track the state of the driver, such as whether initialization
completed successfully, as well as the state of execution,
such as whether blocking is allowed. The variables ar
copied for each execution path.

The library provides an object tracker, implemented as
a hash table keyed by object address. A checker can st
arbitrary data about an object, such as a lock’s state
an allocation’s size. The library also provides comm

free function is used, and to track the state of a lock, t@
record it having been initialized or acquired.

Execution differencing. The test framework can gen-
erate traces to compare the execution of two versions of
adriver. A developer can enable tracing via a command-
line tool that notifies an S°E plugin to enable tracing. In
this mode, an S2E plugin records every driver I/O op-
eration, including reads and writes to port, MMIO, and
DMA memory, and the driver stack at the operation. The
stack trace enables a developer to determine where ex-
ecution diverges. The traces are stored as a trie (prefix
tree) to represent multiple paths through the code com-
pactly, and can be compared using the Linux diff utility.
The traces are subject to timing variations and different
thread interleavings. Thus, they are most useful when
testing patches that modify few driver entry points, or to
compare patches function-by-function.

Usage The test framework is a kernel module that sup-
ports several load-time module parameters for control-
ling its behavior. When loading the test framework with
insmod, developers can direct the test framework to en-
able high-coverage mode (described in Section 4.4.2)

parameters. Thus, developers can script the ¢reation of

symbolic devices to automate testing.

4.4 Maximizing Code Coverage

S
o &7, ¢

OS %0(\.\\\) W YW
avor-success scheduling. Executing past driver ini-
tialization is difficult because the code has many con-
ditional branches to support multiple chips in multi-
ple configurations. Initializing a sound driver, for ex-
ample, may require branching on hardware-specific de-
tails 1,000 times. SymDrive mitigates this problem with
a favor-success path-selection algorithm that prioritizes
successfully executing paths. Notifications from the test
framework increase the priority of the current path at ev-
ery successful function return, both within the driver and
at the driver/kernel interface. This opcode causes the cur-
rent path to be explored further before switching to an-
other path.

At every function exit, the test framework notifies S’E
of whether the function completed successfully, which
enables the VMM to prioritize successful paths to fa-
ilitate deeper exploration of code. The test framework
deétermines success based on the function’s return value.
For functions returning integers, the test framework de-

tects success-whemthe—function returns a value outside
the range of [ich are standard Linux er-
ror values. Om~suceess, the test framework will notify

the VMM to prioritize the current path. If the developer / (\Le\
X

wishes to prioritize paths using another heuristic, he/she
can add an annotation prioritizing any piece of code. We
use this approach in some network drivers to select paths
where the carrier is on, allowing packets to be sent.

For the small number of kemel functions that Te-
turn non-standard values, SymGen has a list of excep-
tions and how to treat their return values. Kernel func-
tions that require treatment include those that use the
acro to return error values as pointers and
dma_alloc_coherent _mask, which returns a bitmask.
In these functions, the stubs do not change a path’s pri-
ority based on the retumn value.

The test framework prunes paths when control returns
to the kermel. It uses the opcodes described previously to
concretize all data in the virtual machine, so the kernel

»{ executes on real values and will not fork new paths. In

SymDrive has to address two conflictihg goals in testing =

dnverls: (1.) .e:i(el(futzgg as fdar as possf)le alOI;gha I()iths t’o__-: ecuting in the driver. This ensures that a single path runs
EOMELSLEINIH IZA 0T, St EXPOEFLIS TESL L THESUIVEE s_.[—- in the kernel and allows a developer to test the system

functionality; and (ii) executing’ as much code as possi-
b fo i) UALOAS

ble, by exploring many paths/t rough a function. To ex- 3
ecute far into the driver, SymDrive aggressively prunes®
paths that do not advance gxecution. To execute broadly, .g
SymDrive introduces additional symbolic data and can b
terminate paths that leaye the driver. o
[

addition, the test framework kills all other paths still ex-

Loop elision. Loops are challenging for symbolic exe-
cution, because each iteration may fork new paths. S°E
provides an “EdgeKiller” plugin that a developer may
use to terminate complex loops early, but requires de-
velopers to identify each loop’s offset into the driver bi-
nary [12]. Moreover, loops that produce a value, such as
1ly testing drivers is symbolically= a checksum calculation, cannot exit early without stop-
ping the driver’s progress.

SymDrive addresses loops explicitly by prioritizing
those paths that exit the loop. SymGen inserts loop op-

@Whown in Figure 2, to tell S?E

44.1 Executing degply

A key challenge in
executing branch-hgavy code, such as loops and initial-
ization code that probes hardware. SymDrive relies on
two techniques to limit path explosion in these cases:
Sfavor-success scheduling and loop elision. .

e
L
X b N
Vi (g(@/o_

\ 0
1y
\M\“ al
wok(Ve
Aow

\ \Of

Cwabe
(L.
gpse

ote Of\

wlok 7 am“‘“"ﬁf; S

Qertowis,

0
[T . [\.
g v Y vV 3\ i =V

s2e_loop_before(__ , loop_id);
while(work--) {
tmp___17 = readb(cp->regs + 55);
if(!(tmp___17 & 16)) goto return_label;
stub_schedule_timeout_uninterruptible(16L)

s2e_loop_body(__LINE__, loop_id);

LINE__

}

s2e_loop_after(__LINE__, loop_id);

Figure 2: SymGen instruments the start, end, and body
of loops automatically. This code, from the 8139cp driver,
was modified slightly since SymGen produces preprocessed

output.

which paths exit the loop, and should receive a prior-
ity boost. Thus, SymDrive does not need the EdgeKiller
plugin. For loops that cannot be terminated, SymDrive
notifies the developer during testing if a loop creates too
many paths. This notification alerts the developer to use
#ifdef statements to disable the code during testing.

4.4.2 Executing broadly

SymDrive provides a high-coverage mode for testing
specific functions that changes the path-prioritization
policy and the behavior of kemel functions. When the
developer loads the test framework module, he/she can
specify any driver function to execute in this mode.
When execution enters the specified function, the test
framework notifies S2E to favor unexecuted code (the de-
fault S?E policy) rather than favoring successful paths.
The test framework also terminates all paths that return
to the kernel in order to focus execution on the driver.
Finally, when the driver invokes a kernel function, the
test framework makes the return value symbolic. For
example, kma1loc returns a symbolic value constrained
to be either NULL or a valid address, which tests error
handling in the driver. This mode is similar to the local
consistency mode in S?E [12], but requires no developer-

’\.Grovided annotations or plugins, and supports all kernel

functions that return st(flj(dard error values.

SymDrivé also mpro‘gs code coverage by introduc-
, which allows a
driver to execute code that requires specific inputs from
emel or applications. First, SymDrive can auto-
ake a driver’s module parameters symbolic,

ive exeeute—with all possible pa-

driver symbolic, such as ioctl command values. This
allows all ioct1 code to be tested with a single invoca-
tion of the driver. Third, SymDrive incorporates S?E’s
ability to use symbolic data anywhere in the virtual ma-
chine, so a user-mode test program can make system call
parameters symbolic.

kOOkCQ l.tﬂf-& SOV

/* Test #1 */ void __
if (precondition} {
assert (state.registered ==
set_state (&state.registered,
set_driver_bus (DRIVER_PCI);
else /* postcondition */ {
if (retval == 0) set_state (&state.registered, OK);
else set_state (&state.registered, FAILED);
}
1

pci_register driver_check{...) {

NOT_CALLED) ;
IN_PROGRESS);

-

/* Test #2 */ void __
(..., void *retval,
if (precondition)

mem_flags_test{GFP_ATOMIC, GFP_KERNEL, flags);
else /* postcondition */
generic_allocator(retval,

kmalloc_check

size_t size, gfp_t fTlags) {

size, ORIGIN_KMALLOC);
}

/* Test #3 */ void _spin_lock_irgsave_check
(..., void *lock) {
// generic_lock_state supports pre/post-conditions
generic_lock state(lock,
ORIGIN_SPIN_LOCK, SPIN_LOCK IRQSAVE, 1);
}
Figure 3: Example checkers. The first checker ensures
that PCI drivers are registered exactly once. The second
verifies that a driver allocates memory with the appropri-
ate mem_flags parameter. The third ensures lock/unlock
functions are properly matched.

4.5 Limitations

SymDrive is neither sound nor complete, though we are
not aware of any false negatives among the checks that
SymDrive supports, and we have not experienced any
false positives. However, SymDrive cannot check for all
kinds of bugs. First, SymDrive has no support for integer
overflow. Second SymDrive’s aggressive path pruning
¢ a path that leads to a bug, causing Sym-
it. Nonetheless, we find the tool to be a
useful addition to the driver de elo men%patchmg

5 Example Checkers\ﬁ‘e

‘We have implemented 49 checkers comprising 312 lines
of code for a variety of common device-driver bugs
using the test framework and library API. Writing a
checker requires implementing checks within a call-
out function. Test #1 in Figure 3 shows an exam-
ple call-out for pci_register.driver. The driver-
function stub invokes the checker function with the pa-
rameters and return value of the kernel function and sets
a precondition flag to indicate whether the checker
was called before or after the function. In addition, the
test framework provides the global state variable. As
shown in this example, a checker can verify that the state
is correct as a precondition, and update the state based
on the result of the call. Checkers have access to the run-
time state of the driver and can store arbitrary data. As a
result, they can find interprocedural bugs that span mul-

W
é.ul(e n@ﬁ@(‘ﬂ vé(

od@

ey
Ler
-
'?L)“c
T Qq

1"7% e Cgr.
A

S

b

bn'e(*iqé

—

o

2 Qbg, (
'

g

= kuo
£lle |
éﬁfac
g o
é*.fo OE
fatl

S

.ﬁ‘
E\

-

tiple invocations of the driver. £y %
Not every behavior requirement needs a checker. 'y routines. o

Symbolic execution leverages the extensive checks al- ‘; The API library simplifie

ready included as Linux debyg options, such as for memQB tional allocators dow adding a one-line call into the
ory corruption and 1ocI<ing)l Using these facilities with ¢, API. Test iglire 3 shows the generic_allocator
SymDrive can check behavior on more paths through the_ © call to the Tibrary used when checking kmalloc, which
driver. In addition, any bug that causes a kernel crash or._[records that kmalloc allocated the returned memory. A
panic will be detected by/S?E and therefore requires no €) corresponding checker for kfree verifies that kmalloc

hecker, unless the driver returns to the kernel and con- S allocated the supplied address. (')
— 6 [Evaluation v)*'\ \/\ <

retizes symbolic data iy such a way as to mask the bug.

Exec.}mon C.ontext. SR P ro}lubus t%)e_ Sallimy: of € The purpose of the evaluation is §6 verify that SymDrive
functions that block when executing an inferrupt han- ¢ achieves its goals: can it exeglte driver code and find
<dler or while holding a spinlock. The execution context—f— bugs quickly with minimal prbgrammer effort?

checker verifies that flags passed to memory-allocation s b Baiis s recg B mDrive on 21
functions such as kma]1oc are valid in the context of the A i 11 ol e Taid et Linuxykemels bofiat

. | : . ; :
curren“aly executing code. For example, if the dI:lVEI‘ is iiig @ (13 diivets) an 1 deivers), Foie ther
executing the start xmit path of a network driver, it Wdrived feil5 il o A asE phGHES, ansl

can.haly all(f)cate men?or_i il e (?iP'ATOMIC ﬂagi.r P were from other kernel distributions. Of the 21 drivers,
The test framework library provides a state machine we chose 14 as examples of a specific bus, while the g

to track the driver s cprrent context. The test framework 37 - .. @ 7 were chosen because we eith W
API tracks execution|context using a stack. When en-

i i ware or we found frequent patches to the driver and thu
tering the driver, the test framework updates the context

expected to find bugs.
—= based on the entry paint. Each time the driver acquires P ;

: i f % API push All tests took place on a machine running Ubuntu
O ¢z.te'easss 4 SPILIOCICNG, test IIMIEWOL, PUSIES 24 10.10 x64 equipped with a quad-core Intel 2.50GHz In-

pops the necessary context. In contrast to static-analysis > tel Q9300 CPU and 8GB of memory. All results are
toc?ls, thiere 13 no £ ed 1o specify which driver entry Q obtained while running SymDrive in a single-threaded
&_‘Eiomts A AIOR Blogkirlp. J-’mode, as SymDrive does not presently work with S?E’s
Kernel API Misuse. The kernel requires that drivers% multicore support.

follow the proper protocol for kernel APIs, and errors 6.1 Methodology

can lead to a non-functioning driver or a resource leak.
The test framework state variables provide context for
these tests. For example, a checker can track the succe I. Run SymGen over the driver and compile the ou
and failure of significant driver entry points, such as the put.

cse bt a(lowed) +
rlevast locke e

(o PyR

-

1?

e

Ar

i

“otvete ude faud
*ﬁ?w?w etk
cle e on

S
b(

To test each driver, we carry out the following operations:

1 Tuotuladt
Qoed

:t' init_module and PCI probe functions, and ensure that 2. Define a virtual hardware device with the desired
L:?? < if the driver is registered on initialization, it is properl parameters and boot the SymDrive vigtQal machine.
e L“"’ unregistered on shutdown. Test #1 in Figure 3 shows a 3. Load the driver with insmod and wajt for initial-
)< & W \use of these states to ensure that a driver only invokes ization to complete successfully. We ensure all net-
3; 9 % pci-register_driver once. work drivers attempt to transmit.
4. Optional: execute a workload.

(_—— Collateral Evolutions. A developer can use SymDrive
to verify that collateral evolutions [31] are correctly ap-
plied by ensuring that patched drivers do not regress on
any tests. In addition, SymDrive can ensure that the ef-
fect of a patch is reflected in the driver’s execution. For
example, recent kernels no longer require that network
drivers update the net _device->trans_start variable
in their start_xmit functions. We wrote a checker to
verify that trans_start 1S constant across start _xmit
calls.

5. Unload the driver.

If SymDrive reports warnings about too many paths,
we annotate the driver code and repeat the operations.
For most drivers, we run SymGen over just the driver
code. For drivers that have fine-grained interactions with
a library, such as sound drivers and the pluto2 media
driver, we run SymGen over both the library and the
driver code. We tested each driver with 49 checkers for a
variety of common bugs.

Memory Leaks. The leak checker uses the test frame- 6.2 Bugs Found

work object tracker to store an allocation’s address and ~ We applied SymDrive to the 21 drivers listed in Table 2.
length. We have implemented checkers to verify allo- Across these drivers, we found 37 distinct bugs described
cation and free requests from 19 pairs of functions, and in Table 3.

Z:
{a

g 5\3 5 0‘\;‘\ 2~
QJ
N er X0 = <
Driver [Class || Bugs [LoC [Ann [Load | Unld. ties. These capabilities are all difficult to achieve with g
akm8975% | Compass a7 69 0 022] 008 ¥ garic analysis. =
mme31xx* | Compass 3 398 0| 010 | 0:04 - ,&
tle62x0* Control 2 260 0] 0:06 | 0:05 6.3 Execution Differencing -
me4000 | Data Ac, 1| 5394 2| 17| 104 U a
phantom | Haptic 0 436 0| 0:16 | 0:13 We experiment with execution differencing to verify that 6{;
1p5523* | LED Ctl. 2| 88| 0 226| 019 SymDrive can distinguish between patches that change -
apds9802° | Light 0 256 1 0:31 0:21 y - A
: : the driver/device interactions and those that do not. We
8139cp Net 0| 1610 1| vs1] o037 , ; !
813900 Net 2| 1.904 3| 328 035 test with the 813%too network driver and applied five ‘QS
beZnet Net 7] 3352 2| 449 | 1:39 patches from the mainline kernel that refactor the code, \{
di2k Net 11 L9851 5| 2521 0:35 add a feature, or change the driver’s interaction with S~—
(—\ e1000 Net 3| 13,971 2| 429 2:01 i rard W QD X @ th ‘
. alilx Net 2| g1z 71 614 | 047 the hardware. We use SymDrive to execute the orig- [\-
%7 forcedeth | Net 1| 5,064 21 428 | 051 inal and patched drivers, to record the hardware inter-
Q ks8851% | Net 3| 1229 0| 205 | 013 actions, and to achieve 100% coverage on the code af-
~J penen2 | Net U 23421 1) 234|027 forted by the patch. The differencing traces reported dif-
smedx* Net 0 2,256 0| 10:41 0:22 . : 5 1 did £
\5_ plutc? Media 7 #5091 3| 145 | 101 erent I/O opeltanons 11.r1 tl Ee patch&_as that_ adde_ a eatgre
econet Proto. 2 818 0| 0:11 | 0:11 or changed driver/device interactions, including which
~y ens1371 Sound 0| 2,112 52707 | 448 functions changed, and as expected, there were no dif-
* 1 3 b . "
t\g o020 Woice haf, dkie L] 034] 0:03 ferences in the refactoring patches.
§2 Table 2: Drivers shown here. Those in italics run on 6.4 Developer Effort
Android-based phones, and those followed by an asterisk o o
1 are for embedded systems, and do not use the PCI bus. Line ~ One of t.he goals of SymDrive is to minimize the effort to
G’ counts come from CLOC [1]- Times are in minute:second festa drlver. AS dn exan’lplf.‘,, we tested the phantom hap_

O&Q o@@decﬂ(a%%@(

ce L, Sk o qualyze te feculte

format. tic driver from scratch in 1h:45m, despite having no prior
P gunop

experience with the driver and not having the hardware.

Kernel / || Cross In this time, we configured the symbolic hardware, wrote

Bug Type Bugs | Checker || EntPt | Paths | Pirs auser-mode test program that passes symbolic data to the

E;dﬁ?::sgep' Ig ;:,' ; é ; ‘;’ driver’s entry points, and executed the driver four times

Race 3 3/0 3 2 3 in different configurations. Of this time, the only extra
Alloc. Mismatch 3 0/3 3 0 3 time spent due to SymDrive was an additional pass dur- J
Befik et ; g;’ ; g ; g ing compilation to run SymGen, which takes less than a v

river Interface . - . .
Bad poiiles 1 170 0 0 | minute, and 38 minutes of execution time.

Totals 3| 15722 0] u“f B Annotations. The only coding SymDrive requires are

TEBIE B Sumary-oE Bugsifousl. Horeadurlbgory we annotations on loops that slow testing and annotations ‘é

present the number of bugs found by kernel crash/warning that prif)ritiz-e specific p aths.. Table 2 lists the .number of
or a checker and the number that crossed driver entry annotation sites for each driver. Of the 21 drivers, only _,
points (“Cross EntPt”), occurred only on specific paths, or 5 required more than two annotations, and 8 required no
required tracking pointer usage. annotations. In all cases, SymDrive printed a warning in-
dicating where testing would benefit from an annotation. "5

1€

Testing time. Symbolic execution is much slower than S .:(_
normal execution, but still faster than buying the device. -
We report the time to load and initialize a driver, which \J <
is required for any testing, in Table 2. The table also . -_-‘S‘
reports the time to unload the driver, which is necessary _g O
& 3

Of these bugs, S’E detected 15 via a kernel warn-
ing or crash, and the checkers caught the remaining
22. Although these bugs do not necessarily result in
driver crashes, they all represent issues that need ad-
dressing and are difficult to find without visibility into
driver/kernel interactions.

These results show the value of symbolic execution.
Of the 37 bugs, 54% took place across driver entry
points. For example, the akm8975 compass driver calls
request_irq before it is ready to service interrupts. If b
a spurious mFerrupt.occurs 1mrf-:ed1ater.after this call re- £ and with a cluster could be performed on every &
turns, the driver will crash, since the interrupt handler wera —_—r ollateralevolution [31] - ﬁ
dereferences a pointer that is not yet initialized. In addi- ' =
tion, 38% of the bugs occurrjeii,un’a afiique path through Kernel evolution. Near end of development, we
a driver, and 51 %(mgved'pointers and pointer proper- upgraded the test framework to, support Linux 3.1.1 in-

\,J,U\WOUW\%& u)ec\ 1 (ecelved (OQ

o llem b thetic aualycie @0 dod ke
\wou s

to detect resource leaks. Overall, the time to initialize
a driver is roughly proportional to the size of the driver.
Most drivers initialize in 5 minutes or less, although the ? 'L/)\
ens1371 sound driver required 27 minutes because we cﬁ Q

included the entire sound library (25,000 lines of code). I
Thus, execution is fast enough to be performed for every <

stead of 2.6.29. The only changes we made were to
update a few checkers because their corresponding ker-
nel functions had changed. As the 49 checkers com-
prise 312 lines of code, these changes took little effort.
The remainder of the test framework was unchanged.
Thus, SymDrive’s use of static analysis and code gener-
ation minimized the effort to maintain tests as the kernel
evolves.

Comparison to other tools. As a comparison against
the capabilities of S?E without SymDrive’s additions, we
executed the 8139too driver with only annotations to the
driver source guiding path exploration but without the
test framework. In this configuration, S’E executes using
strict consistency, wherein the only source of symbolic
data is the hardware, and it attempts to maximize cover-
age through use of its MaxTbSearcher plugin. We ran it
until it started thrashing the page file, with a commensu-
rate drop in CPU utilization, for a total of 23 minutes.

During this test, only 33% of the total functions in
the driver executed at all, with an average coverage of
69%. The driver did not complete initialization success-
fully and did not attempt to transmit packets. Even this
test is beyond the capabilities of S?E, as it relied on pro-
grammer annotations in the source. With S?E, the an-
notations must be made on the binary rather than the
driver source, which requires regenerating annotations
every time a driver is compiled. This result demonstrates
the value of the test framework mechanisms to improve
code coverage.

In order for SE to achieve higher coverage in this
driver, we would need a plugin to implement a relaxed
consistency model. However, the 8139too driver (v3.1.1)
calls 73 distinct kernel functions, and many of these
would require corresponding functions in the plugin. For
example, the consistency-model plugin Windows NDIS
driver in SE is 2230 lines. Since SymDrive relies on
SymGen to generate code to implement a consistency
model automatically, this e c@@m\ Further-
more, with S?E consistency plugins, much of this code
would need to be uidated when the kernel/driver inter-

L 4
\

face changes.

Some of the test framework checkers are similar to
debug functionality built into Linux. Compared to the
Linux leak checker, kmemleak, the test framework pro-
vides a report specific to the driver under test, rather
than for the entire kernel, which simplifies diagnosing
the source of leaks. As a point of comparison, the Linux
3.1.1 kmemleak module is 1,113 lines, while, the test
framework object tracker, including a complete hash ta-
ble implementation, is only 722 lines yet provides more
precise results.

ene Was Source Code!

11

Co\ow

WY

P
Touched,

Time
Driver Funcs.\ Coverage Serial Parallel
8139100 93% 83% #*2h36m *1h00m
al026 95% 80% 15m 13m
apds9802 85% 90% 14m 7m
econet 51% 42m 26m
ensl371 749 60% “8h23m *2h16m
1p5523 95% 83% 21m Sm
me4000 82% 68% | *26h57m *10h25m
mme31xx 100% 83% 14m 26m
phantom 86% 84% 38m 32m
pluto2 78% 90% [9m 6m
tle62x0 100% 85% 16m 12m

Table 4: Code coverage. Entries with an asterisk ran
overnight or are otherwise not representative of the mini-
mum time required.

6.5 Coverage

One potential benefit of symbolic execution is high code
coverage. Table 4 shows coverage results for one driver
of each class, and gives the fraction of functions executed
(“Touched Funcs.”) and the fraction of basic blocks
within those functions (“Coverage™). In addition, the ta-
ble gives the total time to run the tests on a single ma-
chine (serial) or if multiple machines are used (paral-
lel), in which case the time is that of the longest exe-
cution run. In all cases, we ran drivers multiple times
and merged the coverage results. We terminated each
run once it reached a steady state and stopped testing the
driver once coverage did meaningfully improve from one
run to the next. V\'

Overall, SymDrive was able to execute over 80% of
the functions in most drivers, and more than 80% of the
code in those functions. We were limited for two reasons.
For some drivers, we could not test all entry points. For
example, econet requires additional software that we did
not have, and other drivers required kernel-mode tests
for entry points not accessible via system calls. Second,
of the functions SymDrive did execute, additional inputs
or symbolic data from the kernel was needed to test all
paths. Encoding more of the kemel API semantics in
checkers, which allows more data to be made symbolic,
could help here.

To estimate the value of symbolic execution in im-
proving test coverage, we tested the 8139too driver on
areal network card using gcov to measure coverage. We
loaded and unloaded the driver, and ensured that trans-
mit, receive, and all ethtool functions executed. These
tests executed 77% of driver functions, and covered 75%
of the lines in the functions that were touched, as com-
pared to 93% of functions and 83% of code for Sym-
Drive. Although this result is not directly comparable to
the other coverage results in this section due to differing
methodologies, it demonstrates that SymDrive can pro-
vide coverage similar to or better than that of running the

S’HZ(SQQ“"S ot Com P E:L&(LT

-\\(\"uf\a\ To vie.

driyer on real hardware.

7 Conclusions

SymDrive uses symbolic execution combined with a test
framework and static analysis to test driver code with-
out access to the corresponding device. Our results show
that SymDrive can find bugs in mature driver code of a
variety of types, and allow developers to use their ex-
isting_tests with symbolic execution to exercise driver
opefully, SymDrive will enable more developers
to patch driver code by lowering the barriers to testing.
he future, we plan to implement an automated testing
service for driver patches that supplements manual code
reviews.

References

[1] Al Danial. Cloc: Count lines of code. http://cloc.
sourceforge.net/, 2010.

[2] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, et al.
Thorough static analysis of device drivers. In Eurosys 06, 2006.

[3] T. Ball, V. Levin, and
model checking wit
July 2011.

[4] T. Ball and S. K. Rajamani. The 8 project: Debugging sys-
tem software via static analysis. ITPOPL 2002.

[5] M. Bamett, M. Fihndrich, K. R. M. Leino, P. Miiller, W. Schulte,

and H. Venter. Specification and verification: the spec# experi-
ence. In Commun. of the ACM, volume 54, June 2011,

K. Rajamani. A decade of software
In Commun. of the ACM, volume 54,

[6] F. Bellard. Qemu, a fast and portable dynamic translator. In
USENIX ATC 2005.

[71 A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,
C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler. A few
billion lines of code later: using static analysis to find bugs in the
real world. Commun. ACM, 53:66-75, February 2010,

[8] R.S.Boyer, B. Elspas, and K. N. Levitt. Select—a formal system
for testing and debugging programs by symbolic execution. In
Intl. Conf. on Reliable Software, 1975,

[9] C. Cadar, D. Dunbar, and D. Engler. Klee: Unassisted and au-
tomatic generation of high-coverage tests for complex systems
programs, In OSDI 2008.

[10] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. Engler. EXE:
automatically generating inputs of death. In ACM Transactions
on Information and System Security, 2008.

[11] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea. Selective
symbolic execution. In HotDep, 2009.

[12] V. Chipounov, V. Kuznetsov, and G. Candea. S2e: a platform
for in-vivo multi-path analysis of software systems. In ASPLOS
2011,

[13] M. Cova, V. Felmetsger, G. Banks, and G. Vigna. Static detection
of vulnerabilities in x86 executables. In ACSAC 2006,

[14] O. Crameri, R. Bianchini, and W, Zwaenepoel. Striking a new
balance between program instrumentation and debugging time.
In EuroSys 2011.

[15] M. d’Amorim, S. Lauterburg, and D. Marinov. Delta execution
for efficient state-space exploration of object-criented programs.
In ISSTA '07.

[16] D.R.Engler, B. Chelf, A. Chou, and S. Hallem. Checking system

rules using system-specific, programmer-written compiler exten-
sions. In OSDI 2000.

12

er

be e to fevget waawn

17

(18]

[19]

(20]

[21]

[22]

(23]

[24]

(25]
[26]

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

(36]

[37]

[38]

{39

[40]

P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated 5

i’athffﬁ \Qar \J,(oua Me Lovle

§

random testing. In PLD/ *05, 2005.
. _ Tl
P. Godefroid, M. Levin, D. Molnar, et al. Automated whitebox

fuzz testing. In NDSS 2008.

Greg Kroah-Hartman. Th@ux kernel driver interface.
http://www.kernel.org/doc/Documentation/
stable_api_nonsense.txt, 2011.

H. Gunawi, C. Rubio-Gonzélez, A. Arpaci-Dusseau, R, Arpaci-
Dusseau, and B. Liblit. EIO: Error handling is occasionally cor-
rect. In 6th USENIX FAST, 2008.

IBM. Linux test project. http://ltp.sourceforge.
net/, May 2010.

A, Kadav, M. J. Renzelmann, and M. M. Swift. Tolerating hard-
ware device failures in software. In SOSP, 2009.

V. Kuznetsov, V. Chipounov, and G. Candea. Testing closed-
source binary device drivers with DDT. In USENIX ATC, 2010.

E.Larscn and T. Austin, High coverage detection of input-related
security facults. In USENIX Security, 2003.

R. Majumdar and K. Sen. Hybrid concolic testing. In ICSE 2007.

Microsoft. Windows device testing framework design guide.
http://msdn.microsoft.com/en-us/library/
windows/hardware/ff539645%28v=vs,85%29.
aspx, 2011.

Microsoft Corporation. How to use driver verifier to troubleshoot
windows drivers. http://support.microsoft.com/
kb/q244617/, Jan. 2005. Knowledge Base Article Q244617.

Microsoft Corporation. Static driver verifier. http://www.
microsoft.com/whdc/devtools/tools/sdv.mspx,
May 2010.

G. C. Necula, S. Mcpeak, S. P. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and transformation
of C programs. In Inil. Conf. on Compiler Constr., 2002.

N. Nethercode and J. Seward. Valgrind: A framework for heavy-
weight dynamic binary instrumentation. In PLDI, 2007.

Y. Padioleau, J. Lawall, R. R. Hansen, and @=W¥hller. Document-
ing andaptomating collateral evolutions w device drivers.
In Ew@;' 2008.

S. Person, G. Yang, N. Rungta, and S. Khurshid. Directed incre-
mental symbolic execution. In PLDI 201].

C. S. Paséreanu et al. Combining unit-level symbolic execution
and system-level concrete execution for testing nasa software. In
ISSTA 2008.

L. Ryzhyk, I. Kuz, and G. Heiser. Formalising device driver in-
terfaces. In Workshop on Programming Languages and Systems,
Oct. 2007.

K. Sen, D._ Marinov, and G. Agha. Cute: a concolic unit testing
engine fo: ESEC/FSE-13, 2005.

D. Song et al. Bitblaze: A new approach to computer security via
binary analysis. In ICISS 2008.

M. Susskraut and C. Fetzer. Automatically finding and patching
bad error handling. In DSN 2006.

D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B. Schnei-
der. Device driver safety through a reference validation mecha-
nism. In OSDI 2008.

T. Xie, D. Marinov, W. Schulte, and D, Notkin. Symstra: A
framework for generating object-oriented unit tests using sym-
bolic execution. In TACAS, 2005.

C. Zamfir and G. Candea. Execution gynthesis: a technigue for
automated software debugging. In E.s 2010.

lﬂqorﬁ?eo(

