
Scalable architecture model for real time 

Ray Tracing.

Asim Kadav (kadav@cs.wisc.edu)

CS752



Summary

• What?
– To device an architecture for ray tracing.

– Processor organization, caches, number and type of cores.

• Why?
– Increasingly important application for rendering.

• Application Characterization• Application Characterization
– Application cache sensitivity

– Cache sensitivity on a per data structure basis

• Done using simulating address trace using sim-cache.

• Key Findings/Results
– Cache sizes

– Cache locality and type of caches



Outline

• Background
– Ray tracing application

– Software and hardware requirements

• Architectural Implications

• Recent Work• Recent Work

• Experiments

• Key Findings/Results
– Cache Size

– Number of threads/cores, number of cores.

• Conclusion

• Future Work



Background

• Classic rendering : Z buffering algorithm

– Limited details

– Local illumination model

• Ray Tracing• Ray Tracing

– More realistic.

– Real time and dynamic scenes.

– But we are still struggling with hardware 

specifications and efficient software 

implementations.



Background

Local Illumination model

Image: intel corporation

Local Illumination model

Global Illumination model



Background

• Software

– We need to build efficient algorithms for each of 

the stages of ray tracing.

– Use acceleration structures for scene – Use acceleration structures for scene 

representation to help rendering. (like BSP trees)

– Render components of a scene in parallel.



Architectural Implications

• Hardware

– Build efficient multithreaded cores to support 

parallel rendering.

– Decide the number of cores, type of cores and– Decide the number of cores, type of cores and

cache configuration.



Recent Efforts

• Existing GPUs
– GPU performance model has limitations on general 

performance computations. 

• Nvidia 8800 (G80 series)
– Still optimized for Z buffer techniques.– Still optimized for Z buffer techniques.

• Ray Tracing on Cell
– Cache accesses is a bottleneck.

– Small local store of each SPEs is a bottleneck. (bring all 
scene data in memory)

• Many other studies on core requirements
– Do they have parallelizable application.



Goals

• Determine cache behavior on the application 

wide basis.

• Determine cache behavior on data structure 

specific basis.specific basis.

• Draw inferences on cache architecture and 

cache sizes.



Experimental Setup

• Using ray tracing software “Razor” that 
– Builds acceleration structure lazily.

– Is multi threaded.

– Excellent basis for architecture analysis.

• Instrument the Razor code with pin tool and • Instrument the Razor code with pin tool and 
generated address traces.

• Modified sim-cache to run these address traces 
under different cache configurations.

• Generated the top loads and stores and 
annotated with appropriate data structures.



Cache Miss rates

8.00%

10.00%

12.00%

14.00%

16.00%

L1 Miss rate(Courtyard Scene)

L1/L2 Cache miss rates versus L2 cache sizes (L1 cache size = 8K)

0.00%

2.00%

4.00%

6.00%

8.00%

256K 512K 1MB 2MB 4MB 8MB 16MB

L1 Miss rate(Courtyard Scene)

L2 Miss Rate (Courtyard Scene)



Cache Miss rates

15.00%

20.00%

25.00%

30.00%

L1 Miss rate (Courtyard Scene)

L1/L2 Cache miss rates versus L1 cache sizes (L2 cache size = 2M)

0.00%

5.00%

10.00%

15.00%

4KB 8KB 16KB 32KB 64KB 128KB

L1 Miss rate (Courtyard Scene)

L2 Miss Rate (Courtyard Scene)



Cache Miss rates

10.00%

12.00%

14.00%

16.00%

18.00%

20.00%

L1 Miss rate(Forest Scene)

L1/L2 Cache miss rates versus L2 cache sizes (L1 cache size = 8K)

0.00%

2.00%

4.00%

6.00%

8.00%

256K 512K 1MB 2MB 4MB 8MB 16MB

L2 Miss Rate(Forest Scene)



Cache Miss rates

20.00%

25.00%

30.00%

35.00%

L1 Miss rate (Forest Scene) 

L1 Cache miss rate versus L1 cache size (L2 cache size = 4M)

0.00%

5.00%

10.00%

15.00%

4KB 8KB 16KB 32KB 64KB

L1 Miss rate (Forest Scene) 

L2 Miss Rate (Forest Scene)



Data Structure Cache Analysis

1000

1500

2000

2500

0

500
Stack

Non Stack



Data Structure Analysis and 

Conclusions
• Most loads and stores are for :

– Small low level data structures.

– Leaf node of acceleration structures.

– NOT large acceleration structures.

• Implication on cache design?

– Prefetech buffers

– Hardware cache of fine granularity possible



Conclusions

• Application Characteristics

– Irregular data structures

– Dynamic data structures

– Data dependent control flow– Data dependent control flow

• L1 Size of 8K and L2 size of 4M/8M.

– Implication of multiple cores.

• A hardware cache/prefetch of fine granularity 
for low level structures and a general purpose 
software managed cache will be helpful.



Future Work

• More application characterization

– Multiple threads

• Type of multi threaded architecture

• Type of Cores• Type of Cores

– All general purpose or hybrid.

• Control Flow

– MIMD/SIMD

• Power requirements



Questions



Backup


