls
into the kernel.

To support pre- and post-condition assertions, stubs in-
voke test framework checkers when the kernel calls into
the driver or. the driver calls into the kernel. Checkers as-

Yo 4 wd'ﬁld‘l‘ Ldﬂd--"""b (.Cb.bf-u u.ﬁ.q-} Qouhfc(_f:’r 7 dene
Sied too | T vred

LeGsre

coldbe stwpler fovie Uhe Same ocder ac albove

sociated with a specific function function_x are named
function.x_check. On the first execution of a stub,
the test framework looks for a corresponding checker in
the kernel symbol table. If such a function exists, the
stub records its address for future invocations. While tar-
geted at functions in the kernel interface, this mechanism
can invoke checkers for any driver function by creating
a function with the appropriate name and exporting it to
the symbol table with the EX2ORT _S¥YMBOL directive.

Stubs employ a second lookup to find checkers as-
sociated with a function pointer passed from the driver
to the kernel, such as a PCI probe function. Kernel
stubs, when passed a function pointer, record the func-
tion pointer and its purpose in a table. For example, the
pci_register_driver function associates the address
of each function in the pci_driver parameter with the
name of the structure and the field containing the func-
tion. The stub for the probe method of a peidriver
structure is thus named pei_driver probe_check,

Stubs detect that execution enters the driver by track-
ing the depth of the call stack. The first function in the
driver notifies the test framework at its entry that driver
execution is starting, and at its exit notifies the test frame-
work that control is returning to the kernel.

Instrumentation. SymGen instruments the start and
end of each driver function with a call into the stubs.
As part of the rewriting, it converts functions to have
a single exit point. It generates the same instrumenta-
tion for inline functions, which are commonly used in
the Linux kernel/driver interface. SymGen also instru-
ments the start, end, and body of each loop with opcodes.
These direct the VMM to prioritize and deprioritize paths
depending on whether they exit the loop quickly. This in-
strumentation replaces much of per-driver effort required
by S2E to identify loops, as well as the per-class effort
of writing a consistency model for every function in the
driver/kernel interface.

4.3 Test Framework

The test framework is a library invoked from instru-
mented drivers, and serves two purposes. First, the test
framework provides an API library that provides com-
mon test functions to simplify checkers. We describe
checkers more in Section 5. Second, the test framework
implements the logic for deciding which paths through
the driver and kernel to execute, which is described in
Section 4.4,

Library APL. The library API provides support rou-
tines to simplify checkers, as well as a set of checkers
for common kernel-interface functions. The library pro-
vides a global state variable that a checker can use to
store information across invocations or to pass informa-
tion to another checker. Checkers use state variables to

