
SymDrive: Testing Drivers Without Devices
Matthew J. Renzelmann, Asim Kadav and Michael M. Swift

Computer Sciences Department, Under submission: Please do not redistribute
University of Wisconsin-Madison

{mjr,kadav,swift}@cs.wisc.edu

Abstract
Device driver development and testing has traditionally been
a complex and error-prone undertaking. For example, dozens
of patches committed to the Linux kernel include the phrase
“compile tested only,” suggesting that driver testing is often not
conducted at all. Furthermore, few open-source Linux device
drivers have any driver-specific tests. Finally, driver reliance
on specific hardware significantly increases testing complexity,
as testing a single driver might require dozens of different de-
vices for all code paths to be executed. These considerations
set device-driver testing apart from user-level application test-
ing, which does not impose such demands.

We have developed a new system for testing Linux PCI and
USB drivers called SymDrive. The system employs symbolic
execution and a driver test infrastructure to enable driver testing
without device hardware present. We see two major uses of
SymDrive. First, developers can validate and verify patches
to ensure that kernel programming rules are correctly followed
and errors handled correctly. Second, developers can verify that
refactoring and interface changes, often made without testing,
do not change driver behavior. We tested SymDrive on seven
sound and network drivers, using both PCI and USB interfaces,
and found seven bugs in these drivers.

1 Introduction
Device drivers are difficult to test and debug for sev-
eral reasons. They run in kernel mode, which prohibits
the use of many program-analysis tools, such as Val-
grind [28], that user-mode developers routinely employ.
Driver bugs can cause system crashes that are tedious to
debug, such as when interrupts are mistakenly left dis-
abled. They execute in a heavily concurrent environment
with extensive synchronization requirements and employ
complex memory management techniques. Most impor-
tantly, developers cannot test device drivers without a
supported device.

The need for hardware often prevents testing alto-
gether: core kernel developers often do not have ac-
cess to the hardware needed by device drivers. Revi-
sions to the driver/kernel interface occasionally necessi-
tate large, cross-cutting changes affecting many drivers,
and the hardware requirements for an individual to test
all of these changes could be very high [30]. In these
cases, driver code is left without sufficient testing.

Making the situation worse, individual drivers rou-
tinely support dozens of distinct pieces of hardware. For

example, the Intel E1000 driver in the Linux 2.6.29 ker-
nel supports over 60 distinct network-processing chips.
Some chips have limitations that the driver must work
around, while others are of newer designs that employ
different I/O protocols from earlier implementations.
Support for many devices complicates testing: to test a
driver thoroughly, a developer must test with each piece
of supported hardware.

A second challenge in testing driver code is the diffi-
culty of exercising error-handling code. This code may
only be triggered if the device reports an error or mal-
functions, such as by returning an invalid value. For
example, one of the 18 supported medium access con-
trollers in the E1000 driver requires an additional EEP-
ROM read operation while configuring flow-control and
link settings. Testing the error handling in this driver
requires the test suite to consider specifics of each sup-
ported chip, which may become costly.

The difficulty of testing drivers manifests in the revi-
sion control logs for drivers and the Linux mailing lists.
A search through the Linux kernel’s driver revision his-
tory for the phrase “compile tested only” suggests that
patches have been incorporated frequently even though
the developer was unable or unwilling to execute the
patch, which strongly suggests a need to enable broader
testing of drivers

We developedSymDrive, a system for testing device
drivers without the associated device hardware, to im-
prove the quality of driver code. SymDrive usessym-
bolic executionto simulate all possible hardware inputs
to a device driver while also eliminating the need for
the device to be present. Should a failure along a spe-
cific branch of execution take place, SymDrive reports
the precise set of data produced by the device that leads
to the failure. However, symbolic execution alone does
not specify what constitutes a failure.

SymDrive provides a test framework for conducting
a partial verification and validation of the driver’s im-
plementation. This framework provides assertions over
driver behavior, state variables for tracking the driver’s
logical state, and an object tracker to record the status
of memory objects. At every control transfer between
the driver and the kernel, the test framework interposes
pre- and post-condition evaluation. Furthermore, the test
framework infers the driver’s class from its behavior, al-
lowing class-specific checking of device drivers.

1

We target SymDrive at the Linux driver develop-
ment process. Using a large database of bugs and ker-
nel programming requirements culled from code, docu-
mentation, and mailing lists, we constructed 47 check-
ers to validate and verify driver code. These check-
ers enforce rules that maintainers commonly check dur-
ing code reviews: matched allocation/free calls, matched
lock/unlock calls, memory leaks, and proper use of ker-
nel APIs. We also provide checkers to detect problems
that commonly require subsequent patches, such as vul-
nerability to denial-of-service resource leaks. Finally, we
provide a mechanism to compare the behavior before and
after a patch, to verify that the interaction of the driver
and device does not change. This is particularly helpful
for collateral evolutions [29], when interface changes re-
quire driver modifications that commonly are not tested.

SymDrive is closely related to the recent DDT
project [22]: both systems provide symbolic execution of
drivers. The primary difference is that DDT targets veri-
fication by end users, and therefore supports binary code
and a small set of generic checks, such as proper memory
and lock use. In contrast, SymDrive targets the develop-
ment process, and focuses on testing specific patches. It
includes a comprehensive test framework that allows so-
phisticated tests, such as those that ensure the driver uses
APIs properly, and a differencing mechanism, to deter-
mine how a patch changes driver behavior.

We implement SymDrive using KLEE [9], User-Mode
Linux [12], and Microdrivers [16]. We applied Sym-
Drive to seven drivers (sound and network, USB and PCI
buses), and found seven bugs. Overall, we found that
SymDrive can:

• find bugs in drivers, such as memory leaks, incor-
rect uses of the kernel API, hardware dependence
bugs, and mismatches between memory allocator
and free routines.

• provide assurance that a refactored driver interacts
with the hardware the same way as an unmodified
driver along multiple execution paths.

• achieve 100% code coverage in complex driver
functions.

• find several forms of generic bugs, such as illegal
pointer dereferences, similar to other systems [7,
13, 14, 21, 22, 27].

The paper is organized as follows. In the next section,
we describe the design of SymDrive and how the prob-
lem affects the design of the system. In Section3 we
discuss how to use SymDrive to test device drivers. Sec-
tion 4 provides implementation details of SymDrive, and
section5 evaluates its effectiveness. Section6 discusses
related work, and Section7 concludes.

2 Design

The SymDrive architecture focuses on thorough testing
of driver patchesto ensure that any new code meets
its specifications. This reflects the evolutionary nature
of development, in which developers check in a new
module and then gradually evolve it over time through
patches. Even small drivers, such as the NE2000 net-
work driver, have had dozens of patches in the last sev-
eral years.

Goals The two primary goals of SymDrive are to al-
low the developer to (i) verify and validate any rele-
vant part or parts of a driver to the greatest extent pos-
sible, while (ii) eliminating the need for device hardware
during testing. The first goal enablesdeepertesting of
drivers for higher quality code, while the second goal en-
ablesbroader testing of drivers, by many more people
and on many more machines.

2.1 Design Overview

SymDrive addresses these two goals using a combination
of symbolic executionand a fine-grainedtest framework.
SymDrive uses symbolic execution to execute device-
driver code without the device being present. As a driver
executes, any input from the device is replaced with a
symbolic value, which represents all possible values the
data may have. When symbolic values are compared,
SymDrive forks execution and executes all branches
of the comparison, each with the symbolic value con-
strained by the chosen outcome of the comparison. For
example, the predicatex > 5 forks execution into one
path wherex ≤ 5 and one wherex > 5. Symbolic
execution provides two benefits: executing drivers with-
out hardware, and testing error handling code when the
hardware returns unusual values. When the driver inter-
acts with the kernel, SymDrive creates a single,concrete
valuefor symbolic values passed to the kernel by choos-
ing one of their possible values.

The test framework interposes on driver/kernel control
transfers, and executes a differentcheckerfor each func-
tion in the driver/kernel interface. At each transfer, the
framework invokes a test function that evaluates test con-
ditions for the function. Thus, the test framework pro-
vides operational specifications of driver behavior. We
have coded many basic specifications for different driver
classes and standard driver routines, including locks and
data allocation. Developers can use the test framework
features to add more specifications to test new code.

SymDrive executes drivers down a single execution
path until the driver is unloaded or a developer-specified
point. Then, SymDrive systematically explores other ex-
ecution paths symbolically. Along each path through the
driver, SymDrive checks all driver entry point and kernel
function pre- and post-conditions. Any failure terminates

2

Host Operating System

Driver processVirtual Machine

Test
Process

Kernel

Driver

SEF
Tests

Trace
Replay

Symbolic
Hardware

Figure 1:The SymDrive architecture.

the current execution path with a detailed error report,
and execution continues along the next path.

The implementation of SymDrive is shown in Figure
1. The OS kernel executes in a virtual machine and com-
municates with the driver under test, executing in a sep-
arate process, over IPC. Thesymbolic execution frame-
work (SEF) governs the driver’s execution as it runs sym-
bolically. SymDrive providesstubsin the kernel and in
the driver to copy data between the virtual machine and
the driver.

2.2 Driver Interactions

A device driver communicates with two distinct entities:
the device, through I/O requests, and the kernel, through
function calls. We next describe how SymDrive handles
both kinds of interaction.

2.2.1 Driver/Device Interaction

Drivers interact with devices according to well-defined,
narrow interfaces. For PCI device drivers, this interface
is comprised of I/O memory, port I/O, DMA memory,
and interrupts. For USB drivers, the interface uses USB
request blocks (URBs) that are sent to and from the de-
vice. While most previous driver research focuses on
PCI devices, we include USB devices as they are preva-
lent, and USB versions of most standard devices (e.g.,
network, storage, sound, and video controllers) are avail-
able.

For PCI devices, SymDrive provides symbolic data of
the appropriate size each time the driver performs a read
operation using memory or port I/O. Similarly, Sym-
Drive treats the contents of DMA memory (indicated
through DMA mapping functions) as symbolic. When-
ever the driver reads from DMA memory, SymDrive pro-
vides unconstrained symbolic data. SymDrive provides
symbolic interrupts by directly invoking the driver’s in-
terrupt handler. Thus, SymDrive effectively simulates
the presence of a piece of hardware, albeit one that might
also return unexpected values.

USB drivers behave differently because they use an
asynchronous packet-based protocol to communicate
with the device. These packets, URBs, are used both

to send and receive data. A driver submits an URB to
the kernel USB framework, which then sends it through
a USB host controller to the device. Packet submission
is quick, and control returns to the driver immediately,
before the device has a chance to respond. The URB in-
cludes a completion routine that the kernel invokes when
the device sends its response. SymDrive provides sym-
bolic USB hardware with symbolic URBs: a symbolic
USB device sends a packet of symbolic data, including a
constrained symbolic size to allow responses of different
lengths. Similar to interrupts, SymDrive invokes com-
pletion routines spontaneously.

2.2.2 Driver/Kernel Interaction

The driver also interacts with the kernel through calls
to kernel functions for service. To ensure that sym-
bolic execution is faithful to normal execution, Sym-
Drive must ensure that the kernel responds appropriately
when the driver invokes these functions. However, a dif-
ficulty arises when the driver forks symbolic execution:
it can now invoke the kernel twice, on different execution
paths. As described above, with SymDrive the kernel
executes normally, preventing it from forking execution.
Thus, the kernel can only be invoked along one of the
many paths.

One solution to this problem is to fork the kernel’s ex-
ecution state when the driver itself forks, as in DDT [22].
However, this approach is not possible with our approach
to symbolic execution, as it would require forking the
virtual machine running the OS, which is both time and
memory intensive.

Instead, SymDrive supports two methods of interac-
tion with the kernel with different benefits and draw-
backs. Developers can choose the execution mode on
a per-kernel function basis, and can vary it from one test
run to another.

Concrete + Symbolic In this approach, the driver exe-
cutes kernel functions normally along one execution path
through the driver, using a depth-first-search approach
to choosing an execution path. Once this path termi-
nates, all subsequent calls to the specified kernel func-
tion do not actually invoke the kernel; instead, return
values and structure fields modified by the kernel func-
tion are marked symbolic. We determine the set of fields
through static analysis of the kernel. Thus, the driver
will execute with all possible (and a few more) return
values. This execution strategy ensures that kernel func-
tions that cause callbacks to the driver, such as registra-
tion functions (e.g., pci register driver), correctly
invoke the callback function. However, false positives
are possible, as the driver can execute with return values
the kernel would never generate.

3

Symbolic only In this approach, the kernel is never in-
voked, even on the first path. Again, structure fields of
any function parameters that the kernel might modify are
marked as symbolic. This approach provides more thor-
ough testing of driver code, because it is not constrained
by a specific set of concrete values returned by the ker-
nel.

As an example, suppose that the developer wishes
to test the network driverprobe function thor-
oughly. In this case, the developer could set the
pci register driver to call into the kernel using the
concrete + symbolicoption, thus causing the kernel to
invoke the driver’s probe function. For all other ker-
nel functions, the developer could use thesymbolic only
technique, to ensure that maximum code coverage is pos-
sible. By default, all kernel functions execute using the
concrete + symbolicapproach, which we have found rep-
resents an effective solution.

2.3 Limiting Path Explosion

Symbolic execution, by executing all possible paths
through the kernel, can lead to very long testing times.
Two important reasons for this are reentrancy, which
causes multiple threads to execute in the driver simulta-
neously, and lengthy, control-heavy driver initialization
routines.

2.3.1 Driver reentrancy

Reentrancy in drivers arises for a variety of reasons,
including interrupts, timer and work-queue callbacks,
URB completions, and simultaneous calls from different
threads. To explore all possible paths fully in the pres-
ence of reentrance, the symbolic execution framework
would have to invoke all possible functions at every in-
struction boundary in a driver, which could cause a huge
explosion of paths to explore.

To make testing more tractable, SymDrive restricts
reentrant calls to occur only when control is transferred
between the driver and the kernel. For example, Sym-
Drive invokes the driver’s interrupt handler both before
calling a driver function and when the driver function re-
turns. Similarly, USB drivers communicate with hard-
ware asynchronously using the event-driven URB packet
interface. Since SymDrive does not allow the driver
to communicate with hardware, it instead calls comple-
tion routines at the same time it calls interrupt handlers:
whenever control transfers between the driver and kernel.

For simultaneous calls into the driver, SymDrive re-
stricts concurrency by only allowing one thread into the
driver at a time; other threads block in the kernel while
the thread executes. The same approach is used for timer
and work-queue callbacks to prevent them from being
delivered while a thread executes in the driver. This ap-
proach effectively serializes access to the driver, though,

e1000_config_dsp_after_link_change(…) { …

 if (hw->ffe_cfg_state == e1000_ffe_cfg_active) {

 ret_val = e1000_read_phy_reg(hw, 0x2F5B, &saved);

 if (ret_val) return ret_val;

 ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003);

 if (ret_val) return ret_val;

 mdelay(20);

 ret_val = e1000_write_phy_reg(hw, …);

 if (ret_val) return ret_val;

 ret_val = e1000_write_phy_reg(hw, …);

 if (ret_val) return ret_val;

 ret_val = e1000_write_phy_reg(hw, …);

 if (ret_val) return ret_val;

 mdelay(20);

 ret_val = e1000_write_phy_reg(hw, …);

 if (ret_val) return ret_val;

 hw->ffe_config_state = e1000_ffe_config_enabled;

 } …

}

Figure 2: State space explosion with symbolic execution.
Each if-statement forks a new path of execution since
ret val is symbolic.

and prevents SymDrive from effectively testing for con-
currency bugs.

2.3.2 Driver initialization

State explosion arises when symbolic values used in con-
ditional statements cause execution to fork repeatedly,
once for each path through the code. Each path results
in a new symbolic execution state. Figure2 shows a
piece of driver code in which each conditional forks exe-
cution. Too many states cause symbolic execution to ei-
ther take a long time to complete, or to stop testing some
states. The problem is particularly acute for drivers that
contain many conditional statements for checking device
response status bits and chipset identifiers, especially in
initialization code. Drivers often support many specific
devices, and routinely contain extensive branching logic
to implement this support.

SymDrive provides areplay mechanism to fast-
forward driver execution to the point of interest, such as
the code affected by a patch. First, a developer with ac-
cess to hardware creates a trace of all driver/device in-
teractions with a trace tool. The trace includes all data
provided by the hardware, and enough context informa-
tion to allow it to be used for replay. Later, during testing,
SymDrive can either provide symbolic values or provide
values from the trace tool, which allows the driver to ex-
ecute concretely on a single path.

Furthermore, device-driver initialization often relies
on a large number of highly specific inputs from the de-
vice in order to proceed. For example, the E1000 net-
work driver code shown in Figure3 calculates a check-
sum over the device EEPROM data, and only continues
if the checksum is valid. Forcing symbolic execution
to derive the necessary constraints to satisfy the check-
sum calculation is infeasible, but replay provides a sim-

4

unsigned short eeprom_data, i;

for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {

 e1000_read_eeprom(..., &eeprom_data);

 checksum += eeprom_data;

}

if (checksum == (u16)EEPROM_SUM)

 return E1000_SUCCESS;

else return -E1000_ERR_EEPROM;

Figure 3:Symbolic execution is not appropriate for check-
sum calculations, since performance would be poor and the
developer would gain little insight into the driver’s behav-
ior.

ple way to fast-forward over this code by providing the
real EEPROM data from the device. Replay also simpli-
fies testing of local changes: rather than testing all driver
execution, including initialization, a developer may re-
play device interactions up to the changed code, and then
switch to symbolic mode. Note that while the device is
needed to generate the trace, this can be done once, and
the trace can then be used to execute tests on a machine
where the device is not present.

2.4 Limitations

SymDrive’s approach to addressing driver reentrancy
and kernel interactions has the advantage of simplicity,
but limits its bug-finding capacity. Reduced reentrancy
prevents SymDrive from detecting race conditions and
deadlocks. However, various other static and dynamic
approaches have demonstrated success at finding these
synchronization errors, thus reducing the need for Sym-
Drive to address the same problem [13, 15]. As process-
ing power and symbolic execution techniques improve,
it may become reasonable to reduce or eliminate this
restriction, by instead simulating how driver functions
would behave if their executions were interleaved. Sym-
Drive’s handling of kernel interactions may lead to false
positives, since symbolic return values can lead the driver
to execute paths not possible with a more limited set of
real kernel return values.

3 Testing Device Drivers

The second major component of SymDrive is atest
frameworkused to determine whether a symbolically ex-
ecuting driver is behaving correctly. Symbolic execution
can detect whether a driver will perform an illegal oper-
ation, such as reference an invalid address, on any exe-
cution path through a function. However, this proof does
not provide any general correctness guarantees: a “hello
world” program will not crash but will also not bring up
an Ethernet interface properly.

Thus, achieving high-quality driver code requires both
validatingandverifying its operation to the extent prac-
tical. Validationestablishes that the driver is solving the
right problem and demonstrates that the driver does what

it is supposed to do, such as initializing a data structure
or registering with the kernel. In contrast,verification
establishes that the implementation follows the rules to
solve the problem. It ensures the absence of known bugs
such as memory or lock leaks and null pointer derefer-
ences. With SymDrive, we seek to ensure both driver
verification and validation takes place. In the interests of
simplicity, we will refer to these two processes collec-
tively as “testing” in this section.

Executing both the driver and the kernel symbolically
provide only a limited degree of validation and verifica-
tion. The kernel contains relatively little error checking
code because it trusts drivers to operate correctly; incor-
rect behavior by a driver often manifests as a resource
leak or a malfunctioning device, rather than as an illegal
operation detectable by symbolic execution.

3.1 Use Cases

We target SymDrive at the driver development process
in Linux, in which developers submit patches to main-
tainers, who review the code before accepting it into the
kernel. However, the design applies to closed-source de-
velopment as well, in which driver developers perform
their own code reviews.

What should SymDrive test? We identify the most
promising use cases for SymDrive by studying sources
of errors in Linux driver code. To find examples of er-
rors, we scanned mailing lists and reviewed driver revi-
sion histories in the kernel source repository.

First, we scanned over 2,000 messages posted to sev-
eral Linux development mailing lists [3, 4] for messages
relating to driver patches. These mailing lists are a com-
bination of proposed patches and developer discussion.
This exercise unveils two types of bugs: (1) those that are
in the kernel source and are fixed by the proposed patch,
(2) and those in the proposed patch themselves. The lat-
ter type often results in rejected patches, since other de-
velopers spot errors in the patch before the patch is ac-
cepted. In addition, the discussion associated with each
patch provides clues about the kinds of bugs that testing
misses. In addition to mailing lists, we examined several
hundred entries in the kernel’s revision history associated
with various device drivers. These patches are examples
of the first type of bug.

Checking patches The primary emphasis of SymDrive
is to test patches to driver code. As discussed previ-
ously, Linux driver maintainers receive patches via mail-
ing lists, and each requires review before the driver main-
tainers can merge them with the kernel. For example, the
Linux Driver Project [3] hosts a mailing list to which
anyone can submit driver patches. Developers with-
out access to device hardware frequently author these
patches, and are unable to test them thoroughly as a re-

5

sult. Dozens of patches are currently incorporated into
the kernel that were “compile tested only.” Other de-
velopers often spot problems before they incorporate the
patch into the kernel.

SymDrive instead allows more thorough testing of
patchesbeforethey are submitted, saving valuable time
spent on code reviews. Many checks that reviewers per-
form manually can be coded with SymDrive. For ex-
ample, maintainers often look for memory leaks on er-
ror paths, which can be checked by SymDrive. A check,
once part of SymDrive, can then be applied to subsequent
drivers either by developers themselves of by maintain-
ers. Thus, developers can verify that proposed patches
satisfy common driver programming requirements, with-
out requiring as much manual review.

Verifying refactorings and collateral evolutions A
second target of SymDrive is to verify that driver code
refactoring and collateral evolution is correct. Many of
the patches to drivers reorganize it for better readabil-
ity and maintainability or to follow kernel programming
guidelines. For example, a single developer submitted
well over 100 patches to theet131x driver that refac-
tored the code without changing its functionality. Such
extensive refactoring could clearly benefit from addi-
tional testing, and would enhance developers’ ability to
refactor drivers when the hardware is unavailable. These
refactorings should not change the code semantically.

Collateral evolutions, which occur when a driver inter-
face changes, are another use case for SymDrive. These
interface changes require widespread modifications to
driver code, for example to add a new parameter. How-
ever, the changes are often made by a single developer
without access to hardware, so they may not be tested.
With SymDrive, these changes can be verified, and hence
even larger interface changes could be possible.

3.2 Testing with Specifications

To support the above-mentioned use cases, SymDrive
provides developers the means to specify a set of con-
ditions that all drivers of a particular class must enforce.
The test framework checks these specifications as Sym-
Drive executes the driver. For example, all network
drivers must call theregister netdev function dur-
ing initialization, unless initialization fails. No network
driver should claim initialization was successful and fail
to call this function. Symbolic execution by itself can
never catch these kinds of bugs, because of their domain-
specific nature. Similarly, normal testing has difficulty
verifying these conditions, because they must hold across
all possibleexecution paths, not just the one that oc-
curred during testing.

The test framework is comprised of (i) a set of call
outs into test code, where conditions can be checked,
(ii) an API library of code to check common conditions,

and (iii) checks for specific conditions on specific inter-
faces. The test framework interposes call outs on all in-
terfaces between the driver and kernel and allows tests
to execute whenever control passes between the kernel
and the driver, in either direction. While this allows tests
to be developed independently of driver code, it lim-
its the framework for testing conditions that are visible
at the driver/kernel interface. The test framework exe-
cutes symbolically, so it evaluates conditions along each
branch of execution independently.

Test-framework call outs The test framework invokes
a test function before and after every call into the driver.
Each function in the driver/kernel interface provides a
unique test function. Before entering the driver, test code
can establish preconditions, and when leaving the driver,
test code can verify postconditions that must hold.

Test-framework API The test framework provides an
API library containing utility code for common classes
of tests. Using this API, checks can remain small and
readily understandable. The API provides four classes of
functions, which we describe more in Section4.5. First,
the API provides basic supporting functions to querying
the current driver’s bus and class. This allows checks that
apply only to certain classes of drivers, such as PCI net-
work drivers. Second, the API provides a function to re-
port current execution context, indicating whether block-
ing is safe. Third, the API provides methods to record
state variables, such as whether the driver has completed
initialization. Finally, the API provides an object tracker,
which records the state of memory regions (e.g., how was
it allocated and how big is it?) or locks (e.g., is it initial-
ized?).

With this API, writing additional tests is straightfor-
ward. For example, verifying that a custom allocator is
paired with a custom free routine needs only a single call
to the test framework API to tell it about the allocation.
The test framework will then automatically support all
drivers that use the new allocator, and the drivers them-
selves require no changes.

Test-framework checks The test framework API li-
brary provides a number of common checks, similar to
checking for illegal operations. For example, it verifies
that all objects that are freed were first allocated, and that
locks released were first acquired. However, we expect
driver developers to use the API to develop their own
tests.

4 Implementation
This section describes the implementation of SymDrive,
which includes the components outlined in Figure1.
SymDrive consists of five major components:

• A virtual machinefor executing the kernel under
test and a test program.

6

• Stubsfor remote communication between the kernel
and the driver.

• A symbolic execution frameworkfor tracking sym-
bolic data values and constraints, with symbolic
hardware.

• A trace generator for creating traces of
driver/device interaction and a replayer for
use during testing.

• Thetest frameworkand associated API for invoking
test code before and after invoking the driver.

We next describe the implementation of each component
in turn.

4.1 Virtual Machine

SymDrive uses User Mode Linux (UML) as a virtual
machine to provide a model of the kernel’s execution.
As UML does not provide any hardware support, Sym-
Drive implements virtual PCI and USB buses that cause
the kernel to invoke the driver’s functionality. These vir-
tual buses invoke driver entry points, and provide easily
configurable virtual devices to support operation of the
desired drivers.

Creating a virtual PCI device requires a few basic
identifiers, such as the device manufacturer and class.
This information is available in existing device drivers.

In contrast, creating a simulated USB device is more
involved. When a USB device is inserted, the USB core
code in Linux exchanges several packets with the device
to obtain the device’s supported configurations, inter-
faces, and endpoints, in addition to the basic information
of manufacturer and device class. SymDrive includes a
tool to reproduce the details of the actual device in a vir-
tual equivalent, allowing this information to be replayed
to the virtual USB bus during testing.

4.2 Remote Driver Execution

SymDrive reuses DriverSlicer from Microdrivers [16], to
enable the device driver to execute outside of the ker-
nel. DriverSlicer generates stubs and marshaling code to
transfer data and control between the driver and kernel
appropriately. This control and data transfer takes place
via an RPC mechanism over named pipes. This approach
appears to the kernel as an architecture-specific feature
that pauses kernel execution, which enables communica-
tion with the driver process even for high-priority code
such as the packet transmit routine in network drivers.

In order to marshal data, a developer must annotate
kernel data structures indicating how pointers are used.
For example, character pointers must be annotated to
distinguish between a null-terminated string, an array of
bytes, and a single character. These annotations allow
DriverSlicer to generate code to marshal and unmarshal
data structures properly. Fortunately, the annotations are
almost exclusively in kernel code, which need only be

annotated once. DriverSlicer limitations also necessi-
tate additional annotations in individual drivers in some
cases, but DriverSlicer tells the developer where the an-
notation is necessary and how to write the annotation,
making them easy to add.

4.3 Symbolic Execution with KLEE

SymDrive uses a modified version of KLEE [9] for sym-
bolic execution. KLEE provides the execution envi-
ronment and constraint solving capability necessary for
symbolic execution. It also manages the forking that
takes place as symbolic values are compared against each
other. All driver code, including the test framework, exe-
cutes using KLEE. The kernel executes natively, without
KLEE.

By default, KLEE employs a depth-first search strat-
egy (DFS) to explore the state space from the symbolic
execution. To resolve issues related to driver loops per-
forming repeated symbolic read operations, SymDrive
switches to a breadth-first search strategy (BFS) once the
developer unloads the driver. Without using BFS, Sym-
Drive would waste too much time exploring uninterest-
ing execution paths. DDT employs a similar heuristic
that favors unexecuted code, though the purpose is the
same [22].

4.4 Replay

The replay mechanism provides device inputs for the
driver from ahardware traceto fast forward it to the
point of interest. SymDrive includes a tracer that modi-
fies a driver to log all interactions with the device. Instru-
menting a driver requires the developer to add a single C
preprocessor directive to the top of each driver file. The
resulting instrumented driver uses customized device I/O
routines for logging hardware interaction.

Running the instrumented driver on a system with
compatible hardware produces a log of all device I/O op-
erations. In the case of PCI drivers, the trace indicates
the function name and line number of the original read
operation, as well as the I/O operation type, such asinb ,
and the port number and data read. For USB drivers,
the trace includes all the URBs received by the driver
instead, as well as results from synchronous USB device
interface functions such asusb control msg. The trace
is a simple text file that developers can store in a source
repository or share over the Internet.

Executing the driver with SymDrive will use the trace
when it provides relevant data for the driver (e.g., the
next trace entry is for the correct hardware read opera-
tion, port, and driver function). Otherwise, SymDrive
provides symbolic values. When a developer wants to
test specific driver functionality, he or she comments out
parts of the trace, thus forcing SymDrive to supply sym-
bolic data at the desired point.

7

void __pci_register_driver_check(...) { // Test #1

 if (precondition) {

 assert (state.registered == NOT_CALLED);

 set_state (&state.registered, IN_PROGRESS);

 set_driver_bus (DRIVER_PCI);

 } else /* postcondition */ {

 if (retval == 0) set_state (&state.registered, OK);

 else set_state (&state.registered, FAILED);

 }

}

void __kmalloc_check // Test #2

 (..., void *retval, size_t size, gfp_t flags) {

 if (precondition)

 mem_flags_test(GFP_ATOMIC, GFP_KERNEL, flags);

 else /* postcondition */

 generic_allocator(retval, size, ORIGIN_KMALLOC);

}

void _spin_lock_irqsave_check // Test #3

 (..., void *lock) {

 // generic_lock_state supports pre/post-conditions

 generic_lock_state(lock,

 ORIGIN_SPIN_LOCK, SPIN_LOCK_IRQSAVE, 1);

}

Figure 4: Example tests. The first test is common to all
PCI drivers, and ensures that all PCI drivers are registered
exactly once. The second verifies that the driver allocates
memory with the appropriate memflags parameter. The
third ensures lock/unlock functions are properly matched.

4.5 Test framework

The test framework is responsible for calling checkers
and provides an API library to support common test func-
tions. As described in Section3, the test framework is
implemented as a set of call-out functions, invoked both
before and after every driver entry point and kernel func-
tion called from the driver. DriverSlicer, when generat-
ing marshaling code, automatically generates empty call-
out functions to be populated with checks.

4.5.1 Writing checkers

Writing a checker involves implementing any checks
within the call-out function. Test #1 in Figure4 shows
an example call-out forpci register driver . The
test framework invokes the checker function with the
parameters and return value of the function and sets a
precondition flag to indicate whether the checker was
called before or after the function. In addition, the test
framework provides a globalstate variable to track the
driver state across multiple functions. As shown in this
example, a checker can verify that the state is correct as
a precondition, and update the state based on the result
of the call. The test framework also provides anassert

function that signals a bug if the predicate fails along any
execution path and causes the path to stop execution and
print a stack trace.

The library API provides additional support routines
to simplify checkers by providing common functional-
ity to track the state of a memory object, such as which

function allocated it, or a lock, to record if it has been
initialized or acquired. Test #2 and #3 illustrate exam-
ple checkers, which call thegeneric allocator rou-
tine to record allocations, andgeneric lock state to
track the state of a lock.

4.5.2 Example Checkers

We have implemented checkers for a variety of common
device-driver bugs using the test framework and library
API.

Execution Context Linux and other operating systems
prohibit the use of some calls when executing as part of
an interrupt handler or while holding a spinlock. In par-
ticular, calls to allocators must specify whether they can
block or whether the call must return immediately. The
execution context checker verifies that flags passed to
memory-allocation functions such askmalloc are valid
in the context of the currently executing code. For ex-
ample, if the driver is executing thestart xmit path of
a network driver, it can only allocate memory with the
GFPATOMICflag.

Checking the driver’s execution context requires track-
ing the context of each call into the driver, which is not
available during normal execution. Thus, the test frame-
work API provides a state machine to track the driver’s
current context. Each time the kernel invokes the driver,
the test framework updates the driver’s current execution
context. The test framework API tracks execution con-
text using a stack. Several events cause the test frame-
work to push a new state onto the stack. For example, a
driver invoked in a context that supports blocking, such
as itsprobe routine, enters a non-blocking context if it
acquires a spinlock. Thus, each time the driver acquires
or releases a spinlock, the test framework API pushes or
pops the necessary context. This mechanism simplifies
checking which operations the driver is allowed to con-
duct, and which it is not.

User-Invokable Allocations Driver code that allocates
memory or prints a log message in response to a request
may lead to resource denial-of-service attacks [2]. For
example, if the driver callsprintk with a high priority
message, but an unprivileged user could invoke it, the
checker will display an error because the user could exe-
cute a DOS attack by filling up the system error log.

To detect these bugs, SymDrive tracks whether an un-
privileged user could directly invoke the current code.
We manually identified driver entry points that can be
invoked through system calls, such asread for charac-
ter drivers, and expose this through the driver’s current
execution context. Thus, the test framework API allows
developers to generalize this test to support other cases
in which an unprivileged user can repeatedly cause the
driver to allocate a resource.

8

Kernel API Misuse The kernel requires that drivers
follow the proper protocol when using kernel APIs,
and errors often lead to a non-functioning driver
or a resource leak. For example, all PCI drivers
must call pci register driver in the driver’s
init module initialization routine, and make a corre-
sponding call to thepci unregister driver function
in its cleanup module routine. Similarly, USB drivers
require a call tousb register driver , which Sym-
Drive can verify such drivers make.

The test framework state variable provides additional
context for these tests. For example, a checker can track
the success and failure of significant driver entry points,
such as theinit module and PCIprobe functions, and
ensure that if the driver is registered on initialization, it is
properly unregistered on shutdown. Furthermore, check-
ers can verify that the driver is in the required state when
invoked from the kernel. Test #1 in Figure4 shows a
use of these states to ensure that a driver only invokes
pci register driver once.

SymDrive checks for a variety of straightforward con-
ditions using this state machine approach. Other checks
include those shown in Table1.

Collateral Evolutions Another use of the state ma-
chine is verifying that collateral evolution patches are
correctly applied. Tools such as Coccinelle [29] aid in
generating patches, but do not verify their correctness.
Since individual patch authors often do not have access
to all of the necessary devices, SymDrive can provide a
substantial benefit by testing these changes.

SymDrive can verify that collateral evolutions are
correctly applied by ensuring that patched drivers do
not regress on any tests. In addition, a developer can
add a check to ensure that theeffectof a patch is re-
flected in the driver’s execution. As an example, re-
cent kernels stopped requiring that network drivers up-
date thenet device->trans start variable in their
start xmit functions. A SymDrive checker can verify
this change by checking thattrans start is constant
across thestart xmit function and generate a warning
if the driver modifies this field.

Memory Leaks Memory leaks are a pernicious prob-
lem in drivers, and it is particularly difficult to find
small leaks among the sea of other allocations. Sym-
Drive provides an object tracker, implemented as a sim-
ple hash table, that stores memory address, length, ob-
ject state, and a description of the object’s origin. With
the tracker, a checker can record object allocation and
deallocation, and detect even small memory leaks. We
have implemented checkers to verify allocation and free
requests from 12 pairs of functions, as well as other spe-
cial cases, such as SKBs passed into a network driver’s
start xmit function that the driver is then responsible

for freeing.
The API library simplifies adding support for ad-

ditional allocation and deallocation routines down to
adding a one-line call into the API. Test #2 in Figure4
shows thegeneric allocator call to the library used
when checkingkmalloc , which records thatkmalloc

allocated the returned memory. A corresponding checker
for kfree verifies thatkmalloc allocated the supplied
address.

SymDrive’s object tracker provides considerably more
flexibility than the Linux kernel’s memory leak detector,
kmemleak [1]. The kernel’s detector provides a global
view of all memory allocations, which aids in finding re-
peated leaks but is less suitable for finding small leaks in
a specific driver.

Locking Protocols Locking involves the initialization
of a lock variable, followed by matched calls to cor-
responding lock and unlock routines. We have written
checkers to verify that calls to lock and unlock functions
are never unbalanced, regardless of the execution path
taken through a function. SymDrive supports 24 distinct
pairs of kernel locking and unlocking functions, as well
as a variety of lock-initialization routines.

In order to track the state of the driver’s locks, the test
framework uses the same object tracker as above. Each
time the driver acquires or frees a lock, the checker up-
dates the object tracker with the state of the lock. If the
driver attempts to use an incorrect locking function, the
test framework prints an error. In addition, SymDrive re-
ports an error if a driver function returns to the kernel
without releasing all driver-acquired locks.

Adding additional locking routines to the test frame-
work is straightforward, assuming the lock has most
of the same semantics as spinlocks or semaphores.
Test #3 in Figure4 shows an implementation of
the test for thespin lock irqsave function. The
generic lock state function records that the lock is
a spin lock and that interrupts were disabled so that the
unlock function can verify they restore interrupts.

Driver ioctl Requirements Another source of driver
bugs are driverioctl functions, which can cause
security vulnerabilities. For example, the function
aac cfg ioctl in the SCSI RAID controller driver
aacraid did not check that the process executing the
ioctl has sufficient privileges. SymDrive allows devel-
opers to add checkers to guarantee that all drivers of a
particular class include the necessary calls to the kernel
“capable” function depending on the arguments to the
ioctl .

The checker, not shown, executes as a postcondition
that first checks the class of the driver. If it is a SCSI
driver, the checker verifies that if specificioctl com-
mands were provided then the driver invokedcapable

9

Test Category Assertion
Memory leak The driver frees all allocated SKBs and those passed to thestart xmit routine.
Networkprobe Theprobe functions in network drivers invokeregister netdev if they return success.
PCI device state Calls topci enable device (or pci enable device mem) andpci disable device match.
PCI driver state Calls topci register driver andpci unregister driver match.
USB device state usb enable device andusb disable device match.
Function ordering PCI network drivers callpci disable device after callingunregister netdev .
Function ordering Network drivers finishprobe successfully before the kernel invokes thendo open function.
Function ordering Network driverndo open functions called only once.
Return values During the networkndo open call, the driver only callsnetif start queue if open is successful.
Return values If the networkndo open call is not successful, the driver callsnetif start queue .
Return values The driver’sndo stop function callsnetif stop queue .
Return values If register netdev fails, or if the driver does not call it, then theprobe function returns failure.

Table 1:Sample of SymDrive’s kernel API checkers.

with the appropriate privilege. Adding a test for another
ioctl command is easy: simply add theioctl com-
mand identifier and a corresponding capability to a table.

Refactoring Refactoring patches reorganize code but
should not change the driver’s interaction with the hard-
ware. SymDrive can ensure that refactoring does not
change how a driver functions by recording all inter-
action with the hardware along all execution paths. A
developer can compare a record of hardware interac-
tions with and without the patch. If no discrepancies are
present, the refactoring did not affect the driver/device
interface.

SymDrive outputs the sequence of hardware opera-
tions (operations that read or write from the device) along
all symbolic execution paths using a prefix tree (trie) data
structure. Even if a refactoring adds additional branches
to the driver, the prefix tree should not change if the
branches result in the same device interaction. The devel-
oper can then compare the textual representation of these
two trees using adiff operation. If a discrepancy is ap-
parent, the information provided allows the developer to
identify the erroneous hardware operation easily.

This feature is not perfect and is subject to timing is-
sues when the driver executes different functions out of
order because the kernel invokes them differently be-
tween runs. However, because the prefix tree includes
the name of the driver function that initiated each device
operation, the developer can simply compare traces of
specific functions or ignore parts of the trace not related
to the refactored functions.

5 Evaluation

The purpose of the evaluation is to verify that Sym-
Drive achieves its goal: can it verify and validate driver
code, and can it do so without the device present? We
test whether SymDrive can thoroughly test a variety of
drivers, and whether it can find driver bugs unknown to
us.

We have tested SymDrive on the drivers shown in Fig-
ure2. These are the devices for which we have hardware,

Driver Class Bus LoC
8139too Network PCI 1904
ca0106 Sound PCI 3052
cmipci Sound PCI 2717
e1000 Network PCI 13973
ens1371 Sound PCI 2110
pegasus Network USB 1541
usb-audio Sound USB 8094

Table 2:We have tested SymDrive with the seven PCI and
USB drivers shown here.

to generate traces, and for which we have annotated the
kernel/driver interfaces. These drivers include sound and
network drivers on both the PCI and USB buses. We re-
port line counts using the CLOC utility [5]. In addition
to executing these drivers symbolically, SymDrive exe-
cutes a large fraction of the Linux kernel sound driver
API symbolically. This sound library contains 30,180
lines of code. All tests took place on a machine running
Red Hat Enterprise Linux 5.5 equipped with a quad-core
Intel 2.66GHz Q9400 CPU and 8GB of memory.

5.1 Invoking the Driver with SymDrive

Using SymDrive by itself does not invoke driver entry
points. To test a driver, we carry out the following oper-
ations for each driver:

1. Create a virtual hardware device in UML by loading
a module with appropriate parameters.

2. Load the driver withinsmod and wait for initializa-
tion to complete.

3. Execute a workload.
4. Unload the driver
5. Allow SymDrive to continue symbolically execut-

ing the driver’s code for another 10 minutes or less.
If SymDrive is unable to cover all possible paths in
that time, we abort further execution.

To test specific driver functionality, we execute work-
loads that trigger the appropriate driver entry point. For
example, when the kernel attempts to send packets, it in-
vokes the network driver’sstart xmit routine. Sym-
Drive itself calls the driver’s interrupt handlers. Using
ifconfig or relatedethtool commands also invoke

10

driver entry points. Similarly, thempg123 music player
exercises a large piece of driver code by attempting to
play an MP3 file.

In addition to these tests, we verified that SymDrive
achieves 100% code coverage in several complex driver
functions. Furthermore, as we developed the checkers in
the test framework, we manually implemented test bugs
to ensure the checker triggered when the driver violated
its specification.

5.2 Bugs Found

We applied SymDrive with the checkers described in the
previous section to the seven drivers listed in Table2.
Across these drivers, we found six distinct bugs, one
which appeared in two different drivers

1. An allocator/deallocator mismatch in the e1000
driver, found using the object tracker. The test
framework reported that the attempt to free the
pointer was invalid because the driver allocated it
with another function.

2. A memory leak in the ca0106 driver, found using
the object tracker. The test framework reported
leaked objects after unloading the driver.

3. A missed call to put device on a
device register failure path in the sound
library, found using the test framework API state
machine. The test framework reported that the
driver never calledput device after unloading the
driver.

4. A hardware dependence bug in 8139too, found via
an invalid pointer dereference along an unlikely ex-
ecution path. The test framework itself reported no
failure since this check takes place in the SEF.

5. A race condition in ca0106, in which the driver
cleared a function pointer used in the interrupt han-
dler before stopping interrupts. The SEF also de-
tected the error.

6. Use of theGFPATOMIC memory flag in contexts
that may block in both the pegasus and usb-audio
drivers, which is unnecessary, found via the test
framework API execution context state machine.

In addition, SymDrive reported several unusual
code fragments, such as calls tospin lock irqsave

followed by spin unlock , spin lock , and finally
spin unlock irqrestore . Although correct, this
code deserves additional review. SymDrive also reported
a redundant permission check in theioctl function of
the E1000 driver.

We verified bugs #1, #2, and #4, and found them fixed
in more recent kernel versions. Bugs #3, #5, and #6
we checked manually. The kernel’sdevice register

function has a comment specifically reminding develop-
ers to callput device if the call fails. We verified the
GFPATOMICissue in pegasus and usb-audio both by ex-

amining the functions in the stack traces and ensuring
that the driver could safely block.

To find these bugs, we executed each driver using the
workloads described earlier, and enabled all test frame-
work checks. We used theconcrete+symbolicexecution
mode in all cases, except for thedevice register bug.
To find that bug, we used thesymbolic onlyexecution
mode for thedevice register function. The ca0106
driver did not require a hardware trace to discover the
memory leak or race condition, thus demonstrating the
value of SymDrive even when a trace is not available.

Both the pegasus and usb-audio drivers (bugs listed
under #6) are designed such that the driver always sub-
mits URBs using theGFPATOMICflag even though the
GFPKERNELflag would have been a better choice in
some cases. This design stems from reusing the same
code on both high and low priority paths, and no mecha-
nism is currently present to distinguish the priority levels,
so the driver conservatively choosesGFPATOMICunder
all circumstances.

These bugs clearly demonstrate the diversity of poten-
tial issues facing driver developers. Although these bugs
do not necessarily result in a driver crash, with the ex-
ception of bug #4, they all represent issues that need ad-
dressing. Furthermore, they demonstrate the importance
of using automated tests, as using the drivers normally
would not uncover the bugs.

5.3 Refactoring

To verify that our refactoring checks work correctly, we
verify that SymDrive can distinguish between patches
that change the driver/device interactions and safe refac-
torings that do not. We consider two existing drivers,
8139too and pegasus, apply five patches to each driver
from the mainline kernel that refactor the code to im-
prove readability or to upgrade the driver to current ker-
nel programming practices. We use SymDrive to execute
the original and the patched drivers and record the hard-
ware interactions.

In each case, comparing the prefix tree representations
of each driver’s interaction with the hardware revealed
no changes, because the refactoring is designed not to
impact the driver’s behavior. Thus, SymDrive confirmed
that the refactorings do not affect the driver/device inter-
action.

To verify that patches to the driver/device interface
are detected, we applied a recent patch to 8139too that
changes the order of two low-level device operations and
to pegasus that also changed its interaction with the hard-
ware. The result in both cases clearly shows that the
hardware operations were no longer the same. In the
case of 8139too, the result was very clear since the trie
showed the order of the two operations had reversed. The
result from pegasus, a USB driver, was more difficult to

11

interpret, because the change occurred in a function sev-
eral calls removed from the actual device access. Never-
theless, it was clear that the patch impacted the driver’s
interaction with the hardware. The information provided
by the prefix tree in both cases provides enough detail
that a developer could find the affected lines of code
quickly.

5.4 Driver Setup Time

Testing a driver with SymDrive requires some additional
effort beyond the normal kernel build process. After de-
veloping the bulk of SymDrive, we added support for the
cmipci sound driver. It took less than four hours to run
cmipci with SymDrive for the first time, of which three
hours were spent adding support to our infrastructure for
functionality not used by any of our previous drivers. We
expect this effort to decrease as we test more drivers. The
remaining time was spent setting up the driver with our
build environment (5 minutes), installing the device in a
test machine and recording a trace (25 minutes), annotat-
ing the driver for DriverSlicer (10 minutes), and finally
15 minutes to actually test the driver. A second developer
with access to the trace would need only 15 minutes to
build and test the driver symbolically.

5.5 Driver Execution

A final consideration in testing is execution time; fast
tests can be run more frequently and find bugs earlier. In
order to measure execution time, we timed how long it
takes to load and unload each driver. We perform this test
both using KLEE and symbolic execution and running
the driver as a normal binary to measure the additional
overhead of executing a driver with the SEF. We loaded
and unloaded each driver three times, and used a trace to
minimize the amount of symbolic data used. Refactor-
ing trace support was enabled in all tests. Table3 shows
the results. Native execution is fairly fast, taking under
7 seconds, while symbolic execution can take over seven
minutes. These tests times are reasonable when com-
pared to the time it takes to install a driver and reboot a
test machine.

We also measured the time it takes to execute a func-
tion symbolically, which varies based on how frequently
it interacts with the device. As an example of how
long it takes to thoroughly evaluate a function heavy on
hardware operations, we consider the 8139too function
rtl8139 init board . SymDrive took 92 seconds to
execute 113 paths through this function, on top of the
10 seconds shown in Figure3 for the remaining driver
load/unload code. Thus, testing even a complex function
requires little additional time.

We also examined memory usage. With symbolic exe-
cution, memory usage is highly dependent on the number
of symbolic variables used and the number of paths exe-

Driver Load/Unload Times (seconds)
Native With KLEE

Driver insmod rmmod insmod rmmod
8139too 0.3 0.4 4.0 4.5
ca0106 2.5 0.5 56.5 6.9
cmipci 2.2 0.3 30.3 4.4
e1000 6.1 2.1 59.7 368.0
ens1371 3.6 0.5 89.5 14.2
pegasus 0.9 0.3 35.4 6.6
usb-audio 3.8 0.3 188.4 14.9

Table 3:This table shows how long it takes to load and un-
load each driver using the trace, in seconds. The second and
third columns show the times when SymDrive is compiled
without KLEE, and driver code executes natively, while the
last two columns show execution time with KLEE.

cuted. After loading the large usb-audio driver, with the
trace, Linux reported that the driver process had a res-
ident set size of approximately 194MB. We then mod-
ified the trace to exclude thesnd usb ctl msg func-
tion, which the driver uses extensively for hardware com-
munication. After loading and unloading the driver a
second time, we let it execute 378 additional execution
paths. During this time, the largest memory usage we
observed was 243 MB. In our tests, we have never seen
the driver process use more than approximately 1GB of
memory, since SymDrive focuses execution on specific
driver function. However, if the developer employs a
large amount of symbolic data in a branch heavy piece
of code, the driver process may consume significant sys-
tem resources.

5.6 Limitations

SymDrive does report false positives under two circum-
stances. First, since SymDrive terminates driver execu-
tion when executing a symbolic path that returns to the
kernel, the object tracker incorrectly reports some driver
objects as having not been freed, when in reality, the
driver would free them if SymDrive allowed it to con-
tinue executing.

SymDrive also reports false positives by default with
the variousspin lock functions, if the driver does
not pair them in a standard way. The example from
the sound library, in whichspin lock irqsave was
matched withspin unlock , is an example. In this case,
SymDrive must make a tradeoff between finding actual
bugs, in which the developer accidentally mismatched
the locking functions, and false positives, as in the ex-
ample.

We are not currently aware of any specific false neg-
atives among the checks that SymDrive does support.
However, bugs in the test framework itself or failure to
consider all the details of a test could easily lead to a
false negative.

12

Finally, SymDrive’s use of a trace appears to con-
flict with SymDrive’s goal of identifying chipset-specific
bugs. However, running tests with traces from each sup-
ported device provides complete coverage.

6 Related work

SymDrive draws on past work in a variety of areas, in-
cluding symbolic execution, static and dynamic analysis,
test frameworks, and formal specification.

Symbolic execution. There are numerous prior ap-
proaches to symbolic execution [8, 9, 11, 17, 22, 33,
36, 37]. However, most of these approaches apply to
standalone programs with limited environmental interac-
tion. In addition, many of them search for specific kinds
of bugs such as crashes and assertion violations, rather
than allowing the developer to track the program’s log-
ical state as it executes, to verify correctness. To limit
symbolic execution to manageable state, previous work
limited the set of symbolically executed paths by apply-
ing smarter search heuristics and/or by limiting program
inputs [10, 18, 22, 23, 24]. SymDrive uses a combination
of approaches to handle this issue – with traces to avoid
symbolic execution altogether and a combination of BFS
and DFS to limit searching.

Most recently, Kuznetsov et al. have applied sym-
bolic execution to finding bugs in binary drivers [22] us-
ing the DDT system. DDT’s approach has proven excel-
lent at finding a variety of classes of bugs common to all
drivers, such as invalid memory accesses and race condi-
tions. Additionally, DDT’s ability to fork the kernel state
has advantages relative to SymDrive’s approach, such as
its reduced susceptibility to false positives. In contrast
to DDT, SymDrive targets kernel developers and is de-
signed for testing drivers more thoroughly by providing
developers with a test specification interface to write new
checkers. SymDrive also provides the ability to mix con-
crete and symbolic execution to fast forward execution to
functions of interest, and to verify that a refactored driver
is equivalent to its original.

Static and dynamic analysis. Static analysis tools can
find specific kinds of bugs common to large classes of
drivers, such as misuses of the driver/kernel [6, 7] or
driver/device interface [21] and ignored error codes [19,
34]. Similarly, dynamic instrumentation can identify
memory leaks and corruption, and observe how the
driver responds in low-memory conditions. Microsoft’s
Driver Verifier (DV) and Static Driver Verifier (SDV)
utilities are examples of these dynamic and static ap-
proaches [25, 26]. Compared to the symbolic execu-
tion used by SymDrive, static bug finding tools are of-
ten faster and more scalable, analyzing many drivers at
once. However, they often have limited ability to re-
solve aliases or handle complex pointer arithmetic, both

of which are common in drivers. Thus, static and dy-
namic analysis tools effectively complement tools like
SymDrive because of their narrow, but deep, approach to
finding specific classes of bugs.

Test frameworks. Test frameworks provide automated
testing environments for drivers. IBM maintains the
Linux Test Project (LTP) with the aim of providing a
set of tests that “validate the reliability, robustness, and
stability of Linux,” including the kernel and associated
drivers [20]. The main drawback to test suites such as
the LTP is the need for the device hardware in order to
execute the test. In addition, LTP tests execute at the
system-call level, and thus cannot verify properties of in-
dividual driver entry points.

Formal Specifications for Drivers. Formal specifica-
tions also improve reliability by expressing a device’s
or a driver’s operational requirements. Once specified,
other parts of the system can verify that the driver is op-
erating correctly. The Nexus operating system [35] uses
device safety specifications to guarantee safe driver be-
havior. Formalizing the device driver’s behavior with a
statically checked specification is another solution [32].
A similar approach is to use the specification to gener-
ate a driver automatically that implements the specifica-
tion [31]. However, these approaches all require a sep-
arate specification for every chip, which is difficult to
scale to an entire operating system. In contrast, Sym-
Drive provides fewer guarantees, but its checkers apply
to a much broader range of code.

7 Conclusions
SymDrive uses symbolic execution combined with a
driver test infrastructure to test driver code without phys-
ical access to the corresponding device. Our results
show that SymDrive can find subtle bugs in mature driver
code, and can distinguish between patches that affect the
driver/device interface and those that do not. Thus, Sym-
Drive is a valuable tool that eases the burden of testing
drivers.

In the future, we plan to investigate a variety of im-
provements to SymDrive. First, we are investigating how
to extend the test framework with additional checkers.
Second, we intend to expand the range of driver classes
that SymDrive supports. Currently, SymDrive supports
network and sound drivers, but we believe that expand-
ing the test infrastructure to support other classes will be
straightforward. Finally, we would like to implement an
automated testing service for patches submitted to Linux
mailing lists to supplement the code reviews by kernel
maintainers.

References
[1] Kernel memory leak detector. Linux kernel source:

Documentation/kmemleak.txt .

13

Documentation/kmemleak.txt

[2] Cve-2006-2936 possible dos in write routine of ftdisio
driver. https://bugzilla.redhat.com/show
bug.cgi?id=197610 , 2006.

[3] Linux driver project. http://www.
linuxdriverproject.org/ , 2010.

[4] Linux kernel mailing list. https://lkml.org/ ,
2010.

[5] Al Danial. Cloc: Count lines of code.http://cloc.
sourceforge.net/ , 2010.

[6] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
et al. Thorough static analysis of device drivers. InEu-
rosys ’06, 2006.

[7] T. Ball and S. K. Rajamani. The SLAM project: Debug-
ging system software via static analysis. InProc. of the
29th POPL’02, 2002.

[8] R. S. Boyer, B. Elspas, and K. N. Levitt. Select—a formal
system for testing and debugging programs by symbolic
execution. InProc. of Intl. Conf. on Reliable Software,
1975, 1975.

[9] C. Cadar, D. Dunbar, and D. Engler.Klee: Unassisted and
automatic generation of high-coverage tests for complex
systems programs. In OSDI ’08, 2008.

[10] C. Cadar, V. Ganesh, P. Pawlowski, D. Dill, and D. En-
gler. EXE: automatically generating inputs of death.ACM
Transactions on Information and System Security, 2008.

[11] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea.
Selective symbolic execution. InHotDep, 2009.

[12] J. Dike. User-mode linux. http://
user-mode-linux.sourceforge.net , June
2005.

[13] D. Engler and K. Ashcraft. Racerx: effective, static de-
tection of race conditions and deadlocks.SIGOPS Oper.
Syst. Rev., 37(5), 2003.

[14] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.
Bugs as deviant behavior: a general approach to inferring
errors in systems code.SIGOPS Oper. Syst. Rev., 35(5),
2001.

[15] C. Flanagan and S. N. Freund. Detecting race conditions
in large programs. InProceedings of the 2001 ACM SIG-
PLAN/SIGSOFT PASTE, June 2001.

[16] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M.
Swift, and S. Jha. The design and implementation of mi-
crodrivers. InASPLOS 13, Mar. 2008.

[17] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed
automated random testing. InPLDI ’05, 2005.

[18] P. Godefroid, M. Levin, D. Molnar, et al. Automated
whitebox fuzz testing. InProceedings of the NDSS’08,
2008.

[19] H. Gunawi, C. Rubio-Gonźalez, A. Arpaci-Dusseau,
R. Arpaci-Dussea, and B. Liblit. EIO: Error handling is
occasionally correct. In6th USENIX FAST, 2008.

[20] IBM. Linux test project. http://ltp.
sourceforge.net/ , May 2010.

[21] A. Kadav, M. J. Renzelmann, and M. M. Swift. Tolerating
hardware device failures in software. InSOSP, Oct. 2009.
ACM.

[22] V. Kuznetsov, V. Chipounov, and G. Candea. Test-
ing closed-source binary device drivers with DDT. In
USENIX ATC, June 2010.

[23] E. Larson and T. Austin. High coverage detection
of input-related security facults. InProceedings of
12th USENIX Security Symposium. USENIX Associa-
tion, 2003.

[24] R. Majumdar and K. Sen. Hybrid concolic testing. In
ICSE ’07: Proceedings of the 29th international confer-
ence on Software Engineering, 2007.

[25] Microsoft Corporation. How to use driver verifier to
troubleshoot windows drivers. http://support.
microsoft.com/kb/q244617/ , Jan. 2005. Knowl-
edge Base Article Q244617.

[26] Microsoft Corporation. Static driver veri-
fier. http://www.microsoft.com/whdc/
devtools/tools/sdv.mspx , May 2010.

[27] M. Musuvathi and D. R. Engler. Model checking large
network protocol implementations. InIn Proceedings of
1st NSDI, 2004.

[28] N. Nethercode and J. Seward. Valgrind: A framework for
heavyweight dynamic binary instrumentation. InPLDI,
2007.

[29] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller.
Documenting and automating collateral evolutions in
linux device drivers. InEurosys’08, 2008.

[30] Y. Padioleau, J. L. Lawall, and G. Muller. Understanding
collateral evolution in linux device drivers. InEurosys
’06, 2006.

[31] L. Ryzhyk, P. Chubb, I. Kuz, E. Le Sueur, and G. Heiser.
Automatic device driver synthesis with termite. InSOSP
’09, 2009.

[32] L. Ryzhyk, I. Kuz, and G. Heiser. Formalising device
driver interfaces. InProc.of Workshop on Programming
Languages and Systems, Oct. 2007.

[33] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unit
testing engine for c. InESEC/FSE-13, 2005.

[34] M. Susskraut and C. Fetzer. Automatically finding and
patching bad error handling. InProceedings of the Sixth
European Dependable Computing Conference, 2006.

[35] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B.
Schneider. Device driver safety through a reference vali-
dation mechanism. InOSDI 8, Dec. 2008.

[36] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra:
A framework for generating object-oriented unit tests us-
ing symbolic execution. InIn TACAS, 2005.

[37] C. Zamfir and G. Candea. Execution synthesis: a tech-
nique for automated software debugging. InProc. of Eu-
rosys ’10, 2010.

14

https://bugzilla.redhat.com/show_bug.cgi?id=197610
https://bugzilla.redhat.com/show_bug.cgi?id=197610
http://www.linuxdriverproject.org/
http://www.linuxdriverproject.org/
https://lkml.org/
http://cloc.sourceforge.net/
http://cloc.sourceforge.net/
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar_html/
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar_html/
http://www.usenix.org/events/osdi08/tech/full_papers/cadar/cadar_html/
http://user-mode-linux.sourceforge.net
http://user-mode-linux.sourceforge.net
http://ltp.sourceforge.net/
http://ltp.sourceforge.net/
http://support.microsoft.com/kb/q244617/
http://support.microsoft.com/kb/q244617/
http://www.microsoft.com/whdc/devtools/ tools/sdv.mspx
http://www.microsoft.com/whdc/devtools/ tools/sdv.mspx

	Introduction
	Design
	Design Overview
	Driver Interactions
	Driver/Device Interaction
	Driver/Kernel Interaction

	Limiting Path Explosion
	Driver reentrancy
	Driver initialization

	Limitations

	Testing Device Drivers
	Use Cases
	Testing with Specifications

	Implementation
	Virtual Machine
	Remote Driver Execution
	Symbolic Execution with KLEE
	Replay
	Test framework
	Writing checkers
	Example Checkers

	Evaluation
	Invoking the Driver with SymDrive
	Bugs Found
	Refactoring
	Driver Setup Time
	Driver Execution
	Limitations

	Related work
	Conclusions

