
Beefy Drivers for Flaky Hardware

Asim Kadav and Tara Mohan
CS 706 Project Proposal, Fall 2008

Abstract
The current implementation of device drivers assumes
and relies on the correctness of the underlying hard-
ware. Any unresponsive hardware can cause the appli-
cation and/or the system to crash or hang. However, cur-
rent technology trends indicate that devices are becoming
more susceptible to hardware failures, both permanent
and transient in nature. Hence, the current implemen-
tation of drivers is poorly suited to run on increasingly
unreliable device hardware.

This project intends to solve this problem by building
reliable device drivers that can tolerate hardware failures
and recover as necessary. This project intends to stati-
cally analyze device drivers and identify driver code that
assumes correct hardware behaviour as a basis for for-
ward progress of the driver. These drivers will then be
hardenedby modifying the code to alleviate this reliance.
Time permitting, we also intend to build a fault injection
framework to test the robustness of our methodology.
Based on our results, we also plan to discuss possible
recovery strategies that can be performed in cases where
the driver cannot continue to perform normally due to
corruption of the driver’s state.

1 Introduction
Even though many applications are resistant to operate
with minor errors [8, 16], device drivers in commodity
operating systemsas-isare unable to recover from most
device errors and can potentially cause operating sys-
tem hangs or crashes. In the current scheme of drivers
in modern operating systems, the majority of system
crashes are attributed to drivers; for example, 89% of
the crashes of the Windows operating system are due
to drivers [9]. Another related study on the Windows
operating system shows that systems with fault-tolerant
drivers suffer from a signficantly lower crash rate [1].

Even worse, as device manufacturing processes con-
tinue to advance to meet the growing demands of func-
tionality, performance, and specifications, we are in-
creasingly hitting bottlenecks in the process of develop-
ing reliable device hardware. Due to problems such as
transistor variability, aging and transient errors, it will
become increasingly difficult to maintain the reliability
of manufactured device hardware even as manufactur-

ing costs continue to increase [4]. Because most drivers
are reliant on correct device behaviour, device errors
when traveling up the software stack can cause abnormal
system behaviour, application crashes, or entire system
crashes or hangs, depending on which layer of the soft-
ware stack gets affected. Drivers are worst affected by
device unreliability because they operate inside the op-
erating system in priveleged mode. Any errors in drivers
can corrupt kernel data structures or lockup the entire op-
erating system kernel. One such example is shown on the
left hand side of Table 1. The unsafe driver shown there
will wait indefinitely for the device. A device failure here
can cause the entire system to hang.

This research accepts these transient device errors as a
part of the device specification and tries to build reliable
device drivers from existing drivers which can tolerate
transient hardware mis-behaviour and/or fail gracefully
when such a problem occurs. This document proposes
our design methodology, expected project timeline, and
evaluation methodology, and discusses the related work.

2 Design
This section describes the design of the different compo-
nents of our project as follows in different subsections.

2.1 Driver Hardening

We intend to use static analysis toharden drivers for
hardware faults. An example of ahardeneddriver is il-
lustrated on the right hand side of Table1. The given
piece of code does not rely or hang by waiting indefi-
nitely on the driver but instead waits for the device and
then gracefully flags an error message. Tohardenexist-
ing broken drivers to behave more reliably, we intend to
build a tool that will statically analyze all driver code and
use program slicing techniques to identify control paths
where the driver may terminate (or hang) without an er-
ror message after reading some state of the driver. Some
examples of this include (a) control flow paths such as a
while loop or afor loop where the driver waits on device
registers, (b) a device register value being used as an in-
dex of an array or (c) a driver going off to sleep until an
interrupt occurs.

We will identify all such control paths that may have
data or control dependencies on the correct device oper-
ation. If a driver uses a value generated by a device in



Unsafe Driver Safe Driver
(3c59x.c) (pcnet32.c)

ticks= 0;
while (ioread16(ioaddr+Wn7 MasterStatus) while (!(a->readcsr(ioaddr, 5) & 0x0001)){

& 0x8000){ . . .
; if (++ticks< 200){

} printk(KERN DEBUG “%s: Error getting into
suspend!”,
dev->name);

break;
}

}

Table 1: An illustration of a hardware unsafe and a hardware safe driver.

Dependency Type Description Possible Fix
Control Waiting for the device in infinitewhile loop. Add a simple counter.
Control Driver waiting for an interrupt. Insert timeouts or detect dynamically.

Data Using device register to perform indexed array access.Check array bounds.
Data Waiting on a device resource. Use callbacks.
Data Data re-reads. Avoid reading the data twice when not required.
Data DMA into incorrect address. Invoke checks on send address in DMA calls.
Data Corrupt data from device. Use retry more often to handle transient errors.

Table 2: Possible classes of failures due to unreliable hardware

a calculation, for example, as an array index, then the
resulting value is data-dependent on the device. When a
driver makes a control decision, such as a branch or func-
tion call, based on either data or an interrupt from a de-
vice, the driver is control-dependent on the correct func-
tioning of that device. We intend to perform a complete
dependency-finding analysis for the dependency classes
listed in Table2. This table may expand as we examine
more and more drivers.

For example, for case (c) described above, where a
driver takes action only during an interrupt handler, the
driver depends on the device to generate an interrupt.
Here, we will need to analyze drivers to determine which
code executes only in response to interrupts. We can
identify interrupt handlers based on their registration
with the kernel in the driver code. Similarly, reading
data generated by the device, through explicit I/O in-
structions or memory operations on a region shared with
the device, depends on the correct operation of the de-
vice. We can identify such shared memory regions by
the APIs used to allocate them. For example, Linux
drivers map I/O device registers into virtual memory with
the ioremap function and allocate shared memory with
thepci alloc consistent kernel call. From these APIs,
we will track which memory accesses refer to shared
memory. After identifying such memory accesses, we
can identify the driver code that depends on device be-
haviour. We may need to perform apoints-toanalysis
for the above memory dependency requirement. We in-

tend to use the facility provided in CIL to perform this
analysis.

The second challenge, after the detection of failure-
intolerant code, is generating failure detection code. Af-
ter identifying driver code that depends on device cor-
rectness, we will insert a failure detector that identifies
when the device has failed, i.e., when it violates the
driver’s assumptions about its behaviour. For address
calculations that depend on device correctness, we plan
to insert range checks that detect when array bounds
are exceeded [17] for arrays whose sizes are known at
compile-time. For liveness checks, counters in loops
may suffice in many cases. More complicated tests, such
as those to detect when a packet has not been sent, may
also be necessary. For these tests, we will generate timer
callbacks from the kernel that test whether any long-lived
requests are still pending.

2.1.1 Implementation of Analyses

We intend to use the Berkely CIL tool [11] for our analy-
sis. CIL operates on C language source code and per-
forms source transformation to produce suitable data
structures. By operating on these data structures, we
can analyze the code and make suitable modifications
to producehardenedkernel module binaries. CIL is
written in the OCaml language in which we are both
novices. To learn OCaml, which is necessary for our
analysis, we will go through the OCaml tutorials avail-
able athttp://www.ocaml-tutorial.org. We intend to



perform our analysis on the Linux source code on the
stablelinux-2.6.18 kernel.

We intend to proceed in the following manner to per-
form our analysis:

1. Preprocess the device driver source files in the
drivers directory of the kernel tree and read them
via CIL.

2. Once loaded in CIL, analyze each driver source file
to identify code which depends on the device con-
trol information.

3. Fortify this code by removing or minimizing this
dependency and generating failure detection code in
the intermediate CIL form.

4. Build the hardened kernel module for the driver
from the intermediate form.

As obvious from this description, we do not intend to
produce any hardened original C syntax. Also, we do not
intend to limit ourselves to any particular device or class
of drivers. Also, our analysis is largely intra-procedural
except in cases where we need to find registration of in-
terrupts with the kernel, which may be done inside a dif-
ferent procedure than where it is used.

This section is the primary focus of this class project.

2.2 Fault Injection Framework

To suitably evalute the effectiveness of our tool, we in-
tend to develop a fault injection framework based on ex-
isting driver fault injection frameworks [18]. The driver
fault injection framework will intersperse itself between
the driver and the device and will simulate device fail-
ures, such as reads or writes of device registers, ran-
domly. We also plan to simulate device failure by re-
pressing valid events or generating false events like de-
vice interrupts. The thoroughness involved in this sec-
tion of the project will depend on the time that will be
remaining with us after satisfactorily completing the pre-
vious section of the project.

2.3 Recovery Systems

Performing proper recovery when permanent failures oc-
cur raises additional challenges. Unlike software fail-
ures, hardware failures may require additional operations
by the OS to recover, such as failing over to redundant
hardware. The driver should either recover to a func-
tioning state or shut down to limit failure propagation.
Past work on failure handling has shown the difficulties
of adding error handling to existing code [14].

There also might be cases of transient errors where
our beefy drivers become unusable, even though they
are able to avoid a crash or hang. We intend to discuss
what recovery techniques will best suit in cases where

the driver state is corrupted based on the results of our
fault injection framework.

3 Project Timeline
The project intends to earnestly stick to the timeline as
given in Table3.

4 Methodology of Evaluation
Our evaluation will examine the performance overhead
of using thehardeneddevice driver code. We intend to
perform this for some of the devices depending on the
availibility of the devices using the drivers. To evaluate
the effectiveness of our tool, we will consider the vari-
ous driver dependencies on correct device operation that
our tool is able to identify andharden. The metric for
this evaluation will be the number of such cases we are
able to identify. We will also measure the ability of the
resultinghardeneddrivers to tolerate failures caused by
the fault-injection framework.

5 Related work
There has been significant research in applying program
analysis techniques to systems research. For applying
runtime checks on driver and OS code, many tools ex-
ist, such as the Driver Verifier(DV) and PURIFY, which
can analyze the running code for violations due to array
bounds, memory leaks, etc. There are also many static
verification tools targeting device driver reliability, such
as the Static Driver Verifier(SDV) tool [2]. SDV is a bug
finding tool that checks for and reports misuse of kernel
API calls in drivers. SDV has an analysis engine that
verifies the driver against a set of API usage rules and
determines usage bugs for the programmer to fix. This
engine is based on SLAM [3] which is a generic static-
checker which tries to detect all possible ways a driver
can disobey a set of API usage rules.

Our tool, on the other hand, is designed to fortify the
driver interaction with the hardware. Also, while SDV
is aimed at preventing kernel misuse, our tool is directed
towards device misuse. Bug finding tools like SDV gen-
erally assume that devices behave correctly and rely on
programmers to fix the problems found [2, 3, 5, 7, 12].
Our described mechanism, however, relies on static anal-
ysis to detect code that is not tolerant of device failures,
fixes it and also dynamically uses recovery techniques
to manage system violations arising from device mis-
behaviour. This improves the coverage of our tool and
removes the burden on programmers to fix the failures
that occur. There are also past efforts at driver hardening
provide fault injection tools to discover through testing
where a driver may fail [10, 13]. In this work, as men-
tioned before, we will use static analysis to harden driver
code that is not tolerant of device failures.



Dates Work Item Status
Oct 20th - Oct 24th Get Proposal approved Incomplete
Oct 25th - Oct 27th Setup the test and build environment with required kernel and other CIL tools.

Familarize selves with CIL and OCAML. Incomplete
Oct 27th - Nov 1st Develop simple basic CIL infrastructure. Incomplete
Nov 1st - Nov 15th Complete CIL development and generate fortified driver code. Incomplete
Nov 15th - Dec 1st Develop testbench and evaluate the developed drivers depending on available devices.Incomplete
Dec 1st - Dec 10th Brainstorm recovery techniques. Incomplete

Table 3: Proposed schedule of the project

To improve device driver safety, prior work has also
investigated putting non-performance critical code in
user-space so that a driver failure does not wreak havoc
on the system [6]. There also has been prior work to
maintain the driver in a safe state using finite state au-
tomata generated from device specifications to prevent
the driver from mis-behaving [15]. However, none of the
above work is targeted at saving the driver/system from
unreliable hardware.

6 Expected Conclusions
With this project, we intend to be able to classify the
common bugs due to hardware failures and beef up our
drivers to handle these failures. With a suitable test
framework, we intend to introduce transient hardware
failures and determine the effectiveness of our approach.
We will also discuss recovery scenarios and the appli-
cation of suitable recovery techniques. Finally, we will
examine how this work will be useful in efforts to im-
prove the fault tolerance of legacy code by automating
failure detection and recovery, which may apply beyond
device drivers.

7 Project Participants
The student participants in this class project are strictly
limited to Asim Kadav and Tara Mohan. Asim’s advisor,
Prof. Mike Swift is involved in this research and this
project idea originates from him. There may be other
non CS-706 students involved in this research, but only
after January 2009.

References
[1] Sandy Arthur. Fault resilient drivers for Longhorn

server. Technical Report WinHec 2004 Presenta-
tion DW04012, Microsoft Corporation, May 2004.

[2] Thomas Ball, Ella Bounimova, Byron Cook,
Vladimir Levin, Jakob Lichtenberg, Con McGar-
vey, Bohus Ondrusek, Sriram K. Rajamani, and
Abdullah Ustuner. Thorough static analysis of de-
vice drivers. InProceedings of the 2006 EuroSys
Conference, Leuven, Belgium, April 2006.

[3] Thomas Ball and Sriram K. Rajamani. Automati-
cally validating temporal safety properties of inter-
faces. InSPIN 2001, Workshop on Model Checking
of Software, volume 2057 ofLecture Notes in Com-
puter Science, pages 103–122, May 2001.

[4] S. Borkar. Designing reliable systems from unreli-
able components: The challenges of transistor vari-
ability and degradation. InProc. of the 38th Annual
IEEE/ACM International Symp. on Microarchitec-
ture, November 2005.

[5] Dawson Engler, Benjamin Chelf, Andy Chou, and
Seth Hallem. Checking system rules using system-
specific, programmer-written compiler extensions.
In Proceedings of the 4th USENIX OSDI, pages 1–
16, October 2000.

[6] Vinod Ganapathy, Matthew J. Renzelmann, Arini
Balakrishnan, Michael M. Swift, and Somesh Jha.
Microdrivers: a new architecture for device drivers.
In Proc. of the 13th Intnl. Conf. on Architectural
Support for Programming Languages and Operat-
ing Systems, March 2008.

[7] Thomas A. Henzinger, Ranjit Jhala, Rupak Majum-
dar, George C. Necula, Gregoire Sutre, and Westley
Weimer. Temporal-safety proofs for systems code.
In Proceedings of the 14th International Confer-
ence on Computer-Aided Verification (CAV), vol-
ume 2404 ofLecture Notes in Computer Science,
pages 526–538. Springer-Verlag, July 2002.

[8] X. Li and D. Young. Application-level correctness
and its impact on fault tolerance. InProc. of the
13th IEEE Symp. on High-Performance Computer
Architecture, February 2007.

[9] Microsoft Corporation. Windows XP em-
bedded with service pack 1 reliability.
http://msdn2.microsoft.com/en-us/library/

ms838661.aspx, January 2003.

[10] Microsoft Corporation. Win-
dows device testing framework.



http://msdn2.microsoft.com/en-us/library/

aa973530.aspx, 2007.

[11] George C. Necula, Scott McPeak, Shree Prakash
Rahul, and Westley Weimer. CIL: Intermediate lan-
guage and tools for analysis and transformation of
C programs. InProceedings of the 11th Interna-
tional Conference on Compiler Construction, pages
213–228, April 2002.

[12] Hendrik Post and Wolfgang Kuchlin. Integrated
static analysis for Linux device driver verification.
In Proceedings of the 6th International Conference
on integrated Formal Methods, July 2007.

[13] Sun Microsystems.Solaris Express Software De-
veloper Collection: Writing Device Drivers, chap-
ter 13: Hardening Solaris Drivers. Sun Microsys-
tems, 2007.

[14] Martin Süßkraut and Christof Fetzer. Automati-
cally finding and patching bad error handling. In
Proceedings of the 6th European Dependable Com-
puting Conference (EDCC’06), pages 13–22, Octo-
ber 2006.

[15] Dan Williams, Patrick Reynolds, Kevin Walsh,
Emin Gun Sirer, and Fred B. Schneider. Device
driver safety through a reference validation mech-
anism. InProceedings of the 8th USENIX OSDI,
2008.

[16] V. Wong and M. Horowitz. Soft error resilience of
probabilistic inference applications. InIn The 2nd
Workshop on System Effects of Logic Soft Errors
(SELSE), 2006.

[17] Feng Zhou, Jeremy Condit, Zachary Anderson, Ilya
Bagrak, Rob Ennals, Matthew Harren, George Nec-
ula, and Eric Brewer. SafeDrive: Safe and recov-
erable extensions using language-based techniques.
In Proceedings of the 7th USENIX OSDI, Novem-
ber 2006.

[18] Louis Zhuang, Stanley Wang, and Kevin Gao. Fault
injection test harness. InProceedings of the Ottawa
Linux Symposium, June 2003.


	Introduction
	Design
	Driver Hardening
	Implementation of Analyses

	Fault Injection Framework
	Recovery Systems

	Project Timeline
	Methodology of Evaluation
	Related work
	Expected Conclusions
	Project Participants

