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ABSTRACT
Hardware devices can fail, but many drivers assume they
do not. When confronted with real devices that misbe-
have, these assumptions can lead to driver or system fail-
ures. While major operating system and device vendors
recommend that drivers detect and recover from hardware
failures, we find that there are many drivers that will crash
or hang when a device fails. Such bugs cannot easily be
detected by regular stress testing because the failures are
induced by the device and not the software load.

This paper describes Carburizer, a code-manipulation tool
and associated runtime that improves system reliability in
the presence of faulty devices. Carburizer analyzes driver
source code to find locations where the driver incorrectly
trusts the hardware to behave. Carburizer identified almost
1000 such bugs in Linux drivers with a false positive rate
of less than 8 percent. With the aid of shadow drivers for
recovery, Carburizer can automatically repair 840 of these
bugs with no programmer involvement.

To facilitate proactive management of device failures, Car-
burizer can also locate existing driver code that detects de-
vice failures and inserts missing failure-reporting code. Fi-
nally, the Carburizer runtime can detect and tolerate inter-
rupt-related bugs, such as stuck or missing interrupts.

Categories and Subject Descriptors
D.4.5 [Operating Systems]: Reliability; D.3.4 [Progra-
mming Languages]: Processors

General Terms
Reliability, Design
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Device Drivers, Reliability, Recovery, Debugging, Code Gen-
eration
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1. INTRODUCTION
Reliability remains a paramount problem for operating sys-
tems. As computers are further embedded within our lives,
we demand higher reliability because there are fewer oppor-
tunities to compensate for their failure. At the same time,
computers are increasingly dependent on attached devices
for the services they provide.

Applications invoke devices through device drivers. The
device and driver interact through a protocol specified by the
hardware. When the device obeys the specification, a driver
may trust any inputs it receives. Unfortunately, devices do
not always behave according to their specification. Some
failures are caused by wear-out or electrical interference [25].
In addition, internal software failures can occur in devices
that execute embedded firmware, sometimes up to millions
of lines of code [50].

Studies of Windows servers at Microsoft demonstrate the
scope of the problem [2]. In one study of Windows servers,
eight percent of systems suffered from a storage or network
adapter failure [2]. Many of these failures are transient:
hardware vendors repeatedly report that the majority of re-
turned devices operate correctly and retrying an operation
often succeeds [1, 3, 31]. In total, 9% of all unplanned re-
boots of servers at Microsoft during a separate study were
caused by adapter or hardware failures. Most importantly,
when running platforms with the same adapters and soft-
ware that tolerates hardware faults, reported device failures
rates drop from 8 percent to 3 percent [2]. This evidence
suggests that (1) device failure is a major cause of system
crashes, (2) transient device failures are common, and (3)
drivers that tolerate device failures can improve reliability.
Without addressing this problem, the reliability of operat-
ing systems is limited by the reliability of devices.

Device hardware failures cause system hangs or crashes
when drivers cannot detect or tolerate the failure. The Linux
kernel mailing list contains numerous reports of drivers wait-
ing forever and reminders from kernel experts to avoid in-
finite waits [26]. Nevertheless, this code persists. For ex-
ample, the code below from the 3c59x.c network driver in
the Linux 2.6.18.8 kernel will loop forever if the device never
returns the right value:

while (ioread16(ioaddr + Wn7_MasterStatus))
& 0x8000)

;

To address this problem, major OS vendors have issued
recommendations on how to harden drivers to device fail-
ures [16, 41, 20]. These recommendations include validating



all inputs from a device, ensuring that all code waiting for
a device will terminate, and reporting all hardware failures.
Despite these recommendations, we found that a large num-
ber of Linux drivers do not properly tolerate hardware fail-
ures. We see two reasons for this: (1) testing drivers against
hardware failures is difficult, and (2) hardening drivers by
hand is challenging. Common testing procedures, such as
stress testing, will not detect failures related to hardware.
Instead, fault-injection testing is required [2, 17, 52]. Un-
like other software testing, device drivers require that an
instance of the device be present, which limits the number
of machines that can run tests.

Previous work on driver fault tolerance has concentrated
on two major approaches: static bug finding [4, 6, 12, 32]
and run-time fault tolerance [48, 46, 18, 51, 44]. Static ap-
proaches check for bugs in the interface between the driver
and the kernel to ensure that the driver does not violate
kernel-programming rules, such as by failing to release a
lock. But, these tools do not verify that the driver validates
inputs received from the device.

Systems that tolerate faults at run time, such as Safe-
Drive [51] and Nooks [44], either instrument driver code or
execute it in an isolated environment. These systems detect
faults, including hardware-induced faults, dynamically and
trigger a recovery mechanism. However, these systems have
had limited deployment, perhaps due to the heavyweight
nature of the solution.

This paper presents Carburizer,1 a code-manipulation tool
and associated runtime that automatically hardens drivers.
A hardened driver is one that can survive the failure of its
device and if possible, return the device to its full function.
Carburizer implements three major hardening recommen-
dations: (1) validate inputs from the device, (2) verify de-
vice responsiveness, and (3) report hardware failures so that
an administrator can proactively manage the failing hard-
ware [2, 16, 20, 41].

Carburizer analyzes driver code to find where it accepts
input from the device. If the driver uses device data with-
out checking its correctness, Carburizer modifies the driver
to insert validation code. If the driver checks device data
for correctness, Carburizer inserts code to report a failure
if the data is incorrect. Finally, the Carburizer runtime de-
tects stuck interrupts and non-responsive devices and causes
the driver to poll the device. To automatically repair bugs,
Carburizer also invokes a generic recovery service that can
reset the device. We rely on shadow drivers [43] to provide
this recovery service.

Despite the common application of static analysis tools to
the Linux kernel [9], Carburizer uncovers a large number of
problems. Carburizer identified 992 bugs in existing Linux
drivers where a hardware failure may cause the driver to
crash or hang. With manual inspection of a random sub-
set, we determined that the false positive rate is 7.4%, for
approximately 919 true bugs found. Discounting for false
positives, Carburizer repairs approximately 845 real bugs
by inserting code to detect hardware failures and recover at
runtime. When run with common I/O workloads, drivers
modified by Carburizer perform similarly to native drivers.

In the remainder of this paper, we first discuss hardware
failures and OS vendor guidelines for hardening drivers. We
then present the three major functions of Carburizer in Sec-

1Carburizing is a process of hardening steel through heat
treatment.

tions 3, 4 and 5. Section 6 presents the overhead of our code
changes, and we finish with related work in Section 7 and
conclusions.

2. DEVICE HARDWARE FAILURES
In this section, we describe the problem of hardware device
failures and vendor recommendations on how to tolerate and
manage device failures.

2.1 Failures Types
Modern CMOS devices are prone to internal failures and
without significant design changes, this problem is expected
to worsen as transistors shrink. Prior studies indicate that
these devices experience transient bit-flip faults, where a sin-
gle bit changes value; permanent stuck-at faults, when a bit
assumes a fixed value for an extended period; and bridging
faults when an adjacent pair of bits are electrically mated,
causing a logical-and or logical-or gate between the bits [47,
25]. Environmental conditions such as electromagnetic inter-
ference and radiation can cause transient faults. Wear-out
and insufficient burn-in may result in stuck-at and bridging
faults in the devices.

In addition, when a device contains embedded firmware,
or even an embedded operating system [50], any software-
related failure is possible, such as out-of-resource errors from
memory leaks or concurrency bugs.

Failure manifestations.
Device drivers observe failures when they access data gen-
erated by the device. For PCI drivers, which perform I/O
through memory or I/O ports, the driver reads incorrect
values from the device. For USB drivers, which use a re-
quest/response protocol, a device failure may cause a re-
sponse packet to contain incorrect data [25]. Sources at
Microsoft report that device hangs and interrupt storms are
common manifestations of faulty hardware [14].

Many hardware failures are likely to manifest as corrupt
values in device registers. A single bit-flip internal to a de-
vice controller may propagate to other internal registers be-
fore the device driver reads a garbled value exposed through
a device register. Similarly, an internal stuck-at failure may
result in a transient corruption in a device register, a stuck
value in a register, a stuck interrupt request line, or un-
predictable DMA accesses. Bugs in device firmware may
manifest as incorrect output values or timing failures, when
a device does not respond within the specified time period.

2.2 Vendor Recommendations
Major OS vendors provide recommendations to driver writ-
ers on how to tolerate device failures [2, 16, 20, 41]. Table 1
summarizes the recommendations of Microsoft, IBM, Intel,
and Sun on how to prevent faulty hardware from causing
system failures. The advice can be condensed to four major
actions:

1. Validate. All input from a device should be treated as
suspicious and validated to make sure that values lie
within range.

2. Timeout. All interaction with a device should be sub-
ject to timeouts to prevent waiting forever when the
device is not responsive.



Validation
Input validation. Check pointers, array indexes, packet

lengths, and status data received from hardware [41, 16,
20]. F
Unrepeatable reads. Read data from hardware once. Do

not reread as it may be corrupt later [41]
DMA protection. Ensure that the device only writes to

valid DMA memory [41, 20]
Data corruption. Use CRCs to detect data corruption if

higher layers will not also check [41, 20]
Timing
Infinite polling. Ensure that spinning while waiting on the
hardware can time out, and bound all loops [41, 20, 16]. F
Stuck interrupts. Handle interrupts that cannot be dis-

missed [17, 41] F
Lost request. Use a watchdog to verify hardware respon-

siveness [2, 16] F
Excessive delay. Avoid delaying the OS, busy waiting, and
holding locks for extended periods [2, 16]
Unexpected events. Handle out-of-sequence events [20, 16]
Reporting
Report hardware failures. Notify the operating system of

errors, log all useful information [2, 16, 20, 41] F
Recovery
Handle all failures. Handle error conditions, including

generic and hardware-specific errors [2, 16, 41] F
Cleanup properly. Ensure the driver cleans up resources

after a fault [41, 20] F
Conceal failure. Hide recoverable faults from applica-

tions [16] F
Do not crash. Avoid halting the system [2, 16, 20, 34] F
Test drivers. Test driver using fault injection [52, 17, 20]
Wrap I/O memory access. Use only wrapper functions to
perform programmed/memory-mapped I/O [41, 20, 34]

Table 1: Vendor recommendations for hardening drivers

against hardware failures. Recommendations addressed

by Carburizer are marked with a F.

3. Report. All suspect behavior should be reported to an
OS service, allowing centralized detection and manage-
ment of hardware failures.

4. Recover. The driver should recover from any device
failure, if necessary by restarting the device.

The goal of our work is to automatically implement these
recommendations. First, we seek to make drivers tolerate
and recover from device failures, so device failures do not
lead to system failures. For this aspect of our work, we focus
on transient failures that do not recur after the device is
reset. Second, we seek to make drivers report device failures
so that administrators learn of transient failures and can
proactively replace faulty devices.

Carburizer addresses all four aspects of vendor recommen-
dations described above. Section 3 addresses bugs that can
be found through static analysis, including infinite polling
and input validation. Section 4 addresses reporting hard-
ware failures to a centralized service. Section 5 addresses
runtime support for tolerating device failures, including re-
covery, stuck interrupts, and lost requests. The recommen-
dations that Carburizer can apply automatically are marked
in Table 1. The remaining recommendations can be ad-
dressed with other techniques, such as an IOMMU for DMA
memory protection, or cannot be applied without semantic
information about the device.
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Figure 1: The Carburizer architecture. Existing kernel

drivers are converted to hardened drivers and execute

with runtime support for failure detection and recovery.

3. HARDENING DRIVERS
This section describes how Carburizer finds and fixes infinite
polling and input validation bugs from Table 1. These are
hardware dependence bugs that arise because the software
depends on the hardware’s correctness for its own correct-
ness. The goal of our work is to (1) find places where driver
code uses data originating from a device, (2) verify that the
driver checks the data for validity before performing actions
that could lead to a crash or hang, and if not, (3) automat-
ically insert validity or timing checks into the code. These
checks invoke a generic recovery mechanism, which we de-
scribe in Section 5. When used without a recovery service,
Carburizer identifies bugs for a programmer to fix.

Figure 1 shows the overall architecture of our system. Car-
burizer takes unmodified drivers as input and with a set of
static analyses produces (1) a list of possible bugs and (2)
a driver with these bugs repaired, i.e. drivers that validate
all input coming from hardware before using it in critical
control or data flow paths. The Carburizer runtime detects
additional hardware failures at runtime and can restore func-
tionality after a hardware failure.

We implement Carburizer with CIL [30]. CIL reads in pre-
processed C code and produces an internal representation of
the code suitable for static analysis. Tools built with CIL
can then modify the code and produce a new pre-processed
source file as output.

We next describe the analyses for hardening drivers in
Carburizer and our strategies for automatically repairing
these bugs. We experiment with device drivers from the
Linux 2.6.18.8 kernel.

3.1 Finding Sensitive Code
Carburizer locates code that is dependent on inputs from
the device. When a driver makes a control decision, such
as a branch or function call, based on data from the device,
the control code is sensitive because it is dependent on the
correct functioning of the device. If code uses a value origi-
nating from a device in an address calculation, for example
as an array index, use of the address is dependent on the
device. Carburizer finds hardware-dependent code that is
incorrect for some device inputs.

Carburizer’s analyses are performed in two passes. The
first pass is common to all analyses and identifies variables
that are tainted, or dependent on input from the device. Car-
burizer consults a table of functions known to perform I/O,
such as readl for memory-mapped I/O or inb for port I/O.
Initially, Carburizer marks all heap and stack variables that
receive results from these functions as tainted. Carburizer
then propagates taint to variables that are computed from



1 static int amd8111e_read_phy(.......)
2 {
3 .
4 reg_val = readl(mmio + PHY_ACCESS);
5 while (reg_val & PHY_CMD_ACTIVE)
6 reg_val = readl( mmio + PHY_ACCESS );
7 .
8 }

Figure 2: The AMD 8111e network driver (amd8111e.c)

can hang if the readl() call in line 6 always returns the

same value.

or aliased to the tainted variables. Carburizer considers the
static visibility of variables but does not consider possible
calling contexts. For compound variables such as structures
and arrays, the analysis is field insensitive and assumes that
the entire structure is tainted if any field contains a value
read from the device. We find that in practice this occurs
rarely, and therefore yields a simpler analysis that is almost
as precise as being sensitive to fields.

The output of the first pass is a table containing all vari-
ables in all functions indicating if the variable is tainted.
Carburizer also stores a list of tainted functions that return
values calculated from device inputs. The table from the
first pass is used by second-pass analyses described below.

3.1.1 Infinite Polling
Drivers often wait for a device to enter a given state by
polling a device register. Commonly, the driver sits in a
tight loop reading the device register until a bit is set to the
proper value, as shown in Figure 2. If the device never sets
the proper value, this loop will cause the system to hang.
Driver developers are expected to ensure these loops will
timeout eventually. We find, though, that in many cases
device drivers omit the timeout code and loops terminate
only if the device functions correctly.

To identify these unbounded loops, we implement an anal-
ysis to detect control paths that wait forever for a particular
input from the device. Carburizer locates all loops where
the terminating conditions are tainted (i.e., dependent on
the device). For each loop, Carburizer computes the set of
conditions that cause the loop to terminate through while

clauses as well as conditional break, return and goto state-
ments. If all the terminating conditions for a loop are hard-
ware dependent, the loop may iterate infinitely when the
device misbehaves. Figure 2 shows a bug detected by our
analysis. The code in lines 5-6 can loop infinitely if readl,
a function to read a device register, never returns the cor-
rect value. While this is a simple example, our analysis can
detect complex cases, such as loops that contain case state-
ments or that call functions performing I/O.

3.1.2 Checking Array Accesses
Many drivers use inputs from a device to index into an array.
When the range of the variable (e.g., 65536 for a short) is
larger than the array, an incorrect index can lead to reading
an unmapped address (for large indices) or corrupting adja-
cent data structures. Figure 3 shows a loop in the Pro Audio
sound driver (pas2 card.c) that does not check for bounds
while accessing an array. While many drivers always check
array bounds, some drivers are not as conscientious. Fur-
thermore, a single driver may be inconsistent in its checks.

1 static void __init attach_pas_card(...) {
2 .
3 if ((pas_model = pas_read(0xFF88)))
4 {
5 char temp[100];
6

7 sprintf(temp,
8 "%s rev %d",
9 pas_model_names[(int) pas_model],

10 pas_read(0x2789));
11 .
12 }

Figure 3: The Pro Audio Sound driver (pas2 card.c)

uses the pas_model variable as an array index in line 9

without any checks.

1 static void orc_interrupt(...) {
2 .
3 bScbIdx = ORC_RD(hcsp->HCS_Base,
4 ORC_RQUEUE);
5

6 pScb = (ORC_SCB * ) ((ULONG)
7 hcsp->HCS_virScbArray
8 + (ULONG)
9 (sizeof(ORC_SCB) * bScbIdx));

10

11 pScb->SCB_Status = 0x0;
12

13 inia100SCBPost((BYTE * )
14 hcsp, (BYTE * ) pScb);
15 .
16 }

Figure 4: The pScbIdx variable is used in pointer arith-

metic in line 11 without any check in the a100 SCSI

driver (a100u2w.c).

We implement an analysis in Carburizer to determine wheth-
er tainted variables are used as array indices in static arrays.
If the array is accessed using a tainted variable, Carburizer
flags the access as a potential hardware dependence bug.
The analysis can detect when values returned by one func-
tion are used as array indices in another. In addition, when
an array index is computed from multiple variables, Carbur-
izer checks whether all the input variables are untainted.

Carburizer also detects dynamic (variable-sized) array de-
referencing with tainted variables. CIL converts all dynamic
array accesses into pointer arithmetic and memory derefer-
encing, so it requires a separate analysis from static arrays
(those declared as arrays with a fixed size). In the second
analysis pass, Carburizer detects whether a tainted variable
is used for pointer arithmetic or as the address of a memory
dereference. In both cases, Carburizer detects a potentially
unsafe memory reference. We report a bug where the pointer
arithmetic is performed rather than where a dereference oc-
curs; this is the location where a bounds check is required,
as the offset may not be available when memory is actually
dereferenced. If the pointer is never used, this may result in
a false positive.

Figure 4 shows driver code where unsafe data from device
is used for pointer arithmetic. At line 3, bScbIdx is assigned
value from the ORC_RD macro, which reads a 32-bit value from
the device. At line 9, this value is used as an offset for pointer
pScb. If a single bit of the incoming data is flipped, the
pointer dereference in line 11 could cause memory corruption
or, if the address is unmapped, a system crash.



1 void hptiop_iop_request_callback( ... ) {
2 .
3 p = (struct hpt_iop_cmd __iomem * )req;
4 arg = (struct hi_k * )
5 (readl(&req->context) |
6 ((u64) readl(&req->context_hi32)<<32));
7

8 if (readl(&req->result) == IOP_SUCCESS) {
9 arg->result = HPT_IOCTL_OK;

10 }
11 .
12 }

Figure 5: The HighPoint RR3xxx SCSI driver (hp-

tiop.c) reads arg from the controller in line 5 and deref-

erences it as a pointer in line 9.

While rare, drivers may also read a pointer directly from
a device. Figure 5 shows an example from a SCSI driver
where the driver reads a 64-bit pointer in lines 5 and 6 and
dereferences it in line 9. Carburizer also flags this use of
pointers as a bug.

3.1.3 Removing False Positives
False positives may arise when the driver has a timeout in
a loop or validates input that our analysis does not detect.
From the suspect loops, Carburizer determines whether the
programmer has already implemented a timeout mechanism
by looking for the use of a timeout counter. A timeout
counter is a variable that is (1) either incremented or decre-
mented in the loop, (2) not used as an array index or in
pointer arithmetic, and (3) used in a terminating condition
for the loop, such as a while clause or in an if before a break,
goto, or return statement. If a loop contains a counter, Car-
burizer determines that it will not loop infinitely. We also
detect the use of the kernel jiffies clock as a counter.

False positives for unsafe pointer dereferencing and ar-
ray indexing may occur if the driver already validates the
pointer or index with a comparison to NULL or a shift/-
mask operation on the incoming pointer data from the de-
vice. Carburizer does not flag a bug when these operations
occur between the I/O operation and the pointer arithmetic
or pointer dereference.

Carburizer removes false positives that occur when a taint-
ed variable is used multiple times without an intervening I/O
operation and when a tainted variable is re-assigned with an
untainted value. We keep track of where in the code a vari-
able becomes tainted, and only detect a bug if the pointer
dereference or array index occurs after the taint.

We find that the false positive techniques have been help-
ful. Identifying validity checks and repeated use of a vari-
able reduced the number of detected dynamic-array access
bugs from 650 to 150, and the other techniques further re-
duced it by almost half. For infinite polling, these techniques
identified half the results as false positives where the driver
correctly broke out of the loop.

3.2 Repairing Sensitive Code
Finding driver bugs alone is valuable, but reliability does
not improve until the bug is fixed. After finding a bug, Car-
burizer in many cases can generate a fix. Repairing sensitive
code consists of inserting a test to detect whether a failure
occurred and code to handle the failure. To recover, Car-
burizer inserts code that invokes a generic recovery function
capable of resetting the hardware. While repeating a device

1 static int amd8111e_read_phy(.......)
2 {
3 .
4 unsigned long long delta = (cpu/khz/HZ) * 2;
5 unsigned long long _start = 0;
6 unsigned long long _cur = 0;
7 timeout = rdstcll(start) + delta ;

8 reg_val = readl(mmio + PHY_ACCESS);
9 while (reg_val & PHY_CMD_ACTIVE) {

10 reg_val = readl( mmio + PHY_ACCESS );
11

12 if (_cur < timeout) {
13 rdstcll(_cur);
14 } else {
15 __shadow_recover();
16 }
17 .
18 }

Figure 6: The code from Figure 2 fixed by Carburizer

with a timeout counter.

read operation may fix the bug, this is not safe in general be-
cause device-register reads can have side effects. As recovery
affects performance, we ensure it will not be invoked unless
an unhandled failure occurs and the driver could otherwise
crash or hang.

Carburizer relies on a generic recovery function common
to all drivers. However, some drivers already implement
recovery functionality. For example, the E1000 gigabit Eth-
ernet driver provides a function to shutdown and resume
the driver when it detects an error. For such drivers, it may
be helpful to modify Carburizer to generate code invoking a
driver-specific function instead.

Fixing infinite polling.
When Carburizer identifies a loop where a driver may wait
infinitely, it generates code to break out of the loop after
a fixed delay. We selected maximum delays based on the
delays used in other drivers. For loops that do not sleep,
we found that most drivers wait for two timer ticks before
timing out; we chose five ticks, a slightly longer delay, to
avoid incorrectly breaking out of loops. For loops that invoke
a sleep function such as msleep, we insert code that breaks
out of loops after five seconds, because the delay does not
impact the rest of the system. This is far longer than most
devices require and ensures that if our analysis does raise
false positives, the repair will not break the driver. As shown
in Figure 6, for tight loops Carburizer generates code to read
the processor timestamp counter before the loop and breaks
out of the loop after the specified time delay. When the loop
times out, the driver invokes a generic recovery function.
This repair will only be invoked after a previously infinite
loop times out, ensuring that there will not be any falsely
detected failures.

Fixing invalid array indices.
When array bounds are known, Carburizer can insert code
to detect invalid array indices with a simple bounds check
before the array is accessed. Carburizer computes the size
of static arrays and inserts bounds checks on array indices
when the index comes from the device. When an array index
is used repeatedly, Carburizer only inserts a bounds check
before the first use of the tainted array indice.



1 static void __init attach_pas_card(...)
2 {
3 .
4 if ((pas_model = pas_read(0xFF88)))
5 {
6 char temp[100];
7
8 if ((int )pas_model < 0 ||
9 (int )pas_model >= 5) {

10 __shadow_recover();
11 }
12 sprintf(temp,
13 "%s rev %d",
14 pas_model_names[(int) pas_model],
15 pas_read(0x2789));
16 .
17 }

Figure 7: The code from Figure 3 fixed by Carburizer

with a bounds check.

1 void hptiop_iop_request_callback( ... ) {
2 .
3 p = (struct hpt_iop_cmd __iomem * )req;
4 arg = (struct hi_k * )
5 (readl(&req->context) |
6 ((u64) readl(&req->context_hi32)<<32));
7

8 if (readl(&req->result) == IOP_SUCCESS) {

9 if (arg == NULL)
10 __shadow_recover();
11 arg->result = HPT_IOCTL_OK;
12 }
13 .
14 }

Figure 8: The code from Figure 5 after repair. Carbur-

izer inserts a null-pointer check in line 9.

For dynamically sized arrays, the bound is not available.
Carburizer reports the bug but does not generate a repair.
With programmer annotations indicating where array bounds
are stored [15, 51], Carburizer could also generate code for
dynamic bounds checking.

Figure 7 shows the code from Figure 3 after repair. In
this code, the array size is declared statically and Carburizer
automatically generates the appropriate range check. This
check will only trigger a recovery if the index is outside the
array bounds, so it never falsely detects a failure.

When repairing code that reads a pointer directly from a
device, Carburizer does not know legal values for the pointer.
As result, it only ensures that the pointer is non-NULL.
Unlike other fixes, this only prevents a subset of crashes,
because legal values of the pointer are not known. Figure 8
shows repaired code where data from device is dereferenced.

Fixing driver panics.
Carburizer can also fix driver code that intentionally crashes
the system when hardware fails. Many drivers invoke panic

when they encounter abnormal hardware situations. While
OS vendors discourage this practice, it is used when driver
developers do not know how to recover and ensures that er-
rors do not propagate and corrupt the system. If a recovery
facility is available then crashing the system is not necessary.
Carburizer incorporates a simple analysis to identify calls to
panic, BUG, ASSERT and other system halting functions and
replace them with calls to the recovery function.

3.3 Summary
The static analysis performed by Carburizer finds many bugs
but is neither sound nor complete: it may produce false pos-
itives, and identify code as needing a fix when it is in fact
correct, and false negatives by missing some bugs. Nonethe-
less, we find that it identifies many true bugs.

False positives may occur when the driver already con-
tains a validity check that Carburizer does not recognize.
For example, if the timeout mechanism for a loop is imple-
mented in a separate function, Carburizer will not find it
and will falsely mark the loop as a bug. Carburizer only de-
tects counters implemented as standard integer types. When
drivers use custom data-types, Carburizer does not detect
the counter and again falsely marks the loop as an error.
For array indexing, Carburizer does not consider shift oper-
ations as a validity check because, if the array is not a power
of two in size, some index values will cause accesses past the
end of the array.

False negatives can occur because our interprocedural anal-
ysis only passes taint through return values. When a tainted
variable is passed as an argument, Carburizer does not de-
tect its use as sensitive code. Carburizer also cannot detect
silent failures that occur when the hardware produces a legal
but wrong value, such as in incorrect index that lies within
the bounds of the array.

3.4 Analysis Results
We ran our code across all drivers in the Linux 2.6.18.8
kernel distribution. In total, we analyzed 6359 source files
across the drivers and sound directories. For major driver
classes, Table 2 shows the number of bugs found of each
type. Despite analyzing over 2.8 million lines of code, on a
2.4 GHz Core 2 processor the analysis only takes thirty seven
minutes to run, output repaired source files and compile the
driver files.

The results show that hardware dependence bugs are wide-
spread, with 992 bugs found across various driver classes. Of
these, Carburizer can automatically repair the 903 infinite
loop and static array index bugs. Only the 89 dynamic-array
dereferences require programmer involvement.

We estimate the false positive rate by randomly sampling
bugs and inspecting the code. With weighted sampling
across all classes of bugs, we compute that Carburizer is
able to detect bugs at a false positive rate of 7.4% ± 4.3%
with 95% confidence.For the infinite loop bugs, we inspected
140 cases and found only 5 false positives. In these cases, the
timeout mechanism was implemented in a function separate
from the loop, which Carburizer does not detect. However,
Carburizer’s timeout was more relaxed than the driver’s, and
as a result did not harm the driver. This low false positive
rate demonstrates that a fairly simple and fast analysis can
detect infinite loops with high accuracy.

For static arrays, we randomly sampled 15 identified bugs
and found 6 true bugs that could cause a system crash if the
hardware experienced a transient failure, such as a single
bit flip in a device register. Most of the remaining false
positives occurred because the array was exactly the size of
the index’s range, for example 256 entries for an unsigned
byte index. However, even in the case of false positives, the
code added by Carburizer correctly checked array bounds
and does not falsely detect a failure. The only harm done to
the driver is the overhead of an unnecessary bounds check.
More advanced analysis could remove these false positives.



Driver Infinite Polling Static Array Dynamic Array Panic
Class Found Found Found Fixed

net 117 2 21 2
scsi 298 31 22 121
sound 64 1 0 2
video 174 0 22 22
other 381 9 57 32

Total 860 43 89 179

Table 2: Instances of hardware dependencies by modern Linux device drivers.(2.6.18.8 kernel)

For dynamic arrays and memory dereferencing, we sam-
pled 35 bugs and found 25 real bugs for a programmer to fix.
Most false positives manifested in drivers that use mecha-
nisms other than a mask or comparison for verifying an in-
dex. For example, the Intel i810 audio driver uses the mod-
ulo operation on a dynamic array offset. The SIS graphic
driver calls a function to validate all inputs, and Carbur-
izer’s analysis cannot detect validation done in a separate
function. Better interprocedural analysis is needed to pre-
vent these false positives.

Overall, we found that 498 driver modules out of the 1950
analyzed contained bugs. The bugs followed two distribu-
tions. Many drivers had only one or two hardware depen-
dence bugs. The developers of these drivers were typically
vigilant about validating device input but forgot in a few
places. A small number of drivers performed very little val-
idation and had a large number of bugs. For example, Car-
burizer detected 24 infinite loops in the telespci ISDN driver
and 80 in the ATP 870 SCSI driver.

These bugs demonstrate that language or library con-
structs can improve the quality of driver code. For example,
constructs to wait for a device condition safely, with inter-
nally implemented timeouts, reduce the problem of hung
systems due to devices. Past work on language support
for concurrency in drivers has investigated providing sim-
ilar language features to avoid correctness violations [8] .

3.5 Experimental Results
We verify that the Carburizer’s repair transformation works
by testing it on three Ethernet drivers. Testing every driver
repair is not practical because it would require obtaining
hundreds of devices. We focus on network drivers because
we have only implemented the recovery mechanism for this
driver class. We test whether carburized drivers, those mod-
ified by Carburizer, can detect and recovery from hardware
faults.

Of the devices at our disposal, through physical hardware
or emulation in a virtual machine, only two 100Mbps net-
work interface cards use drivers that had bugs according to
our analysis: a DEC DC21x4x card using the de4x5 driver,
and a 3Com 3C905 card using the 3c59x driver. We also
tested the forcedeth driver for NVIDIA MCP55 Pro gigabit
devices because it places high performance demands on the
system (see Section 6). In the case of forcedeth, since there
are no bugs in the driver, we emulate problematic code by
manually inserting bugs, running Carburizer on the driver,
and testing the resulting code.

We inject hardware faults with a simple fault injection
tool that modifies the return values of the read(b,w,l) and
in(b,w,l) I/O functions. We modified the forcedeth driver
by inserting code that returns incorrect output for a specific
device read operation on a device register. We then simu-
lated a series of transient faults in the register of interest.

We injected hardware read faults at three locations in the
de4x5 driver to induce an infinite-loop in interrupt context.
The loop continued even if the hardware returned 0xffffffff, a
code used to indicate that the hardware is no longer present
in the system. We injected a similar set of faults into the
3c59x driver to create an infinite loop in the interrupt han-
dler and trigger recovery. We did not test all the bugs in
each driver, because a single driver may support many de-
vices, and some bugs only occur for a specific device. As a
result, we could not force the driver through all buggy code
paths with a single device.

In each test, we found that the driver quickly detected the
failure with the generated code and triggered the recovery
mechanism. After a short delay while the driver recovered, it
returned to normal function without interfering with appli-
cations. We stopped injecting faults in the de4x5 and 3c59x
drivers after they each recovered four times. The forcedeth
driver successfully recovered from more than ten of these
transient faults. These tests demonstrate that automatic
recovery can restart drivers after hardware failures.

4. REPORTING HARDWARE FAILURES
A transient hardware failure, even while recoverable, re-
duces performance and may portend future failures [31]. As
a result, OS and hardware vendors recommend monitoring
hardware failures to allow proactive device repair or replace-
ment. For example, the Solaris Fault Management Architec-
ture [40] feeds errors reported by device drivers and other
system components into a diagnosis engine. The engine cor-
relates failures from different components and can recom-
mend a high-level action, such as disabling or replacing a
device. In reading driver code, we found Linux drivers only
report a subset of errors and often omit the failure details.

When Carburizer repairs a hardware dependence bug, it
also inserts error-reporting code. Thus, a centralized fault
management system can track hardware errors and correlate
hardware failures to other system reliability or performance
problems. Currently, we use printk to write to the system
log, as Linux does not have a failure monitoring service.

To support administrative management of hardware fail-
ures, Carburizer will also insert monitoring code into exist-
ing drivers where the driver itself detects a failure. Car-
burizer in this case relies on the driver to detect hardware
failures, through the timeouts and sanity checks. Figure 9
shows code where the driver detects a failure with a time-
out and returns an error, but does not report any failure.
In this case, Carburizer will insert logging code where the
error is returned and include standard information, such as
the driver name, location in the code, and error type (time-
out or corruption). If the driver already reports an error,
then we assume its report is sufficient and Carburizer does
not introduce additional reporting.



1 static int phy_reset(...) {
2 .
3 while (miicontrol & BMCR_RESET) {
4 msleep(10);
5 miicontrol = mii_rw(...);
6 if (tries++ > 100)
7 return -1;
8 }
9 .

10 }

Figure 9: The forcedeth network driver polls the

BMCR RESET device register until it changes state or

until a timeout occurs. The driver reports only a generic

error message at a higher level and not the specific failure

where it occurred.

We implement analyses in Carburizer to detect when the
driver either detects a failure of the hardware or returns an
error specifically because of a value read from the hardware.
These analyses depend on the bug-finding capabilities from
the preceding section to find sensitive code. In this case,
what would have been a false positive, because the failure is
handled by the driver, becomes the condition to search.

4.1 Reporting Device Timeouts
Carburizer detects locations where a driver correctly times
out of a polling loop. This code indicates that a device
failure has occurred because the device did not output the
correct value within the specified time. This analysis is the
same as the false-positive analysis used for pruning results
for infinite loops, except that the false positives are now
the code we seek. Figure 9 shows an example of code that
loops until either a timeout is reached or the device produces
the necessary value. Carburizer detects whether a logging
statement, which we consider a function taking a string as
a parameter, occurs either before breaking out of the loop
or just after breaking out. If so, Carburizer determines that
the driver already reports the failure.

Once loops that timeout are detected, Carburizer identi-
fies the predicate that holds when the loop breaks due of a
timeout. Carburizer identifies any return statements based
on such predicates and places a reporting statement just be-
fore the return. The resulting code is shown in Figure 10.
If the test is incorporated into while or for loop predicate
then Carburizer inserts code into the loop to report a failure
if the expression holds. CIL converts for loops into while(1)

loops with break statements so that code can be inserted
between the variable update and the condition evaluation.
Thus, the driver will test the expression, report a failure,
test the expression again, and break out of the loop.

4.2 Reporting Incorrect Device Outputs
Carburizer analyzes driver code to find driver functions that
return errors due to hardware failures. This covers range
tests on array indices and explicit comparisons of status or
state values. Carburizer identifies that a hardware failure
has occurred when the driver returns an error as a result of
reading data from a device. Specifically, it identifies code
where three conditions hold: (a) a driver function returns a
negative integer constant; (b) the error return value is only
returned based on the evaluation of a conditional expression,
and (c), the expression references variables that were read
from the device. We further expand the analysis to detect

1 static int phy_reset(...) {
2 .
3 while (miicontrol & BMCR_RESET) {
4 msleep(10);
5 miicontrol = mii_rw(...);
6 if (tries++ > 100) {
7 printk("...");
8 return -1;
9 }

10 }
11 .
12 }

Figure 10: Carburizer inserts a reporting statement au-

tomatically in the case of a timeout, which indicates the

device is not operating according to specification.

Driver Device Timeout Incorrect Output
Class found/fixed found/fixed

net 483/321 249/97
scsi 302/249 137/110
sound 359/297 81/53
other 411/268 361/207

Total 1555/1135 828/467

Table 3: Instances of device-reporting code inserted

by Carburizer. Each entry shows the number of device

failures detected by the driver, followed by the number

where the driver did not report failures and Carburizer

inserted reporting code.

sites where an error variable is set, such as when the driver
sets the return value and jumps to common cleanup code.
If these conditions hold, Carburizer inserts a call to the re-
porting function just before the return statement to signify
a hardware failure.

4.3 Results
Table 3 shows the result of our analysis. In total, Carburizer
identified 1555 locations where drivers detect a timeout. Of
these, drivers reported errors only 420 times, and Carbur-
izer inserted error-reporting code 1135 times. Carburizer
detected 828 locations where the driver detected a failure
with comparisons or range tests. Of these, the driver re-
ported a failure 361 times and Carburizer inserted an error
report 467 times.

We evaluate the effectiveness of Carburizer at introduc-
ing error-reporting code by performing the same analysis by
hand to see whether it finds all the locations where drivers
detect a hardware failure. For the drivers listed in Table 4,
we identified every location where the original driver detects
a failure and whether it reports the failure through logging.

We manually examined the three drivers, one from each
major class, and counted as an error any code that clearly in-
dicated the hardware was operating outside of specification.
This code performs any of the following actions on the basis
of a value read from the device: (1) returning a negative
value, (2) printing an error message indicating a hardware
failure, or (3) detecting a failed self-test. We did not count
errors found in any code removed during preprocessing, such
as ASSERT statements.

Table 4 shows the number of failures the driver detects
(according to our manual analysis), whether reported or not,
compared with the number of errors reported by Carburizer.



Driver Class Actual errors Reported Errors

bnx2 net 24 17
mptbase scsi 28 17
ens1371 sound 10 9

Table 4: Instances of fault-reporting code inserted by

Carburizer compared against all errors detected in the

driver. Each entry shows the actual number of errors

detected in the driver followed by the number of errors

reported using Carburizer.

In these three drivers, Carburizer did not produce any false
positives: all of the errors reported did indicate a device mal-
function. However, Carburizer missed several places where
the driver detected a failure. Out of 62 locations where the
driver detected a failure, Carburizer identified 43.

We found three reasons for these false negatives. First,
some drivers, such as the bnx2 network driver, wrap several
low-level read operations in a single function, and return
the tainted data via an out parameter. Carburizer does not
propagate taint through out parameters. Second, Carbur-
izer’s analysis is not sophisticated enough to track tainted
structure members across procedure boundaries. The mpt-
base SCSI driver reads data into a member variable in one
procedure and returns an error based on its value in an-
other, and we do not detect the member as tainted where
the failure is returned. Finally, some drivers detect a hard-
ware failure and print a message but do not subsequently
return an error. Thus, Carburizer does not identify that a
hardware failure was detected.

To verify the operation of the reporting statements, we in-
jected targeted faults designed to cause the carburized driver
to report a failure. We tested four drivers with fault injec-
tion to ensure they reported failures. We injected synthetic
faults into the ens1371 sound driver and the de4x5, 8139cp,
and 8139too network drivers using the tool from Section 3.
We verified that targeted fault injection triggered every re-
porting statement that applies to these hardware devices.

The only false positive we found occurred in the 8139too
network driver during during device initialization. This driver
executes a loop that is expected to time out, and Carburizer
falsely considers this a hardware fault. The other carburized
drivers do not report any false positives. We injected faults
with a fixed probability every time the driver invoked a port
or I/O memory read operation, both during driver initial-
ization and while running a workload. The drivers did not
report any additional errors compared to unmodified drivers
under these conditions, largely because none of the injected
faults would lead to a system crash. As future work, we plan
to examine the problem of reporting if a device is malfunc-
tioning even if the malfunction does not cause a crash.

Overall, we found that Carburizer was effective at intro-
ducing additional error logging to drivers where logging did
not previously exist. While it does not detect every hard-
ware failure, Carburizer increases the number of failures
logged and can therefore improve an administrator’s ability
to detect when hardware is failing, as compared to driver
failures caused by software.

5. RUNTIME FAULT TOLERANCE
The Carburizer runtime provides two key services. First,
it provides an automatic recovery service to restore drivers
and devices to a functioning state when a failure occurs.
Second, it detects classes of failures that cannot be addressed
by static analysis and modification of driver code, such as
tolerating stuck interrupts.

5.1 Automatic Recovery
Static analysis tools have proved useful as bug finding tools.
But, programmers must still write code to repair the bugs
that are found. Carburizer circumvents this limitation by
relying on automatic recovery to restore drivers and devices
to a functioning state when a failure is detected. The driver
may invoke a recovery function at any time, which will reset
the driver to a known-good state. For stuck-at hardware
failures, resetting the device can often correct the problem.
We rely on the same mechanism to recover from transient
failures, although a full reset may not be required in every
case.

We leverage shadow drivers [43] to provide automatic re-
covery because they conceal failures from applications and
the OS. A shadow driver is a kernel agent that monitors and
stores the state of a driver by intercepting function calls be-
tween the driver and the kernel. During normal operation,
the shadow driver taps all function calls between the driver
and the kernel. In this passive mode, the shadow driver
records operations that change the state of the driver, such
as configuration operations and requests currently being pro-
cessed by the driver.

Shadow drivers are class drivers, in that they are cus-
tomized to the driver interface but not to its implementa-
tion. Thus, a separate shadow driver is needed to recover
from failures in each unique class, such as network, sound,
or SCSI. We have only implemented recovery for network
drivers so far, although other work shows that they work
effectively for sound, storage [43] and video drivers [23] .

When the driver invokes the recovery function, the shadow
driver transitions into active mode, where it performs two
functions. First, it proxies for the device driver, fielding
requests from the kernel until the driver recovers. This pro-
cess ensures that the kernel and application software is un-
aware that the device failed. Second, shadow drivers un-
load and release the state of the driver and then restart the
driver, causing it to reinitialize the device. When starting
this driver, the shadow driver uses its log to configure the
driver to its state prior to recovery, including resubmitting
pending requests. Once this is complete, the shadow driver
transitions back to passive mode, and the driver is available
for use.

The shadow driver recovery model works when resetting
the device clears a device failure. For devices that fail per-
manently or require a full power cycle to recover, shadow
drivers will detect that the failure is not transient when re-
covery fails and can notify a management agent.

We obtained the shadow driver implementation used for
virtual machine migration [22] and ported the recovery func-
tions for network device drivers to the 2.6.18.8 kernel. How-
ever, we did not port the entire Nooks driver isolation sub-
system [44]. Nooks prevents memory corruption and detects
failures through hardware traps, which are unnecessary for
tolerating hardware failures. Nooks’ isolation also causes a
performance drop from switching protection domains, which



Carburizer avoids. The remaining code consists of wrappers
around the kernel/driver interface, code to log driver re-
quests, and code to restart and restore driver state after a
failure. In addition, we export the __shadow_recover function
from the kernel, which a driver may call to initiate recovery
after a hardware failure.

5.2 Tolerating Missing Interrupts
In addition to providing a recovery service, the Carbur-
izer runtime also detects failures that cannot be detected
through static modifications of driver code. Devices may
fail by generating too many interrupts or by not generating
any. The first case causes a system hang, because no useful
work can occur while the interrupt handler is running, while
the second case can result in an inoperable device.

To address the scenario in which the device stops gener-
ating interrupts, Carburizer monitors the driver and invokes
the interrupt handler automatically if necessary. With mon-
itoring, an otherwise operative device need not generate in-
terrupts to provide service. Unlike other hardware errors,
we do not force the driver to recover in this case because we
cannot detect precisely whether an interrupt is missing. In-
stead, the Carburizer runtime pro-actively calls the driver’s
interrupt handler to process any pending requests

The Carburizer runtime increments a counter each time
a driver’s interrupt handler is called. Periodically, a low
priority kernel thread checks this counter. If the counter
value has changed, Carburizer does nothing since the device
appears to be working normally. If, however, the interrupt
handler has not been executed, the device may not be de-
livering interrupts.

The Carburizer runtime detects whether there has been
recent driver activity that should have caused an interrupt
by testing whether driver code has been executed. Rather
than recording every driver invocation, Carburizer polls the
reference bits on the driver’s code pages. If any of the code
pages have been referenced, Carburizer assumes that a re-
quest may have been made and that the interrupt handler
should be called soon.

Because every driver is different, Carburizer implements
a dynamic approach to increase or decrease the polling in-
terval exponentially, depending on whether previous calls
were productive or not. By default, Carburizer checks the
referenced bits every 16ms. We chose this value because it
provides a relatively good response time in the event of a
single missing interrupt. If Carburizer’s call to the inter-
rupt handler returns IRQ_NONE, indicating the interrupt was
spurious, then Carburizer doubles the polling interval, up
to a maximum of one second. Conversely, if the interrupt
handler returns IRQ_HANDLED, indicating that there was work
for the driver, then Carburizer decreases the polling interval
to a minimum of 4ms. Thus, Carburizer calls the interrupt
handler repeatedly only if it detects that the driver is doing
useful work during the handler.

Relying on the handler return value to detect whether
the handler was productive works for devices that support
shared interrupts. Spurious interrupt handler invocations
can occur with shared interrupts because the kernel cannot
detect which of the devices sharing the interrupt line needs
service. However, some drivers report IRQ_HANDLED even if
the device does not require service, leading Carburizer to
falsely detect that it has missed an interrupt. We are ex-
amining alternate mechanisms to distinguish productive and

unproductive calls to interrupt handlers to improve perfor-
mance and reduce unnecessary polling, such as timing the
duration of the handler or detecting which code pages are
accessed during the handler.

Carburizer’s polling mechanism adds some overhead when
the kernel invokes a driver but does not cause the device
to generate an interrupt. For network drivers, this occurs
when the kernel invokes an ethtool management function.
The Carburizer runtime will call the interrupt handler even
though it is not necessary for correct operation. The driver
treats this call to its interrupt handler as spurious. Because
Carburizer decreases the polling interval in these cases, there
is little unnecessary polling even when many requests are
made of a driver that do not generate interrupts.

Some Linux network drivers, through the napi interface,
already support polling. In addition, many network drivers
implement a watchdog function to detect when the device
stops working. For these drivers, it may be sufficient to
direct the kernel to poll rather than relying on a separate
mechanism. However, this approach only works for network
drivers, while the Carburizer runtime approach works across
all driver classes.

5.3 Tolerating Stuck Interrupts
The Carburizer runtime detects stuck interrupts and recov-
ers by converting the device from interrupts to polling by
periodically calling the driver’s exported interrupt function.
A stuck interrupt occurs when the device does not lower the
interrupt request line even when directed to do so by the
driver. The Carburizer runtime detects this failure when a
driver’s interrupt handler has been called many times with-
out intervening progress of other system functions, such as
the regular timer interrupt. The Linux kernel can detect
unhandled interrupts [27], but it recovers by disabling the
device rather than enabling it to make progress.

Similar to missing interrupts, the Carburizer runtime does
not trigger full recovery here (although that is possible), but
instead disables the interrupt request line with disable_IRQ.
It then relies on the polling mechanism previously described
to periodically call the driver’s interrupt handler.

5.4 Results
We experiment with stuck and missing interrupts using fault
injection on the E1000 gigabit Ethernet driver, the ens1371
sound driver, and a collection of interdependent storage driv-
ers: ide-core, ide-generic, and ide-disk. On all three de-
vices, we simulate missing interrupts by disabling the de-
vice’s interrupt request line. We simulate stuck interrupts
with the E1000 by inserting a command to generate an in-
terrupt from inside the interrupt handler. For E1000, we
compare throughput and CPU utilization between an un-
modified driver, a driver undergoing monitoring for stuck-
/disabled interrupts, and a driver whose interrupt line has
been disabled.

In the case of E1000, we found that the Carburizer run-
time was able to detect both failures promptly, and that the
driver continued running in polling mode. Because inter-
rupts occur only once every 4ms in the steady state, receive
throughput drops from 750 Mb/s to 130 Mb/s. With more
frequent polling, the throughput would be higher. Similarly,
Carburizer detected both failures for the IDE driver. The
IDE disk operated correctly in polling mode but through-
put decreased by 50%. The ens1371 driver in polling mode



NVIDIA MCP55 Pro gigabit NIC (forcedeth)
System Throughput CPU Utilization

Linux 2.6.18.8 Kernel 940 Mb/s 31%
Carburizer Kernel 935 Mb/s 36%

(with shadow driver)

Intel Pro/1000 gigabit NIC (E1000)
System Throughput CPU Utilization

Native Kernel 721 Mb/s 16%
Carburizer Kernel 720 Mb/s 16%

(with shadow driver)

Table 5: TCP streaming send performance with net-

perf for regular and carburized drivers with automatic

recovery mechanism for the E1000 and forcedeth drivers.

Intel Pro/1000 gigabit NIC (E1000)
System Throughput CPU %

Native Kernel - TCP 750 Mb/s 19%
Carburizer Monitored - TCP 751 Mb/s 19%

Native Kernel - UDP-RR 7328 Tx/s 6%
Carburizer Monitored - UDP-RR 7310 Tx/s 6%

Table 6: TCP streaming and UDP request-response re-

ceive performance comparison of the E1000 between the

native Linux kernel and a kernel with the Carburizer

runtime monitoring the driver’s interrupts.

played back sound with a little distortion, but otherwise op-
erated normally. These tests demonstrate that Carburizer’s
stuck and missing interrupt detection mechanism works and
can keep devices functioning in the presence of a failure.

6. OVERHEAD EVALUATION
The primary cost of using Carburizer is the time spent run-
ning the tool and fixing bugs that cannot be automatically
repaired. However, the code transformations introduced by
Carburizer, shadow driver recovery, and interrupt monitor-
ing introduce a small runtime cost. In this section we mea-
sure the overhead of running carburized drivers.

We measure the performance overhead on gigabit Ether-
net drivers, as they are the most performance-intensive of
our devices: a driver may receive more than 75,000 pack-
ets to deliver per second. Thus, any overhead of Carbur-
izer’s mechanisms will show up more clearly than on lower-
bandwidth devices. Past work on Nooks and shadow storage
drivers showed a greater difference in performance than for
the network, but the CPU utilization differences were far
greater for network drivers [43].

We measure performance with netperf [21] between two
Sun Ultra 20 workstation with 2.2Ghz AMD Opteron pro-
cessors and 1GB of RAM connected via a crossover cable.
We configure netperf to run enough experiments to report
results accurate to 2.5% with 99% confidence.

Table 5 shows the throughput and CPU utilization for
sending TCP data with a native Linux kernel and one with
the Carburizer runtime with shadow driver recovery enabled
and a carburized network driver. The network throughput
with Carburizer is within one-half percent of native perfor-
mance, and CPU utilization increases only five percentage
points for forcedeth and not at all for the E1000 driver.
These results demonstrate that supporting the generic re-
covery service, even for high-throughput devices, has very
little runtime cost.

Table 6 shows performance overhead of interrupt moni-
toring but with no shadow driver recovery. The table shows

the TCP receive throughput and CPU utilization for the
E1000 driver on the native Linux kernel, and on a kernel
with Carburizer interrupt monitoring enabled. The TCP
receive and transmit socket buffers were left at their default
sizes of 87,380 and 655,360 bytes, respectively. The table
also shows UDP request-response performance with 1-byte
packets, a test designed to highlight driver latency. While
these results are for receiving packets, we also compared per-
formance with TCP and UDP-RR transmit benchmarks and
found similar results: the performance of the native kernel
and the kernel with monitoring are identical.

These two sets of experiments demonstrate that the cost
of tolerating hardware failures in software, either through
explicit invocation of a generic recovery service or through
run-time interrupt monitoring, is low. Given this low over-
head, Carburizer is a practical approach to tolerate even
infrequent hardware failures.

7. RELATED WORK
Carburizer draws inspiration from past projects on driver
reliability, bug finding, automatic patch generation, device
interface specification, and recovery.

Driver reliability.
Past work on driver reliability has focused on preventing
driver bugs from crashing the system. Much of this work
can apply to hardware failures, as they manifest as a bug
causing the driver to access invalid memory or consume too
much CPU. In contrast to Carburizer, these tools are all
heavyweight: they require new operating systems (Singular-
ity [37], Minix [18], Nexus [48]), new driver models (Win-
dows UMDF [29], Linux user-mode drivers [24]), runtime
instrumentation of large amounts of code (XFI [46] and
SafeDrive [51]), adoption of a hypervisor (Xen [13] and iKer-
nel [45]), or a new subsystem in the kernel (Nooks [44]). Car-
burizer instead fixes specific bugs, which reduces the code
needed in the kernel to just recovery and not fault detection
or isolation. Thus, Carburizer may be easier to integrate
into existing kernel development processes. Furthermore,
Carburizer detects hardware failures before they cause cor-
ruption, while driver reliability systems using memory detec-
tion may not detect it until much later, after the corruption
propagates through the system.

Bug finding.
Tools for finding bugs in OS code through static analysis [5,
6, 12] have focused on enforcing kernel-programming rules,
such as proper memory allocation, locking and error han-
dling. However, these tools enforce kernel API protocols,
but do not address the hardware protocol. Furthermore,
these tools only find bugs but do not automatically fix them.

Hardware dependence errors are commonly found through
synthetic fault injection [2, 17, 41, 52]. This approach re-
quires a machine with the device installed, while Carburizer
operates only on source code. Furthermore, fault injection
is time consuming, as it requires injection of many possible
faults into each I/O operation made by a driver.

Automatic patch generation.
Carburizer is complementary to prior work on repairing bro-
ken error handling code found through fault injection [42].
Error handling repair is an alternate means of recovering



when a hardware failure occurs by re-using existing error
handling code instead of invoking a generic recovery func-
tion. Other work on automatically patching bugs has fo-
cused on security exploits [10, 35, 36]. These systems also
address how to generate repair code automatically, but fo-
cus on bugs used for attacks, such as buffer overruns, and
not the infinite loop problems caused by devices.

Hardware Interface specification.
Several projects, such as Devil [28], Dingo [33], HAIL [39],
Nexus [48], Laddie [49] and others, have focused on reducing
faults on the driver/device interface by specifying the hard-
ware interface through a domain specific language. These
languages improve driver reliability by ensuring that the
driver follows the correct protocol for the device. However,
these systems all assume that the hardware is perfect and
never misbehaves. Without runtime checking they cannot
verify that the device produces correct output.

Recovery.
Carburizer relies on shadow drivers [43] for recovery. How-
ever, since our implementation of shadow drivers does not
integrate any isolation mechanism, the overhead of recov-
ery support is very low. Other systems that recover from
driver failure, including SafeDrive [51], and Minix [18], rely
on similar mechanisms to restore the kernel to a consistent
state and release resources acquired by the driver could be
used as well. CuriOS provides transparent recovery and fur-
ther ensures that client session state can be recovered [11].
However, CuriOS is a new operating system and requires
specially written code to take advantage of its recovery sys-
tem, while Carburizer works with existing driver code in
existing operating systems.

To achieve high reliability in the presence of hardware
failures, fault tolerant systems often use multiple instances
of a hardware device and switch to a new device when one
fails [7, 19, 38]. These systems provide an alternate recovery
mechanism to shadow drivers. However, this approach still
relies on drivers to detect failures, and Carburizer improves
that ability.

8. CONCLUSIONS
System reliability is limited by the reliability of devices. Ev-
idence suggests that device failures cause a measurable frac-
tion of system failures, and that most hardware failures are
transient and can be tolerated in software. Carburizer im-
proves reliability by automatically hardening drivers against
device failures without new programming languages, pro-
gramming models, operating systems, or execution environ-
ments. Carburizer finds and repairs hardware dependence
bugs in drivers, where the driver will hang or crash if the
hardware fails. In addition, Carburizer inserts logging code
so that system administrators can proactively repair or re-
place hardware that fails.

In an analysis of the Linux kernel, Carburizer identified
over 992 hardware dependence bugs with fewer than 8%
false postives. Discounting for false positives, Carburizer
could automatically repair approximately 845 real bugs by
inserting code to detect when a failure occurs and invoke
a recovery service. Repairs made to false positives have no
correctness impact. In performance tests, hardening drivers
had almost no visible performance overhead.

There are still more opportunities to improve device drivers.
Carburizer assumes that if a driver detects a hardware fail-
ure, it correctly responds to that failure. In practice, we find
this is often not the case. In addition, Carburizer does not
assist drivers in handling unexpected events; we have seen
code that crashes when the device returns a flag before the
driver is prepared. Thus, there are yet more opportunities
to improve driver quality.

Acknowledgements
This work is supported in part by the National Science Foun-
dation (NSF) grants CCF 0621487 and CNS 0745517, and
by the Wisconsin Alumni Research Foundation. We would
also like to thank Ben Liblit for helpful discussions during
the initial stages of the project and our shepherd Miguel
Castro for his useful advice. Swift has a financial interest in
Microsoft Corp.

9. REFERENCES

[1] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau.
Fail-stutter fault tolerance. In Proc. of the Eighth IEEE
HOTOS, May 2001.

[2] S. Arthur. Fault resilient drivers for Longhorn server, May
2004. Microsoft Corporation, WinHec 2004 Presentation
DW04012.

[3] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and
J. Schindler. An Analysis of Latent Sector Errors in Disk
Drives. In Proc. of the 7th SIGMETRICS, June 2007.

[4] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and
A. Ustuner. Thorough static analysis of device drivers. In
Proc. of the 2006 EuroSys Conference, 2006.

[5] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and
A. Ustuner. Thorough static analysis of device drivers. In
Proc. of the 2006 EuroSys Conference, Apr. 2006.

[6] T. Ball and S. K. Rajamani. The SLAM project:
Debugging system software via static analysis. In Proc. of
the 29th POPL, 2002.

[7] J. F. Bartlett. A NonStop kernel. In Proc. of the 8th ACM
SOSP, Dec. 1981.

[8] P. Chandrashekaran, C. Conway, J. M. Joy, and S. K.
Rajamani. Programming asynchronous layers with
CLARITY. In Proc. of the 15th Annual Symposium on
Foundations of Software Engineering, Sept. 2007.

[9] Coverity. Anaylsis of the Linux kernel, 2004. Available at
http://www.coverity.com.

[10] W. Cui, M. Peinado, H. J. Wang, and M. E. Locasto.
Shieldgen: Automatic data patch generation for unknown
vulnerabilities with informed probing. In Proc. of the IEEE
Symposium on Security and Privacy, 2007.

[11] F. M. David, E. M. Chan, J. C. Carlyle, and R. H.
Campbell. CuriOS: Improving reliability through operating
system structure. In Proc. of the 8th USENIX OSDI,
December 2008.

[12] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking
system rules using system-specific, programmer-written
compiler extensions. In Proc. of the 4th USENIX OSDI,
Oct. 2000.

[13] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield,
and M. Williamson. Safe hardware access with the Xen
virtual machine monitor. In OASIS Workhop, 2004.

[14] N. Ganapathy, 2009. Architect, Microsoft Windows Driver
Experience team, personal communication.

[15] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M.
Swift, and S. Jha. The design and implementation of

http://www.coverity.com


microdrivers. In Proc. of the 13th ACM ASPLOS, Mar.
2008.

[16] S. Graham. Writing drivers for reliability, robustness and
fault tolerant systems.
http://www.microsoft.com/whdc/archive/FTdrv.mspx,
Apr. 2004.

[17] S. R. Hanson and E. J. Radley. Testing device driver
hardening, May 2005. US Patent 6,971,048.

[18] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S.
Tanenbaum. Failure resilience for device drivers. In Proc. of
the 2007 IEEE DSN, June 2007.

[19] Hewlett Packard Corp. Parallel processing of TCP/IP with
ethernet adapter failover. http://h20223.www2.hp.com/
NonStopComputing/downloads/EAFailoverTCP-IP-PL.pdf,
2002.

[20] Intel Corporation and IBM Corporation. Device driver
hardening design specification draft release 0.5h.
http://hardeneddrivers.sourceforge.net/downloads/
DDH-Spec-0.5h.pdf, Aug. 2002.

[21] R. Jones. Netperf: A network performance benchmark,
version 2.1, 1995. Available at http://www.netperf.org.

[22] A. Kadav and M. M. Swift. Live migration of direct-access
devices. In First Workshop on I/O Virtualization (WIOV
’08), Dec. 2008.

[23] H. A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and
E. de Lara. VMM-independent graphics acceleration. In
Proc. of the 3rd VEE, June 2007.

[24] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Gotz, C. Gray,
L. Macpherson, D. Potts, Y. Shen, K. Elphinstone, and
G. Heiser. User-level device drivers: Achieved performance.
Journal Computer Science and Technology, 20(5), Sept.
2005.

[25] M.-L. Li, P. Ramachandran, S. Sahoo, S. Adve, V. Adve,
and Y. Zhou. Understanding the propagation of hard errors
to software and implications for resilient system design. In
Proc. of the 13th ACM ASPLOS, Mar. 2008.

[26] Linux Kernel Mailing List. Fixes for uli5261 (tulip driver).
http://lkml.org/lkml/2006/8/19/59, Aug. 2006.

[27] Linux Kernel Mailing List. Improve behaviour of spurious
irq detect. http://lkml.org/lkml/2007/6/7/211, June
2007.
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