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Understanding Modern Device Drivers
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Why study device drivers?

» Linux drivers constitute ~5 million LOC and 70% of kernel
» Little exposure to this breadth of driver code from research
» Better understanding of drivers can lead to better driver model

» Large code base discourages major changes
» Hard to generalize about driver properties
» Slow architectural innovation in driver subsystems

» Existing architecture: Error prone drivers
» Many developers, privileged execution, C language
» Recipe for complex system with reliability problems

Qur view of drivers is narrow

» Driver research is focused on reliability
» Focus limited to fault/bug detection and tolerance
» Little attention to architecture/structure

» Driver research only explores a small set of drivers
» Systems evaluate with mature drivers
» Volume of driver code limits breadth

» Necessary to review current drivers in modern settings

Difficult to validate research on all drivers

Improvement System Validation
Drivers | Bus | Classes
New functionality Shadow driver migration [O5Res] 1 1 1
RevNIC [Eurosys 0] 1 1 1
Reliability Nooks [50sP o3l 6 1 2
XFI [OSDI106] 2 1 1
CuriQs [05D1o8] 2 1 2
Type Safety SafeDrive [05P!06] 6 2 3
Singularity (Evrosys 6] 1 1 1
Specification Nexus (050! 08] 2 1 2
Termite (S0P od] 2 1 2
Static analysistaal SDV/ [Evrosys o6) All All All
Device availability/slow driver development restrict our
research runtime solutions to a small set of drivers
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Difficult to validate research on all drivers

“...Please do not misuse these tools!
(Coverity).... If you focus too much on
fixing the problems quickly rather than
fixing them cleanly, then we forever
lose the opportunity to clean our code,
because the problems will then be
hidden.”

—‘ LKML mailing list http://lkml.org/lkml/2005/3/27/131

Understanding Modern Device Drivers

» Study source of all Linux drivers for x86 (~3200 drivers)

» Understand properties of driver code
» What are common code characteristics?
» Do driver research assumptions generalize?

» Understand driver interactions with outside world
» Can drivers be easily re-architected or migrated ?
» Can we develop more efficient fault-isolation mechanisms?

» Understand driver code similarity
» Do we really need all 5 million lines of code?

Static analysis tools | SDV [Eub'osysos] Al Al Al » Can we build better abstractions?
Carburizer [505P 03] Allfa All All
Cocinelle (Evrosys o8] All All All
Outline Methodology of our study
» Target Linux 2.6.37.6 (May 2011) kernel
‘ Methodology

| Driver code characteristics

"W Driver interactions

| = = Driver redundancy

» Use static source analyses to gather information

» Perform multiple dataflow/control-flow analyses
» Detect driver properties of the drive code
» Detect driver code interactions with environment
» Detect driver code similarities within classes
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Extract driver wide properties for individual drivers

Bus type registered with the kernel
Identify driver
entry points,
driver data
structures, kernel
registration
B

Device class registered with the kernel

Device sub class registered with the kernel

Driver functions mapped to entry points

Number of devices registered with the bus

Other properties (module parameters etc)

Length of the driver functions

Step 1: Determine driver code characteristics for each driver
from driver data structures registered with the kernel

Determine code characteristics of each driver function

Kernel registration

Bus type registered with the kernel

Record driver
properties using
multiple control/data
flow analysis

Device class registered with the kernel
Device sub class registered with the kernel

Driver functions mapped to entry points
Tag each reachable
driver function
with entry point
information

Number of devices registered with the bus
Other properties (module parameters etc)

Length of the driver functions

Device invocations

Step 2: Propagate the required information to driver
functions and collect information about each function

Determining interactions of each driver function

Kernel registration

Undefined kernel functions Kernel interaction across entry points
classified by
libraries, memory management,
Svdicnsatcn eies Device interaction across entry points
Difference in driver structures across
8us type registered with the kernel
Threading/Synchronization models used

+

Device cals - port/mmio, DMA, 12C
operations, bus library invocations

Device invocations

Step 3: Determine driver interactions from I/O operations and calls
to kernel and bus for each function and propagate to entry points

Outline

Methodology

Driver code characteristics

’W Driver interactions

| = = Driver redundancy
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1-a) Driver Code

. . buerooth [ ] ] L.
Part 1: Driver Code Behavior g _— Characteristics
hé:‘ — ]
. . . o Core I/O & int ts — 23%
A device driver can be thought of as a translator. Its input 2;;, = > ore I ~ [NMeTupts =235
p P n ; ” wmon » Initialization/cleanup — 36 %
consists of high level commands such as “retrieve block 123”. g o Devi faurati %
. e . 5 ison _
Its output consists of low level, hardware specific instructions 2 o » Device connguration =15
N | | » Power management —7.4%
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block drvers

nt crivers

message
parport
platform
pnp.
serial
sound

infiniband
net
uwb

Driver Code
[ | . .
i | - Characteristics

» Core /O & interrupts —23%
» Initialization/cleanup — 36 %
» Device configuration —15%

» Power management —7.4%
» Deviceioctl —6.2%

Percent-
age of LOC

.« | Better ways needed to
» manage device
configuration code

B
B
B

Wi denup 6l cdnfg power ehor ploc cbre ik

1-b) Do drivers belong to classes?

» Drivers registers a class interface with kernel
» Example: Ethernet drivers register with bus and net device library

» Class definition includes:
» Callbacks registered with the bus, device and kernel subsystem
» Exported APIs of the kernel to use kernel resources and services

» Most research assumes drivers obey class behavior

» Modern research assumes drivers conform to class behavior
» Example: Driver recovery (Shadow driversl©SPlo4l )

Figure 3: A sample shadow driver operating in active mode.
The taps redirect communication between the kernel and
the failed driver directly to the shadow driver.

Class definition used to record state

KernelIntrfaco

» Driver state is recorded based on

. interfaces defined by class

! » State is replayed upon restart after
failure to restore state

Sound Driver
Glass iteface.

H
H
{

Kerne!

Non-class behavior can lead to incomplete restore a&erfailure]

Eg

Class definition used to infer driver behavior,

» Example2 : Reverse engineering of drivers - RevnictEvrosys 1]

» Driver behavior is reverse
engineered based on interfaces
defined by class

» Driver entry points are invoked to
record driver operations

» Code is synthesized for another

Figure 1: High-level architecture of ReyNIC. OS based on this behavior

RevNIC Wiretap _{-ctvy races, [RevNIC Code

£"Synthetic Driver
i (e, forlinw)

Figure from Revnic paper

Non-class behavior can lead to incomplete reverse
engineering of device driver behavior
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Do drivers belong to classes?

» Non-class behavior stems from:
» Load time parameters, unique ioctls, procfs and sysfs interactions

/ glcnic_sysfs_write_esw_config (...)  { \

switch (esw_cfg[i].op_mode) {
case QLCNIC_PORT_DEFAULTS:
qlcnic_set_eswitch_...(...,&sw_cfg[i]);

case QLCNIC_ADD_VLAN:
gqlcnic_set_vlan_config(...,&esw_cfg[i]);

case QLCNIC_DEL_VLAN:
esw_cfg[i].vlan_id = @;
qlcnic_set_vlan_config(...,&esw_cfg[i]);

\\ﬁ Drivers/net/qlcnic/qlcnic_main.c: Qlogic driver(network class)

Many drivers do not conform to class definition

» Results as measured by our analyses:
» 16% of drivers use proc /sysfs support
» 36% of drivers use load time parameters
» 16% of drivers use ioctl that may include non-standard behavior

» Breaks systems that assume driver semantics can be
completely determined from class behavior

Overall, 44% of drivers do not conform to class behavior
Systems based on class definitions may not work properly
when such non-class extensions are used

1-c) Do drivers perform significant processing?
» Drivers are considered only a conduit of data

» Example: Synthesis of drivers (Termitel05Podl)
» State machine model only allows passing of data
» Does not support transformations/processing

» But: drivers perform checksums for RAID, networking, or
calculate display geometry data in VMs

Instances of processing loops in drivers

» Detect loops in driver code that:
»dono /O,
» do not interact with kernel
» lie on the core 1/O path

static u8 e1000_calculate_checksum(...)
{ u32i;
u8 sum = 0;

for (i = @; i < length; i++)
sum += buffer[i];

return (u8) (@ - sum);

drivers/net/el@00e/lib.c: el@ove network driver
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Many instances of processing across classes

static void _cx18_process_vbi_data(...)

{
// Process header & check endianess
// Obtain RAW and sliced VBI data
// Compress data, remove spaces, insert mpg info.
}
void c¢x18_process_vbi_data(...)
{

// Loop over incoming buffer
// and call above function

’

drivers/media/video/cx18/cx18-vbi.c:cx18 IVTV driver

Drivers do perform processing of data

» Processing results from our analyses:
» 15% of all drivers perform processing
» 28% of sound and network drivers perform processing

» Driver behavior models should include processing semantics
» Implications in automatic generation of driver code
» Implications in accounting for CPU time in virtualized environment

[ Driver behavior models should consider processing ]

Outline

‘S Methodology

. Driver code characteristics

‘ II |||“|H|H|‘||H"|”|‘ Driver interactions
=

Driver redundancy

Part 2: Driver interactions

a) What are the opportunities to redesign drivers?
» Can we learn from drivers that communicate efficiently?

» Can driver code be moved to user mode, a VM, or the device for
improved performance/reliability?

b) How portable are modern device drivers?
» What are the kernel services drivers most rely on?

¢) Can we develop more efficient fault-tolerance mechanisms?

» Study drivers interaction with kernel, bus, device, concurrency

28
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2-a) Driver kernel interaction

250
O device library
= B kernel services
200
Okernel library
n
150 O synchronization|

Calls/driver from all entry points
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char drivers

block drivers net drivers

Driver kernel interaction

250
Odevice library
= W kernel services
200
Okernel library
i
150 Osynchronization|

Omemory

alls/driver from all entry points
n
o
o

MHEHM ﬂDH g aMMA

Common drivers invoking device specific routines reduces
driver code significantly (and more classes can benefit)

char drivers block drivers net drivers

30

Driver kernel interaction

I :

250
Odevice library

B kernel services

Many classes are portable: Limited interaction with device
library and kernel services

O memory

v

Calls/driver from all ent
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char drivers block drivers et drivers.

2-b) Driver-bus interaction

Compare driver structure across buses

Look for lessons in driver simplicity and performance

Can they support new architectures to move drivers out of kernel?
»  Efficiency of bus interfaces (higher devices/driver)

= Interface standardization helps move code away from kernel

»  Granularity of interaction with kernel/device when using a bus
= Coarse grained interface helps move code away from kernel
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PCl drivers: Fine grained & few devices/driver

USB: Coarse grained & higher devices/driver

BUS Kernel Interactions (network drivers) Device Interactions (network drivers)

mem | sync | devlib | kernlib | services | port/mmio | DMA | bus | Devices/driver

BUS Kernel Interactions (network drivers) Device Interactions (network drivers)

mem | sync | devlib | kernlib | services | port/mmio | DMA | bu

@

Devices/driver

PCl 29.3 | 911 | 46.7 103 12 302 22 | 40.4 9.6

PCl 29.3 | 911 | 46.7 103 12 302 22 | 40.4 9.6

» PCldrivers have fine grained access to kernel and device
» Support low number of devices per driver (same vendor)
» Support performance sensitive devices
» Provide little isolation due to heavy interaction with kernel
» Extend support for a device with a completely new driver

USB | 24.5 | 72.7 | 10.8 25.3 11.5 0.0 6.2% | 36.0 15.5

» USB devices support far more devices/driver
» Bus offers significant functionality enabling standardization
» Simpler drivers (like, DMA via bus) with coarse grained access
» Extend device specific functionality for most drivers by only
providing code for extra features

* accessed via bus 3

Xen : Extreme standardization, limit device features

BUS Kernel Interactions (network drivers) Device Interactions (network drivers)

mem | sync | devlib | kernlib | services | port/mmio | DMA | bus | Devices/driver
PCl 29.3 | 911 | 46.7 103 12 302 22 | 40.4 9.6
USB | 24.5 | 72.7 | 10.8 25.3 11.5 0.0 6.2% | 36.0 15.5
Xen | 11.0 | 7.0 27.0 7.0 7.0 0.0 0.0 |24.0 1/All

» Xen represents extreme in device standardization
» Xen can support very high number of devices/driver
» Device functionality limited to a set of standard features
» Non-standard device features accessed from domain
executing the driver

Efficient remote access to devices and efficient device
driver support offered by USB and Xen

35 )

Outline

S Methodology

. Driver code characteristics

\W Driver interactions

= =

Driver redundancy
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Part 3: Can we reduce the amount of driver code?

» Are 5 million lines of code needed to support all devices?
» Are there opportunities for better abstractions?
» Better abstractions reduce incidence of bugs
» Better abstractions improve software composability

» Goal: Identify the missing abstraction types in drivers
» Quantify the savings by using better abstractions
» |dentify opportunities for improving abstractions/interfaces

Finding out similar code in drivers

0O 0 — 1235

Reduce each

function to ®o
statement type,

edit distance
coordinates

Compare signature
values for all driver
functions in a class

Reduce every
function to a
single signature
values

1.56 .

To improve
accuracy, weigh
statement types,

limit comparisons
to classes

7 0 09 >
90
/O%

Determine similar driver code by identifying clusters of code that
invoke similar device, kernel interactions and driver operations

38

Drivers within subclasses often differ by reg values

\ /nv_ckSBA_thaw(...) { \

void __iomem *mmio_base = ap->host- . N —
void __iomem *mmio_base = ap-

>iomap[NV_MMIO_BAR]; >host->iomap[NV_MMIO_BAR];

nv_mcp55_thaw(...) {

int shift = ap->port_no *

) e .
NV_INT_PORT_SHIFT_MCP55; int shift = ap->port_no

NV_INT_PORT_SHIFT;

writel(NV_INT_ALL_MCPS5 << shift,

mmio_base+NV_INT_STATUS_MCP55); writeb(NV_INT_ALL << shift,

mmio_base +
NV_INT_STATUS_CK804);

mask = readb(mmio_base +
NV_INT_ENABLE_CK804);

mask |= (NV_INT_MASK << shift);

writeb(mask, mmio_base +

mask = readl(mmio_base +
NV_INT_ENABLE_MCP55);
mask |= (NV_INT_MASK_MCP55 <<

shift);

writel(mask, mmio_base +
NV_INT_ENABLE_MCP55);

NV_INT_ENABLE_CK804);
drivers/ata/sata_nv.c }—/

39

Wrappers around device/bus functions

ﬁatic int nv_pre_reset(...) \ static int amd_pre_reset(...)
{.. {

struct pci_bits struct pci_bits
nv_enable_bits[] = { amd_enable_bits[] = {
{ ox50, 1, 0x02, 0x02 }, { ox40, 1, 0x02, 0x02 },
{ ox5e, 1, 0x01, 6xe1 } { ox40, 1, 6x01, 0xel }
Y5 Y

struct ata_port *ap = link->ap;

struct pci_dev *pdev =

to_pci_dev(...);

if (!pci_test_config_bits
(pdev,&nv_enable_bits[ap-

>port_no])) >port_no]))
return -ENOENT; return -ENOENT;

return ata_sff_prereset(..); return ata_sff_prereset
} 1
drivers/ata/pata_amd.c

40

struct ata_port *ap = link->ap;

struct pci_dev *pdev =

to_pci_dev(...);

if (!pci_test_config_bits
(pdev,&amd_enable_bits[ap-

10
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Significant opportunities to improve abstractions

» At least 8% of all driver code is similar to other code

Sources of redundancy

Potential applicable solutions

Calls to device/bus with different
register values

Table/data driven programming
models

Wrappers around kernel/device
library calls

Procedural abstraction for device
classes

Code in family of devices from
one vendor

Layered design/subclass libraries

Conclusions

» Many driver assumptions do not hold
» Bulk of driver code dedicated to initialization/cleanup
» 44% of drivers have behavior outside class definition
» 15% of drivers perform computation over drivers

» USB/Xen drivers can be offered as services away from kernel
» 8% of driver code can be reduced by better abstractions

» More results in the paper!

ThankYou

Contact

» Email
» kadav@cs.wisc.edu

» Driver research webpage
» http://cs.wisc.edu/sonar

Taxonomy of Linux drivers developed using
static analysis to find out important classes
for all our results (details in the paper) -

Extra slides

11
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Drivers repeat functionality around kernel wrappers

/ delkin_cb_resume(...) { \ /

struct ide_host *host =
pci_get_drvdata(dev);
int rc;

pci_set_power_state(dev, PCI_D@);
rc = pci_enable_device(dev);
if (rc)

return rc;

pci_restore_state(dev);
pci_set_master(dev);

if (host->init_chipset)
host->init_chipset(dev);

return 0;

~

pci_set_power_state(dev, PCI_D®);
rc = pci_enable_device(dev);
if (rc)

return rc;

. ide_pci_resume(...) {
struct ide_host *host =

pci_get_drvdata(dev);
int rc;

pci_restore_state(dev);
pci_set_master(dev);

if (host->init_chipset)
host->init_chipset(dev);
return 0;

}
\\\“ﬁ drivers/ide/ide.c [

¥
drivers/delkin_cb.c

45

Drivers covered by our analysis

 Alldrivers that compile on x86 platform in Linux 2.6.37.6
* Consider driver, bus and virtual drivers
* Skip drivers/staging directory

— Incomplete/buggy drivers may skew analysis
* Non x86 drivers may have similar kernel interactions

» Windows drivers may have similar device interactions
— New driver model introduced (WDM), improvement over vxd

Limitations of our analyses

* Hard to be sound/complete over ALL Linux drivers

* Examples of incomplete/unsound behavior

— Driver maintains private structures to perform tasks and
exposes opaque operations to the kernel

Repeated code in family of devices (e.qg initialization)

/ asd_aic9405_setup(...) { \

int err = asd_common_setup(...);

if (err)
return err;

asd_ha->hw_prof.addr_range
asd_ha->hw_prof.port_name...
asd_ha->hw_prof.dev_nanme...
asd_ha->hw_prof.sata_name...

return 9;

/ asd_aic9410_setup(...) { \

int err = asd_common_setup(...);

if (err)
return err;

asd_ha->hw_prof.addr_range =
asd_ha->hw_prof.port_name_..
asd_ha->hw_prof.dev_name_.
asd_ha->hw_prof.sata_name_..

return 0;

}
}
drivers/scsi/aic94xx driver

48
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How many devices does a driver support?

* Many research projects generate code for specific
device/driver

* Example, safety specifications for a specific driver

49

How many devices does a driver support?

@tic int _ devinit cy_pci_probe(...) \

{

if (device_id == PCI_DEVICE_ID_CYCLOM Y _Lo) { ...

if (pci_resource_flags(pdev,2)&IORESOURCE_IO){ ...

if (device_id == PCI_DEVICE_ID_CYCLOM_Y_Lo ||
device_id == PCI_DEVICE_ID_CYCLOM_Y Hi) {...

Yelse if (device_id==PCI_DEVICE_ID_CYCLOM_Z_Hi)

if (device_id == PCI_DEVICE_ID_CYCLOM_Y_Lo ||

device_id == PCI_DEVICE_ID_CYCLOM_Y_Hi) {
switch (plx_ver) {
case PLX_9050: ..

default: /* 0ld boards, use PLX_9060 */
¥
drivers/char/cyclades.c: Cyclades character driver

How many devices does a driver support?
40 Chipsets per drivers
35
30
25
2
15

10

5
o IIIII IIIII' L} IIIIIIII.III

28% of drivers support more than one chipset }

char drivers block drivers net drivers

How many devices does a driver support?

[ 28% of drivers support more than one chipset ]

[ 83% of the total devices are supported by these drivers ]

* Linux drivers support ~14000 devices with 3200 drivers

* Number of chipsets weakly correlated to the size of
the driver (not just initialization code)

* Introduces complexity in driver code

* Any system that generates unique drivers/specs per
chipset will lead in expansion in code

13
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acpi 3
bluetooth =3

crypto =T

firewire [0

gpio ED
gpu [

Driver device interaction

Obus ODMA O portio/mmio

char drivers

ata 1

ide I

watchdog =T

md
mtd
scsi I

block drivers

uwb O

net [

infiniband =TT

net drivers

Portio/mmio: Access to
memory mapped /O
or x86 ports

DMA: When pages are
mapped

Bus: When bus actions
are invoked

Varying style of
interactions

Varying frequency of
operations

»

»

Class definition used to record state

» Modern research assumes drivers conform to class behavior

Sound Drver
lass inteface

Kernal
ntetace

Figure 3: A sample shadow driver operating in active mode.
The taps redirect communication between the kernel and
the failed driver directly to the shadow driver.

Driver state is recorded based g
on interfaces defined by class
State is replayed upon restart
after failure to restore state

£[[Guestos
5| (e.g. Windows)

2| Giginai'

3  Driver i

E| RevNIcWiretap  JActivity traces, ReVNIC Code

£“Synthetic Driver
(eg. forlinw)

NIC Driver Template

Figure 1: High-level architecture of RevNIC.

Driver behavior is reverse
engineered based on interfaceg
defined by class

Code is synthesized for anothe

OS based on this behavior*
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