Paper #108 - USENIX ATC '12 https://papers.usenix.org/hotcrp/atc12/paper/108

USENIX ATC '12 Faper#i0s

mjr@cs.wisc.edu Profile | Help | Sign out

Main Edit Your submissions  (All) Search
#108 SymDrive: Testing Drivers Without Devices
7| COMMENT Reject )\ 281kB Tuesday 17 Jan 2012 2:39:57pm PST |
NOTIFICATION 875df19a4a0a164f35515858bf35860915890e01
If selected, you will receive email
when updated comments are You are an author of this paper.
available for this paper.
+ ABSTRACT + AUTHORS
Device driver development and M. Renzelmann, A. Kadav, M. Swift
testing is a complex and error-prone [details]
undertaking. For example, a
developer may not have access to the + Topics AND OPTIONS

device, and a single driver may
support [more]

Eva Con ShoPap
Review #108A C Y 2
Review #108B C Y 2

Edit paper | Add response

A Reviews in plain text

Review #108A Modified Sunday 19 Feb 2012 5:07:22am A Plain text
PST

SUMMARY

The paper presents SymDrive, a framework being destined for
testing Linux drivers without their devices. Based on symbolic
execution and by taking a position on symbolic hardware,
SymDrive provides symbolic devices for the driver under test on
the one hand and emulates the other devices in the system an
the other hand. The evaluation investigated 21 Linux drivers of
different (11) classes and discovered 37 bugs (15 via a kernel
warning or crash, 22 through checkers that verify and validate
driver behaviour).

STRENGTH

The paper addresses an important typic (that perfectly fits to
ATC) and provides an applicable solution to system software
developers. The approach has been evaluated using a
non-trivial example (Linux).

WEAKNESS

Overall structure and organization of the paper could be
improved. People non-familiar with symbolic execution are
handicaped in losing the plot here and there. The interaction
with a virtual device does not become clear, also the
consequences for automatically detecting true errors in drivers

1of5 3/23/2012 6:42 AM



Paper #108 - USENIX ATC '12 https://papers.usenix.org/hotcrp/atc12/paper/108

for these (real) devices.

EVALUATION (7) CONFIDENCE (?)
C. Weak paper, but I will not Y. I am knowledgeable in the
fight acceptance. area, though not an expert.

DEeTAILED COMMENTS

In general, it was a pleasure reading the paper. However, I had
difficulties with understanding the big picture in terms of
mapping real devices, with all its complex behaviour, to
symbolic ones. You should have given some more details on this
issue.

To give an example: I am wondering how a realistic behaviour
of a symbolic device was recreated. I have something like a
behaviour model in mind, but haven't found anything about that
in the text. So I didn't really understand how a physical device
was replaced by a symbolic counterpart while being able to
maintain a specific device behaviour.

A further example, closely related to the former: I would expect
that, by basing on such a model or the like, one will be able to
also inject erratic behaviour. I am missing any discussion or
(background) information on this aspect, including the testing
coverage regarding erratic device behaviour.

My understanding of S2E (as used by SymbDrive) is that if one
reads from a virtual device "symbolic results" (values bounded
by certain pre-conditions) will be returned. If one writes to a
virtual device, however, these write operations are completely
dismissed. Maybe, this explains that your analysis did not reach
a 100% coverage. But most importantly, I am in doubt that
based on such an approach true errors in device drivers can be
revealed. Your analysis (as explained in the paper) ignores the
interaction with the hardware, which is the essential aspect of
driver programming. Of course, one will be able to check with
SymbDrive that a required order of API calls are followed. But for
this it looks to me as if the effort one needs to take into account
in using SymDrive is a bit high.

You reported a code coverage of 60% to 90% (cf. table 4),
depending on the driver. Did you measure coverage before or
after conditional compilation?

You also reported the detection of 37 bugs. Did you proposed
driver patches to the Linux community? If you did, how many of
these have been merged, accepted, or acknowledged?

SHORT PAPER (?)

2. Can't tell

2 0of5 3/23/2012 6:42 AM



Paper #108 - USENIX ATC '12 https://papers.usenix.org/hotcrp/atc12/paper/108

Review #108B Modified Friday 24 Feb 2012 12:36:35pm A Plain text
PST

SUMMARY

Symdrive is a symbolic testing framework for device drivers
based on s2e; it reduces testing effort when compared with
previous solutions. It finds bugs.

STRENGTH

Driver bugs are pernicious and the need for hardware to test
them is a serious problem. Real kernels and drivers are complex
and dealing with them takes at lot patience and attention to
detail. The paper is pretty well written and shows some good
results.

WEAKNESS

No single contribution, but rather lots of little increments,
mainly heuristical. Paper is glib about a few importent details --

more below.

EVALUATION (?) CONFIDENCE (?)

C. Weak paper, but I will not Y. I am knowledgeable in the
fight acceptance. area, though not an expert.

DetaiLepD COMMENTS

My major problem with this paper is a little complicated to
describe as it comes out of the interaction of several factors.
First, if you have no real device model (that is, the HW can do
anything at any time) then you will get false positives. This is a
simple fact. Real drivers (I've written a bunch of fairly simple
ones) count on the hardware following its side of the protocol.
Example: when I set a flag in the HW telling the device to not
give me any more interrupts, it better not give me any more
interrupts. When I set a flag in the HW putting the device in
transmit mode, I better not keep receiving bytes. When I read a
timer or counter twice rapidly, my driver may malfunction is
there is a huge change in the value and this may not be a bug.

Now: if you have not encountered any false positives (and this
is the explicit claim in 4.5) then we had better understand why.
One possibility is your hardware devices don't work the way the
ones I've interacted with do. This seems improbable. Another
possibility is that you have somehow implicitly encoded a way
to suppress bad hardware behaviors inside the mountain of
heuristical methods that comprise Symdrive. If this is the case,
we'd sure like to understand better what is going on. The third
possibility is that you have found false positives, but you don't
know it. This is the possibility that most worries me, and it
strikes me as quite likely given that (1) 6.2 is quite short and
lacks detailed analysis and (2) 6.2 fails to mention the fact that
you validated your bugs by reporting them to the driver
maintainers. You have to do this, for several reasons. First, if
you don't report the bugs you found, your research isn't actually

30f5 3/23/2012 6:42 AM



Paper #108 - USENIX ATC '12

4 of 5

https://papers.usenix.org/hotcrp/atc12/paper/108

making anyone's life better. Second, it is critical to verify that
these bugs are real.

The paper implies that symbolic execution finds bugs not found
by static analysis. That may well be true, but you do not want
to underestimate the power of for example MSR's driver
analysis tools. My guess is that their tools deal with stateful
drivers and pointers perfectly well. Realistically, you would need
to hold some sort of a driver bug bake-off with the static
analysis people where you both analyze the same drivers, then
analyze the resulting alarms with a fine-toothed comb. Until you
actually do this, claims that you can find bugs that they cannot
find have no substance.

Overall this paper is well-written and well-reasoned, but not
everywhere.

On page 2 we read "Symdrive ... has no need for an operating
system model." But this is wrong. The checkers described in
section 5 are exactly an operating system model. Please don't
play semantic games, just compare the size of your model with
the size of other models.

I found the factoring of information between the "design" and
"implementation” sections to be a bit arbitrary. There are plenty
of things I would call design issues in the implementation part.
You may be able to do a better job if you create a single section
that just describes symdrive. If not, perhaps try to create a
stronger rationale for structuring the two sections. As it is, I felt
that you just went over it twice, with the second time giving
more details than the first.

Wouldn't a simpler, better name for "favor success scheduling”
be "DFS"?

"Symbolic execution is much slower than normal execution but
still faster than buying the device." -- a bit too glib here

SUMMARY: I think this work has the potential to be very strong,
but both the writeup and the underlying work require another
iteration or two before it goes to press.

SHORT PAPER (?)

2. Can't tell

Response

The authors’ response is intended to address reviewer concerns and correct
misunderstandings. The response should be addressed to the program committee,
who will consider it when making their decision. Don’t try to augment the paper’s
content or form—the conference deadline has passed. Please keep the response short
and to the point.

3/23/2012 6:42 AM



Paper #108 - USENIX ATC '12 https://papers.usenix.org/hotcrp/atc12/paper/108

Y This response should be sent to the reviewers.

Save

HotCRP Conference Management Software

50f5 3/23/2012 6:42 AM



