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Summary

What?

— To device an architecture for ray tracing.

— Processor organization, caches, number and type of cores.
Why?

— Increasingly important application for rendering.
Application Characterization

— Application cache sensitivity

— Cache sensitivity on a per data structure basis

Done using simulating address trace using sim-cache.
Key Findings/Results

— Cache sizes

— Cache locality and type of caches
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Background

e Classic rendering : Z buffering algorithm
— Limited details
— Local illumination model
* Ray Tracing
— More realistic.
— Real time and dynamic scenes.

— But we are still struggling with hardware
specifications and efficient software
implementations.
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Background

e Software

— We need to build efficient algorithms for each of
the stages of ray tracing.

— Use acceleration structures for scene
representation to help rendering. (like BSP trees)

— Render components of a scene in parallel.




Architectural Implications

e Hardware

— Build efficient multithreaded cores to support
parallel rendering.

— Decide the number of cores, type of cores and
cache configuration.



Recent Efforts

Existing GPUs

— GPU performance model has limitations on general
performance computations.

Nvidia 8800 (G80 series)
— Still optimized for Z buffer techniques.
Ray Tracing on Cell

— Cache accesses is a bottleneck.

— Small local store of each SPEs is a bottleneck. (bring all
scene data in memory)

Many other studies on core requirements
— Do they have parallelizable application.



Goals

* Determine cache behavior on the application
wide basis.

e Determine cache behavior on data structure
specific basis.

* Draw inferences on cache architecture and
cache sizes.



Experimental Setup

Using ray tracing software “Razor” that
— Builds acceleration structure lazily.

— |Is multi threaded.

— Excellent basis for architecture analysis.

Instrument the Razor code with pin tool and
generated address traces.

Modified sim-cache to run these address traces
under different cache configurations.

Generated the top loads and stores and
annotated with appropriate data structures.
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Cache Miss rates
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Data Structure Cache Analysis
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Data Structure Analysis and

Conclusions
* Most loads and stores are for :

— Small low level data structures.
— Leaf node of acceleration structures.
— NOT large acceleration structures.

* Implication on cache design?
— Prefetech buffers
— Hardware cache of fine granularity possible



Conclusions

* Application Characteristics
— Irregular data structures
— Dynamic data structures
— Data dependent control flow

e L1 Size of 8K and L2 size of 4M/8M.
— Implication of multiple cores.
* A hardware cache/prefetch of fine granularity

for low level structures and a general purpose
software managed cache will be helpful.



Future Work

More application characterization
— Multiple threads

Type of multi threaded architecture

Type of Cores
— All general purpose or hybrid.
Control Flow
— MIMD/SIMD

Power requirements



Questions



Backup

Razor Data Structures
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