Scalable architecture model for real time
Ray Tracing.

Asim Kadav (kadav@cs.wisc.edu)
CS752

W) WISCONSIN

S5IN—MADISON

Summary

What?

— To device an architecture for ray tracing.

— Processor organization, caches, number and type of cores.
Why?

— Increasingly important application for rendering.
Application Characterization

— Application cache sensitivity

— Cache sensitivity on a per data structure basis

Done using simulating address trace using sim-cache.
Key Findings/Results

— Cache sizes

— Cache locality and type of caches

Outline

Background

— Ray tracing application

— Software and hardware requirements
Architectural Implications

Recent Work

Experiments

Key Findings/Results

— Cache Size

— Number of threads/cores, number of cores.

Conclusion
Future Work

Background

e Classic rendering : Z buffering algorithm
— Limited details
— Local illumination model
* Ray Tracing
— More realistic.
— Real time and dynamic scenes.

— But we are still struggling with hardware
specifications and efficient software
implementations.

Background

Local lllumination model

==_—=aRasterized

‘_f

Global lllumination model

Image: intel corporation

Background

e Software

— We need to build efficient algorithms for each of
the stages of ray tracing.

— Use acceleration structures for scene
representation to help rendering. (like BSP trees)

— Render components of a scene in parallel.

Architectural Implications

e Hardware

— Build efficient multithreaded cores to support
parallel rendering.

— Decide the number of cores, type of cores and
cache configuration.

Recent Efforts

Existing GPUs

— GPU performance model has limitations on general
performance computations.

Nvidia 8800 (G80 series)
— Still optimized for Z buffer techniques.
Ray Tracing on Cell

— Cache accesses is a bottleneck.

— Small local store of each SPEs is a bottleneck. (bring all
scene data in memory)

Many other studies on core requirements
— Do they have parallelizable application.

Goals

* Determine cache behavior on the application
wide basis.

e Determine cache behavior on data structure
specific basis.

* Draw inferences on cache architecture and
cache sizes.

Experimental Setup

Using ray tracing software “Razor” that
— Builds acceleration structure lazily.

— |Is multi threaded.

— Excellent basis for architecture analysis.

Instrument the Razor code with pin tool and
generated address traces.

Modified sim-cache to run these address traces
under different cache configurations.

Generated the top loads and stores and
annotated with appropriate data structures.

16.00%

14.00%

12.00%

10.00%

8.00%

6.00%

4.00%

2.00%

0.00%

Cache Miss rates

M L1 Miss rate(Courtyard Scene)

256K

j]]]] | B L2 Miss Rate (Courtyard Scene)
1MB 2MB 4MB 8MB

512K 16MB

L1/L2 Cache miss rates versus L2 cache sizes (L1 cache size = 8K)

Cache Miss rates

30.00%
25.00%
20.00%
15.00% M L1 Miss rate (Courtyard Scene)
M L2 Miss Rate (Courtyard Scene)

10.00%

5.00% l I

0.00% T T T T T T T T T T T

4KB 8KB 16KB 32KB 64KB 128KB

L1/L2 Cache miss rates versus L1 cache sizes (L2 cache size = 2M)

20.00%

18.00%

16.00%

14.00%

12.00%

10.00% -

8.00%

6.00%

4.00%

2.00%

0.00%

Cache Miss rates

256K

B L1 Miss rate(Forest Scene)
| M L2 Miss Rate(Forest Scene)
1MB 2MB 4MB 8MB

512K 16MB

L1/L2 Cache miss rates versus L2 cache sizes (L1 cache size = 8K)

Cache Miss rates

35.00%
30.00%
25.00%
20.00%
B L1 Miss rate (Forest Scene)

15.00% M L2 Miss Rate (Forest Scene)
10.00% I

5.00%

0.00% T T T T T T T

4KB 8KB 16KB 32KB 64KB

L1 Cache miss rate versus L1 cache size (L2 cache size = 4M)

Data Structure Cache Analysis

2500
2000 -
1500 -~
1000 -~
W Stack
500
L ® Non Stack
0 1 T T I— T T T T
& ® A L
Q'é <z,\.>§ ¥)
L ‘éee, R\ ‘OO*X
© N &

Data Structure Analysis and

Conclusions
* Most loads and stores are for :

— Small low level data structures.
— Leaf node of acceleration structures.
— NOT large acceleration structures.

* Implication on cache design?
— Prefetech buffers
— Hardware cache of fine granularity possible

Conclusions

* Application Characteristics
— Irregular data structures
— Dynamic data structures
— Data dependent control flow

e L1 Size of 8K and L2 size of 4M/8M.
— Implication of multiple cores.
* A hardware cache/prefetch of fine granularity

for low level structures and a general purpose
software managed cache will be helpful.

Future Work

More application characterization
— Multiple threads

Type of multi threaded architecture

Type of Cores
— All general purpose or hybrid.
Control Flow
— MIMD/SIMD

Power requirements

Questions

Backup

Razor Data Structures

nade in the kd-tree

kd-tree (built from scane graph))
splittoc [] kdTreeNode
- leftChildPrr / splitPos [{one armay) ode
in the
— kd-tree
- rzKDLeafGeaom l:l kdTreefuxiliaryMode
T pr (another array)
/
node: node 7
= — | ZKDLeafGeom
node node node node
sgMNode sghade
sgMade (node in the scene araph)
i bit shaded bit scene graph (initial data structure)
bits | — node

id ptr
oo pe|] :
< igrid T
- walid bit I:l
node

nodes |:|
" — —
loose
bibax Y node node node node
bounds \
“, |
™~ |
.
ggriti ~al 0 2 I garid contains::
{geom grid) " 3 | - i~
built when { - normal
SQN?;:EB": | - color (eval'd during phase 1 shad.}
igrid BVH/

built when
ray enters
N A loose bounds

i Fof i Fow

