Beefy Drivers for Flaky Hardware

Asim Kadav and Tara Mohan
CS 706 Project Proposal, Fall 2008

Abstract ing costs continue to increas4)| Because most drivers

The current implementation of device drivers assumeé"‘rr:e rehantlpn corrhect df(;,\wce beh?.(VIOUI', dewceberrorsl
and relies on the correctness of the underlying hardWhen traveling up the software stack can cause abnorma

ware. Any unresponsive hardware can cause the appl?yStem behaviour, applica_tion crash_es, or entire system
cation angbr the system to crash or hang. However, cur-Crashes or hangs, depending on which layer of the soft-

rent technology trends indicate that devices are becominy@'e stack getsfeected. Drivers are worstiected by
more susceptible to hardware failures, both permanerft€vice unreliability because they operate inside the op-
and transient in nature. Hence, the current implemensaratlng system in priveleged mode. Any errors in drivers

tation of drivers is poorly suited to run on increasingly €1 corrupt kernel data structures or Iockupthe entire op-
unreliable device hardware. erating system kernel. One such example is shown on the

This project intends to solve this problem by building left hand side of Table 1. The unsafe driver shown there

reliable device drivers that can tolerate hardware failuredVill waitindefinitely for the device. A device failure here
and recover as necessary. This project intends to statf2n cause the entire system to hang. _

cally analyze device drivers and identify driver code that This researc_h accept_s_ the_se tran5|_ent deV|c_e errors as a
assumes correct hardware behaviour as a basis for foPart of the device specification and tries to build reliable
ward progress of the driver. These drivers will then bedevice drivers from existing drivers which can tolerate

hardenecy modifying the code to alleviate this reliance. (ransient hardware mis-behaviour fowfail gracefully
Time permitting, we also intend to build a fault injection WWhen such a problem occurs. This document proposes

framework to test the robustness of our methodology®Ur design methodology, expected project timeline, and

Based on our results, we also plan to discuss possibl@valuation methodology, and discusses the related work.
recovery strategies that can be performed in cases whe Design

the driver cannot continue to perform normally due to
corruption of the driver’s state.

1 Introduction 2.1 Driver Hardening
Even though many applications are resistant to operatQa intend to use static analysis barden drivers for

with minor errors 8, 16, device drivers in commodity o qyare faults. An example offerdeneddriver is il-
operating systemas-isare unaple to recover from. most | strated on the right hand side of Taldle The given
device errors and can potentially cause operating SYShiece of code does not rely or hang by waiting indefi-
tem hangs or crashes. In the current scheme of drivergie|y on the driver but instead waits for the device and
in modern opergtlng systems, the majority of SysteMp oy gracefully flags an error message.hBodenexist-
crashes are attributed to drivers; for example, 89% Ofy4 proken drivers to behave more reliably, we intend to
the crashes of the Windows operating system are dufiq 4 tool that will statically analyze all driver code and
to drivers B]. Another related study on the Windows ;oo nrogram slicing techniques to identify control paths
operatlng system shgws.that systems with fault-tolerant po o the driver may terminate (or hang) without an er-
drivers sdfer from a signficantly lower crash rat][ror message after reading some state of the driver. Some

Even worse, as device manufacturing processes Cons, ampjes of this include (a) control flow paths such as a

tinue to advance to meet the growing demands of funcg, ;14 joop or afor loop where the driver waits on device
tionality, performance, and specifications, we are in-

) . i registers, (b) a device register value being used as an in-
creasingly hitting bottlenecks in the process of develop—dex of an array or (c) a driver goingido sleep until an
ing reliable device hardware. Due to problems such a?nterrupt 0CeUrs.

transistor variability, aging and transient errors, it will =y il identify all such control paths that may have
become increasingly flicult to maintain the reliability 4415 or control dependencies on the correct device oper-

of manufactured device hardware even as manufactuiyiion ~f 5 driver uses a value generated by a device in

This section describes the design of thi#etent compo-
nents of our project as follows infiiérent subsections.

Unsafe Driver Safe Driver

(3c59x.c) (pcnet32.c)
ticks=0;
while (ioread16(ioadd# Wn7_MasterStatus) while (!(a->readcsr(ioaddr, 5) & 0x0001))
& 0x8000){

; if (++ticks < 200){
} printk(KERN_DEBUG “%s: Error getting into
suspend!”,
dev=>name);
break;
}
}

Table 1: An illustration of a hardware unsafe and a hardware safe driver.

Dependency Type| Description Possible Fix

Control Waiting for the device in infinitashile loop. Add a simple counter.

Control Driver waiting for an interrupt. Insert timeouts or detect dynamically.
Data Using device register to perform indexed array acces€heck array bounds.
Data Waiting on a device resource. Use callbacks.
Data Data re-reads. Avoid reading the data twice when not requirgd.
Data DMA into incorrect address. Invoke checks on send address in DMA calls.
Data Corrupt data from device. Use retry more often to handle transient errors.

Table 2: Possible classes of failures due to unreliable hardware

a calculation, for example, as an array index, then theaend to use the facility provided in CIL to perform this
resulting value is data-dependent on the device. When analysis.
driver makes a control decision, such as a branch or func- The second challenge, after the detection of failure-
tion call, based on either data or an interrupt from a de-intolerant code, is generating failure detection code. Af-
vice, the driver is control-dependent on the correct functer identifying driver code that depends on device cor-
tioning of that device. We intend to perform a completerectness, we will insert a failure detector that identifies
dependency-finding analysis for the dependency classeghen the device has failed, i.e., when it violates the
listed in Table2. This table may expand as we examine driver’s assumptions about its behaviour. For address
more and more drivers. calculations that depend on device correctness, we plan
For example, for case (c) described above, where & insert range checks that detect when array bounds
driver takes action only during an interrupt handler, theare exceededl[/] for arrays whose sizes are known at
driver depends on the device to generate an interruptompile-time. For liveness checks, counters in loops
Here, we will need to analyze drivers to determine whichmay sufice in many cases. More complicated tests, such
code executes only in response to interrupts. We caas those to detect when a packet has not been sent, may
identify interrupt handlers based on their registrationalso be necessary. For these tests, we will generate timer
with the kernel in the driver code. Similarly, reading callbacks from the kernel that test whether any long-lived
data generated by the device, through explig@ In- requests are still pending.
structions or memory operations on a region shared witlﬂzll1
the device, depends on the correct operation of the de-
vice. We can identify such shared memory regions by'Ve intend to use the Berkely CIL todl{] for our analy-
the APIs used to allocate them. For example, LinuxSiS- CIL operates on C language source code and per-
drivers map /IO device registers into virtual memory with forms source transformanon to produce suitable data
the ioremap function and allocate shared memory with Structures. By operating on these data structures, we
thepci_alloc_consistent kernel call. From these APIs, can analyze the code and make suitable modifications
we will track which memory accesses refer to shared© Producehardenedkernel module binaries. CIL is
memory. After identifying such memory accesses, Wewrltten in the OCaml Ianguagg |n_wh|ch we are both
can identify the driver code that depends on device befovices. To learn OCaml, which is necessary for our
haviour. We may need to performpmints-toanalysis analysis, we will go through the OCaml tut(_)rlals avail-
for the above memory dependency requirement. We inable athttp://www.ocaml-tutorial.org. We intend to

Implementation of Analyses

perform our analysis on the Linux source code on thethe driver state is corrupted based on the results of our
stablelinux-2.6.18 kernel. fault injection framework.
We intend to proceed in the following manner to per- 3 Project Timeline

form our analysis:
The project intends to earnestly stick to the timeline as
1. Preprocess the device driver source files in thegiven in Table3.
dri directory of the kernel tree and read them .
Tvers y 4 Methodology of Evaluation

via CIL.
Our evaluation will examine the performance overhead

2. Once loaded in CIL, analyze each driver source filegf sing thehardeneddevice driver code. We intend to

to identify code which depends on the device con-perform this for some of the devices depending on the

trol information. availibility of the devices using the drivers. To evaluate
the dfectiveness of our tool, we will consider the vari-
pus driver dependencies on correct device operation that
our tool is able to identify antharden The metric for
this evaluation will be the number of such cases we are
4. Build the hardened kernel module for the driver able to identify. We will also measure the ability of the

from the intermediate form. resultinghardeneddrivers to tolerate failures caused by

the fault-injection framework.

As obvious from this description, we do not intend to
produce any hardened original C syntax. Also, we do n05 Related work
intend to limit ourselves to any particular device or classThere has been significant research in applying program
of drivers. Also, our analysis is largely intra-procedural analysis techniques to systems research. For applying
except in cases where we need to find registration of infruntime checks on driver and OS code, many tools ex-
terrupts with the kernel, which may be done inside a dif-ist, such as the Driver Verifier(DV) and PURIFY, which
ferent procedure than where it is used. can analyze the running code for violations due to array

This section is the primary focus of this class project. bounds, memory leaks, etc. There are also many static
verification tools targeting device driver reliability, such
] . ~as the Static Driver Verifier(SDV) tooP]. SDV is a bug
To suitably evalute theffectiveness of our tool, we in- finding tool that checks for and reports misuse of kernel
tend to develop a fault injection framework based on ex-pop| calls in drivers. SDV has an analysis engine that
isting driver fault injection frameworkslf]. The driver yerifies the driver against a set of API usage rules and
fault injection framework will intersperse itself between getermines usage bugs for the programmer to fix. This
the driver and the device and will simulate device fail- engine is based on SLANB] which is a generic static-

ures, such as reads or writes of device registers, ranshecker which tries to detect all possible ways a driver
domly. We also plan to simulate device failure by re- -5 disobey a set of API usage rules.

pressing valid events or generating false events like de- o tool, on the other hand, is designed to fortify the
vice interrupts. The thoroughness involved in this seCrjyer interaction with the hardware. Also, while SDV
tion of the project will depend on the time that will be s aimed at preventing kernel misuse, our tool is directed
remaining with us after satisfactorily completing the pre-iowards device misuse. Bug finding tools like SDV gen-
vious section of the project. erally assume that devices behave correctly and rely on
2.3 Recovery Systems programmers to fix the problems foun® B, 5, 7, 12].

. . r ri mechanism, however, reli n ic anal-
Performing proper recovery when permanent failures oc—Ou described mechanism, however, relies on static ana

cur raises additional chalienges. Unlike software £il-YSiS to detect code that is not tolerant of device failures,
ures, hardware failures may require additional operationﬁXeS it and also dynamically uses recovery techniques

3. Fortify this code by removing or minimizing this
dependency and generating failure detection code i
the intermediate CIL form.

2.2 Fault Injection Framework

by the OS to recover, such as failing over to redundan oer?;anoagre _Is_%sstem \:g)lzgot?]z igsglrg f;og; :e:”t(c:)iln;f(_j
hardware. The driver should either recover to a func- viour. IS Improv verag u

tioning state or shut down to limit failure propagation. :ﬁnzoves rth_?hbl#rdern O? progﬁr&gmetrzr?\cl) frl);] ﬂ:de fr?ilrllures
Past work on failure handling has shown théidulties atoccur. Fhere are aiso pasiels a erhardening
of adding error handling to existing cod&. provide fault injection tools to discover through testing

There also might be cases of transient errors wher%vhere a driver may fail§0, 13]. In this work, as men-

our beefy drivers become unusable, even though thegogec:hbetfpre, \;vte ;N'” utsefs(tjatlg anfal_)l/S|sto harden driver
are able to avoid a crash or hang. We intend to discus ode that1s not tolerant of device failures.
what recovery techniques will best suit in cases where

Dates Work Item Status

Oct 20th - Oct 24th| Get Proposal approved Incomplete
Oct 25th - Oct 27th| Setup the test and build environment with required kernel and other CIL tools.

Familarize selves with CIL and OCAML. Incomplete
Oct 27th - Nov 1st| Develop simple basic CIL infrastructure. Incomplete
Nov 1st - Nov 15th| Complete CIL development and generate fortified driver code. Incomplete
Nov 15th - Dec 1st| Develop testbench and evaluate the developed drivers depending on available dewzesnplete
Dec 1st - Dec 10th| Brainstorm recovery techniques. Incomplete

Table 3: Proposed schedule of the project

To improve device driver safety, prior work has also [3] Thomas Ball and Sriram K. Rajamani. Automati-
investigated putting non-performance critical code in
user-space so that a driver failure does not wreak havoc
on the systemd]. There also has been prior work to

maintain the driver in a safe state using finite state au-
tomata generated from device specifications to prevent

the driver from mis-behavindlp]. However, none of the
above work is targeted at saving the driggstem from
unreliable hardware.

6 Expected Conclusions
With this project, we intend to be able to classify the

common bugs due to hardware failures and beef up our
drivers to handle these failures.

With a suitable test

framework, we intend to introduce transient hardware
failures and determine thetectiveness of our approach.
We will also discuss recovery scenarios and the appli-
cation of suitable recovery techniques. Finally, we will [6]
examine how this work will be useful inflerts to im-
prove the fault tolerance of legacy code by automating
failure detection and recovery, which may apply beyond
device drivers.

7 Project Participants

The student participants in this class project are strictly [7]
limited to Asim Kadav and Tara Mohan. Asim’s advisor,
Prof. Mike Swift is involved in this research and this
project idea originates from him. There may be other

non CS-706 students involved in this research, but only

after January 2009.

References
[1] Sandy Arthur. Fault resilient drivers for Longhorn [8]

[2]

server. Technical Report WinHec 2004 Presenta-
tion DW04012, Microsoft Corporation, May 2004.

Thomas Ball, Ella Bounimova, Byron Cook,
Vladimir Levin, Jakob Lichtenberg, Con McGar-
vey, Bohus Ondrusek, Sriram K. Rajamani, and
Abdullah Ustuner. Thorough static analysis of de-
vice drivers. InProceedings of the 2006 EuroSys
ConferencelLeuven, Belgium, April 2006.

cally validating temporal safety properties of inter-
faces. INSPIN 2001, Workshop on Model Checking
of Softwarevolume 2057 of.ecture Notes in Com-
puter Sciencgpages 103-122, May 2001.

] S. Borkar. Designing reliable systems from unreli-

(5]

9]

(10]

able components: The challenges of transistor vari-
ability and degradation. IRroc. of the 38th Annual
IEEE/ACM International Symp. on Microarchitec-
ture, November 2005.

Dawson Engler, Benjamin Chelf, Andy Chou, and
Seth Hallem. Checking system rules using system-
specific, programmer-written compiler extensions.
In Proceedings of the 4th USENIX OSphges 1-
16, October 2000.

Vinod Ganapathy, Matthew J. Renzelmann, Arini
Balakrishnan, Michael M. Swift, and Somesh Jha.
Microdrivers: a new architecture for device drivers.
In Proc. of the 13th Intnl. Conf. on Architectural
Support for Programming Languages and Operat-
ing SystemaMarch 2008.

Thomas A. Henzinger, Ranjit Jhala, Rupak Majum-
dar, George C. Necula, Gregoire Sutre, and Westley
Weimer. Temporal-safety proofs for systems code.
In Proceedings of the 14th International Confer-
ence on Computer-Aided Verification (CAVDI-
ume 2404 ofLecture Notes in Computer Science
pages 526-538. Springer-Verlag, July 2002.

X. Li and D. Young. Application-level correctness
and its impact on fault tolerance. FProc. of the
13th IEEE Symp. on High-Performance Computer
Architecture February 2007.

Microsoft Corporation. Windows XP em-
bedded with service pack 1 reliability.
http://msdn2.microsoft.com/en-us/library/
ms838661.aspx, January 2003.

Win-
framework.

Microsoft
dows

Corporation.
device testing

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

http://msdn2.microsoft.com/en-us/library/
aa973530.aspx, 2007.

George C. Necula, Scott McPeak, Shree Prakash
Rahul, and Westley Weimer. CIL: Intermediate lan-
guage and tools for analysis and transformation of
C programs. InProceedings of the 11th Interna-
tional Conference on Compiler Constructigrages
213-228, April 2002.

Hendrik Post and Wolfgang Kuchlin. Integrated
static analysis for Linux device driver verification.

In Proceedings of the 6th International Conference
on integrated Formal Methodduly 2007.

Sun Microsystems.Solaris Express Software De-
veloper Collection: Writing Device Driveyshap-
ter 13: Hardening Solaris Drivers. Sun Microsys-
tems, 2007.

Martin Sif3kraut and Christof Fetzer. Automati-
cally finding and patching bad error handling. In
Proceedings of the 6th European Dependable Com-
puting Conference (EDCC’0Ogpages 13-22, Octo-
ber 2006.

Dan Williams, Patrick Reynolds, Kevin Walsh,
Emin Gun Sirer, and Fred B. Schneider. Device
driver safety through a reference validation mech-
anism. InProceedings of the 8th USENIX OSDI
2008.

V. Wong and M. Horowitz. Soft error resilience of
probabilistic inference applications. In The 2nd
Workshop on Systemjffects of Logic Soft Errors
(SELSE)2006.

Feng Zhou, Jeremy Condit, Zachary Anderson, llya
Bagrak, Rob Ennals, Matthew Harren, George Nec-
ula, and Eric Brewer. SafeDrive: Safe and recov-
erable extensions using language-based techniques.
In Proceedings of the 7th USENIX OSMovem-

ber 2006.

Louis Zhuang, Stanley Wang, and Kevin Gao. Fault
injection test harness. Proceedings of the Ottawa
Linux SymposiugnJune 2003.

	Introduction
	Design
	Driver Hardening
	Implementation of Analyses

	Fault Injection Framework
	Recovery Systems

	Project Timeline
	Methodology of Evaluation
	Related work
	Expected Conclusions
	Project Participants

