Mercurial Caches: OS Support for Energy Proportional DRAM

Asim Kadav (student) and Michael M. Swift
Computer Sciences Department, University of Wisconsin-Madison

DRAM has become one of the significant consumers of
power, accounting for a large percentage of total power in
servers. Energy proportionality of DRAM usage cannot be
achieved because modern operating systems continuously oc-
cupy all available memory as page cache and spread active
pages across memory making consolidation for power sav-
ings impossible. In this poster, we propose OS support for
energy proportional memory by providing OS support for
low-powered unreliable memory. Mercurial caches provide
a copyin/out interface to memory running at low refresh rates
and support large system caches such as the clean pages from
OS page cache. We describe the OS abstractions and prelimi-
nary results from an analytical model in supporting mercurial
caches in existing operating systems.

Problem: With modern servers provisioned with tens of gi-
gabytes of memory, DRAM power is increasingly dominating
the power cost of idle or partially used servers. Processors can
save power in partially used servers with existing frequency
and voltage scaling techniques. However, energy proportion-
ality in DRAM is limited to time multiplexing DRAM use but
they impose significant exit penalties.

Partial Array Self Refresh (PASR) [1] provides the abil-
ity to vary refresh rates of parts of DRAM and saves en-
ergy by only refreshing actively used memory. However,
such techniques cannot be directly used with existing appli-
cations since the OS manages system wide memory and pre-
vents power savings for two reasons. First, modern OS’s use
all possible memory for performance reasons. Since most
paging algorithms only approximate the application memory
consumption patterns, all free memory is used to cache disk
pages that may be referenced in future. Second, a running
operating system over time fragments physical memory mak-
ing memory consolidation expensive. Since the OS does not
need more than few MBs of contiguous memory, the phys-
ical address space is not de-fragmented periodically by the
OS. However, PASR requires contiguous pages up to at least
1/16th of a DIMM to reduce power in DRAMs.

Solution: To reduce power consumption proportional to
memory usage without reducing the amount of memory, we
introduce mercurial caches. These caches provide the ability
to cache clean pages at low refresh rates (using PASR with
low refresh support), while other pages such as OS and ap-
plications use memory refreshed at normal rates. Supporting
mercurial caches require addressing three challenges. First,
mercurial caches need to provide an interface to store and re-
trieve pages in a fail-safe manner. Second, we need policies
to identify which pages should be served by mercurial caches.
Finally, we need to provide mechanisms that will help consol-
idate memory to move it to a low power state.

Mercurial Cache Interface: Mercurial caches provide an
interface to store and retrieve 4K pages into the low powered

memory (mcache_get_page and mcache_put_page). These
operations require pages to be copied to/from regular mem-
ory. However, since the low power memory is unreliable,
mercurial caches compute the page checksum during store
and retrieve operations. If the checksums do not match, in-
dicating that the page has become corrupt, then the retrieve
operation (mcache_get_page), may fail. The cost of copying
pages can be reduced by using hardware support [2] and we
evaluate the software cost of copy/checksum.

VM changes to support mercurial caches: Mercurial
cache support requires modification to VM to move clean
pages from page cache. We modify the LRU approximation
algorithm in Linux and move clean pages from the in-active
list into the mercurial caches. If mercurial cache returns a
corrupt page, the page fault handler re-reads this page from
the disk. Hence, we introduce additional transitions in the
LRU algorithm where clean inactive pages are moved to mer-
curial caches and are moved to the active list (upon reference)
or evicted (after timeout). Furthermore, the mercurial cache
interface is invoked when the kernel needs to shrink the page
cache. We also plan to investigate power savings from using
the mercurial cache directly from user-mode applications.

Coalescing memory to accomodate Mercurial Cache:
Mercurial caches support dynamic creation and freeing of
pools. This requires sufficient physically contiguous mem-
ory in the system in chunks of minimum DRAM size that can
be partially refreshed. To restrict fragmentation, we modify
the OS memory management to ensure such an allocation is
possible. First, we mark pages in mercurial cache as non-
pinnable for long term usage (GFP_MOVABLE). This ensures
that we do not have holes that can prevent coalescing of mem-
ory. Second, when the available contiguous memory is low,
we migrate pages and de-fragment the physical address space.
This ensures that we can dynamically enable/disable mercu-
rial caches.

Evaluation: We construct an analytical model to under-
stand the power savings from mercurial cache and demon-
strate, that it (1) provide energy savings proportional to the
DRAM under active usage ranging from 1-19%, (2) can sus-
tain a reference rate of around 1.2 million words/second be-
fore the cost of checksum/copy dominates over power savings
and (3) is better turning off memory or swapping to SSD,
which affect performance.

References

[1] ELPIDA Inc. Low Power Function of Mobile RAM Partial Array Self
Refresh (PASR). http://www.elpida.com/pdfs/EQ597E10.pdf,
2005.

[2] Intel Corporation. Accelerating high-speed networking with intel i/o
acceleration technology. http://download.intel.com/support/
network/sb/98856.pdf, 2006.

http://www.elpida.com/pdfs/E0597E10.pdf
http://download.intel.com/support/network/sb /98856.pdf
http://download.intel.com/support/network/sb /98856.pdf

@ Mercurial Caches: Operating System Support for Energy Proportional DRAM

WISCONSIN

UNIVERSITY OF WISCONSIN-MADISON

Asim Kadav and Michael M. Swift, University of Wisconsin-Madison

-

Networking
5%

Disks
10%

DRAMs contribute significantly to system power

Google 2009[1]

Servers are provisioned
with 10s of GBS of
memory and consume
30-57% of total power for
a system provisioned with
128 GB DDR3 memory[2]

use are limited.

mercurial caches.

-

How can we make DRAM power consumption energy
proportional ?

Problem: DRAM is one of the significant consumer of power in
modern systems. Unlike CPUs which provide voltage and frequency
scaling techniques, DRAM techniques to save power upon partial

Goal: Provide abstractions in existing operating systems to utilize
low powered memory states in modern operating systems using

~

J

Technologies

DRAM s store data in the form of capacitive charge. Since
capacitors leak charge over time, this charge must be
periodically refreshed else the data stored is slowly lost.
Server class DDR2/DDR3 DRAM and mobile class LPDDR2
DRAM save power by lowering the refresh rate or turning
off the DIMM completely.

Low power mode in LPDDR or DDR3 DRAM systems.
Many technologies in the figure can co-exist. TCSR
savings are for 40C drop for 64MB DIMM.

(' DRAM Power-saving A

DRAM Data Granularity | Latency | Power
Technology | Retention Savings
ACPI S4 No All DRAM >1s 100%
Deep power No AllDRAM 200ps 95%
down
Self-refresh Yes AllDRAM 100ns 95%
Clock stop Yes AllDRAM 200ps 83%
Temperature Yes AllDRAM 100ns 60%
Controlled Self
Refresh
Partial Array Self No 1/16th 100ns 20%
Refresh (PASR) DIMM

OS memory management

We identify characteristics of OS memory management
that hinders adoption of PASR.

OS Policy Policy Rationale

Occupy all OS uses all available There is never
memory inthe memory to improve any available

system (as page system “free” space to
cache) performance be put to low
power state
Fragments Contiguous memory Memory needs
physical address requirement is to be put in low
space since limited (few MBs), powered state
address spaceis keeping address in contiguous
virtualized. space fragmented is segments to
only an overhead. save power

(" Mercurial Caches)

Mercurial caches provide OS abstractions to use low
power DRAM. It uses a portion of DRAM in low power
state to cache clean data (such as clean page cache). It
also uses software checksums to ensure correctness in the
absence of reliable hardware. Its goal is to save power
with little performance loss during low memory utilization

1. A cache interface to get/put 4K pages reliably
and respond to memory pressure

'

mcache_get_page () / shrink () /grow()

mcache_put_page () memory pools
DIMN DIMN mcache (full DIMM)

Low power mercurial cache pool per DIMM

2. OS modifications to use mercurial caches:
Identify and move memory that can be safely
stored in low powered DDR memory

scan/shrink

Active - In-active
list list

reference

\ N
reference / \

move all clean
pages

(Mercurial w

.~

(Preliminary Evaluation)

3. OS support to facilitate PASR granularity pool
allocations: Pre-reserve and migrate pages

[Problem _____[solution ___|

Fragmentation of physical Aggressively migrate all
address space movable pages in system
Migration of pages not Mark specific segment
possible due to pinned boundaries dedicated to
pages movable pages

o

We construct an analytical model to understand the
power savings from mercurial cache. We model for
standard server hardware with Quad core machine
with 8GB DIMM s that support partial refresh at
different rates. We measure the software costs of
checksum and copy on real hardware.
Model equation: Power(DIMM) =
RAM_mcache/RAM_total * Power_PASRfraction) * Power(DIMM)
+ (RAM_total-RAM_mcache)/RAM_total*Power(DIMM)

+ 2#(Time_checksum+copy) Power(CPU) * ReferenceRate_mcache/sec
+ Pagefault_PowerCost*Page_error_Rate

Power savings for RAM in mercurial cache

Percent of power savings

0s 1 2 3 4 B
Amount of RAM (in GB) under mercurial cache in a 8GB DIMM

6 7

%age power savings /DIMM

1w w0 w0 s
1000 references to inactive pages/second

w0 om0 sw0 000

References
[1] L.A. Barroso and U. Hd'lzle. The datacenter as a computer: An introduction
to the design of warehouse-scale machines. Synthesis Lectures on Computer
Architecture, 2009.
[2] D.H. Yoon, J. Chang, N. Murali ,and P. BOOM:
Enabling mobile memory based low-power server DIMMs. In ISCA, June 2012.

