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Summary

• What?
– To device an architecture for ray tracing.

– Processor organization, caches, number and type of cores.

• Why?
– Increasingly important application for rendering.

• Application Characterization• Application Characterization
– Application cache sensitivity

– Cache sensitivity on a per data structure basis

• Done using simulating address trace using sim-cache.

• Key Findings/Results
– Cache sizes

– Cache locality and type of caches



Outline

• Background
– Ray tracing application

– Software and hardware requirements

• Architectural Implications

• Recent Work• Recent Work

• Experiments

• Key Findings/Results
– Cache Size

– Number of threads/cores, number of cores.

• Conclusion

• Future Work



Background

• Classic rendering : Z buffering algorithm

– Limited details

– Local illumination model

• Ray Tracing• Ray Tracing

– More realistic.

– Real time and dynamic scenes.

– But we are still struggling with hardware 

specifications and efficient software 

implementations.



Background

Local Illumination model

Image: intel corporation

Local Illumination model

Global Illumination model



Background

• Software

– We need to build efficient algorithms for each of 

the stages of ray tracing.

– Use acceleration structures for scene – Use acceleration structures for scene 

representation to help rendering. (like BSP trees)

– Render components of a scene in parallel.



Architectural Implications

• Hardware

– Build efficient multithreaded cores to support 

parallel rendering.

– Decide the number of cores, type of cores and– Decide the number of cores, type of cores and

cache configuration.



Recent Efforts

• Existing GPUs
– GPU performance model has limitations on general 

performance computations. 

• Nvidia 8800 (G80 series)
– Still optimized for Z buffer techniques.– Still optimized for Z buffer techniques.

• Ray Tracing on Cell
– Cache accesses is a bottleneck.

– Small local store of each SPEs is a bottleneck. (bring all 
scene data in memory)

• Many other studies on core requirements
– Do they have parallelizable application.



Goals

• Determine cache behavior on the application 

wide basis.

• Determine cache behavior on data structure 

specific basis.specific basis.

• Draw inferences on cache architecture and 

cache sizes.



Experimental Setup

• Using ray tracing software “Razor” that 
– Builds acceleration structure lazily.

– Is multi threaded.

– Excellent basis for architecture analysis.

• Instrument the Razor code with pin tool and • Instrument the Razor code with pin tool and 
generated address traces.

• Modified sim-cache to run these address traces 
under different cache configurations.

• Generated the top loads and stores and 
annotated with appropriate data structures.
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Cache Miss rates
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Cache Miss rates
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Cache Miss rates
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Data Structure Cache Analysis
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Data Structure Analysis and 

Conclusions
• Most loads and stores are for :

– Small low level data structures.

– Leaf node of acceleration structures.

– NOT large acceleration structures.

• Implication on cache design?

– Prefetech buffers

– Hardware cache of fine granularity possible



Conclusions

• Application Characteristics

– Irregular data structures

– Dynamic data structures

– Data dependent control flow– Data dependent control flow

• L1 Size of 8K and L2 size of 4M/8M.

– Implication of multiple cores.

• A hardware cache/prefetch of fine granularity 
for low level structures and a general purpose 
software managed cache will be helpful.



Future Work

• More application characterization

– Multiple threads

• Type of multi threaded architecture

• Type of Cores• Type of Cores

– All general purpose or hybrid.

• Control Flow

– MIMD/SIMD

• Power requirements



Questions
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