
Understanding and Improving Device Access
Complexity

By

Asim Kadav
A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Science)

at the

UNIVERSITY OF WISCONSIN-MADISON

Date of final oral examination: 4th June 2013

The dissertation is approved by the following members of the Final Oral Committee:
Prof. Michael M. Swift, Assistant Professor, Computer Sciences
Prof. Remzi Arpaci-Dusseau, Professor, Computer Sciences
Prof. Ben Liblit, Associate Professor, Computer Sciences
Prof. Somesh Jha, Professor, Computer Sciences
Prof. Parmesh Ramanthan, Professor, Electrical and Computer Engineering
Prof. Thomas Ristenpart, Assistant Professor, Computer Sciences

ii

iv

Acknowledgments
I would like to thank....

Abstract

Peripheral devices extend the functionality of computers and make them more interesting to use. How-
ever, their tremendous growth and evolution over the years has led to significant hardware and software com-
plexity. Hardware complexity makes the OS unreliable and slows operations that require re-loading drivers
like reboot and failure recovery. Furthermore, little is known about the more than 5 million lines of driver
code. This limits our ability to improve device access code and understand future research directions.

In this dissertation, I address the challenges arising out of device and OS complexity. First, I present
the first research consideration of peripheral device failures. I describe Carburizer, a code-rewriting tool and
associated runtime that handles the problems arising due to device failures and automatically recovers using
restart/replay. I then demonstrate the broad implications of these recovery techniques in modern drivers by
performing a survey of device drivers. The goal of this study is to understand existing research in the context
of the reality of drivers and to find new opportunities for future driver research. Finally, I describe how driver
recovery can be improved by introducing a novel checkpoint/restore mechanism for drivers.

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis . 2

1.3 Contributions . 4

1.4 Thesis Organization . 6

2 Tolerating Hardware Device Failures in Software 7

2.1 Device Hardware Failures . 9

2.1.1 Failures Types . 9

2.1.2 Vendor Recommendations . 9

2.2 Hardening Drivers . 11

2.2.1 Finding Sensitive Code . 12

2.2.2 Repairing Sensitive Code . 15

2.2.3 Summary . 17

2.2.4 Analysis Results . 17

2.2.5 Experimental Results . 19

2.3 Reporting Hardware Failures . 19

2.3.1 Reporting Device Timeouts . 20

2.3.2 Reporting Incorrect Device Outputs . 21

viii

2.3.3 Results . 21

2.4 Runtime Fault Tolerance . 23

2.4.1 Automatic Recovery . 23

2.4.2 Tolerating Missing Interrupts . 24

2.4.3 Tolerating Stuck Interrupts . 25

2.4.4 Results . 25

2.5 Overhead Evaluation . 26

2.6 Summary . 27

3 Understanding Modern Device Drivers 29

3.1 Background . 30

3.1.1 Driver/Device Taxonomy . 30

3.1.2 Driver Research Assumptions . 33

3.2 What Do Drivers Do? . 34

3.2.1 Methodology . 34

3.2.2 What is the function breakdown of driver code? . 35

3.2.3 Where is the driver code changing? . 35

3.2.4 Do drivers belong to classes? . 37

3.2.5 Do drivers do significant processing? . 38

3.2.6 How many device chipsets does a single driver support? 39

3.2.7 Discussion . 40

3.3 Driver Interactions . 41

3.3.1 Methodology . 41

3.3.2 Driver/Kernel Interaction . 43

3.3.3 Driver/Device Interaction . 44

3.3.4 Driver/Bus Interaction . 45

3.3.5 Driver Concurrency . 47

3.4 Driver Redundancy . 48

3.4.1 Methodology . 49

ix

3.4.2 Redundancy Results . 50

3.5 Summary . 53

4 Fine-Grained Fault Tolerance Using Device Checkpoints 55

4.1 Design Overview . 56

4.1.1 Fault Model . 57

4.1.2 Fine-Grained Isolation . 58

4.1.3 Checkpoint-based Recovery . 59

4.1.4 Design Summary . 60

4.2 Fine-Grained Isolation . 60

4.2.1 Software Fault Isolation . 61

4.2.2 Failure Detection . 64

4.3 Checkpoint-based recovery . 64

4.3.1 Device state checkpointing . 65

4.3.2 Recovery with checkpoints . 68

4.3.3 Implementation effort . 70

4.4 Evaluation . 70

4.4.1 Fault Resilience . 70

4.4.2 Performance . 72

4.4.3 Recovery Time . 72

4.4.4 Utility of Fine Granularity . 74

4.4.5 Device Checkpoint Support . 74

4.4.6 Developer effort . 75

4.5 Summary . 76

5 Related Work 77

5.1 Related work for Caburizer . 77

5.2 Related work for FGFT . 78

6 Lessons 81

6.1 Hybrid Static/Run-Time Checking . 81

x

6.2 Implications for driver design . 82

6.3 Experience with the kernel community . 84

6.4 Summary . 84

7 Future Work 85

7.1 Carburizer . 85

7.2 Driver Study . 85

7.3 FGFT . 87

7.4 Summary . 88

8 Conclusions 89

List of Figures

2.1 The Carburizer architecture. Existing kernel drivers are converted to hardened drivers and execute with
runtime support for failure detection and recovery. 11

2.2 The AMD 8111e network driver (amd8111e.c) can hang if the readl() call in line 6 always returns the
same value. 12

2.3 The Pro Audio Sound driver (pas2_card.c) uses the pas_model variable as an array index in line 9 with-
out any checks. 13

2.4 The pScbIdx variable is used in pointer arithmetic in line 11 without any check in the a100 SCSI driver
(a100u2w.c). 14

2.5 The HighPoint RR3xxx SCSI driver (hptiop.c) reads arg from the controller in line 5 and dereferences it
as a pointer in line 9. 14

2.6 The code from Figure 2.2 fixed by Carburizer with a timeout counter. 15

2.7 The code from Figure 2.3 fixed by Carburizer with a bounds check. 16

2.8 The code from Figure 2.5 after repair. Carburizer inserts a null-pointer check in line 9. 17

2.9 The forcedeth network driver polls the BMCR_RESET device register until it changes state or until a
timeout occurs. The driver reports only a generic error message at a higher level and not the specific
failure where it occurred. 20

2.10 Carburizer inserts a reporting statement automatically in the case of a timeout, which indicates the
device is not operating according to specification. 21

3.1 The Linux driver taxonomy in terms of basic driver classes. The size (in percentage of lines of code) is
mentioned for 5 biggest classes. Not all driver classes are mentioned. 31

3.2 The percentage of driver code accessed during different driver activities across driver classes. 36

xii

3.3 The change in driver code in terms of LOC across different driver classes between the Linux 2.6.0 and
Linux 2.6.39 kernel. 37

3.4 The IDE CD-ROM driver processes table-of-contents entries into a native format. 38

3.5 The average number of chipsets supported by drivers in each class. 40

3.6 The cyclades character drivers supports eight chipsets that behaves differently at each phase of execu-
tion. This makes driver code space efficient but extremely complex to understand. 41

3.7 The average kernel library, memory, synchronization, kernel device library, and kernel services library
calls per driver (bottom to top in figure) for all entry points. 42

3.8 The device interaction pattern representing port I/O, memory mapped I/O, bus resources (bottom to
top) invoked via all driver entry points. 44

3.9 The percentage of driver entry points under coverage of threaded and event friendly synchronization
primitives. 48

3.10 Similar code between two different HPT ATA controller drivers essentially performing the same action.
These are among the least-similar functions that DrComp is able to detect these functions as related.
The boxes show differentiating statements in the two functions that account for the close signature values. 49

3.11 The above figure shows identical code that consumes different register values. Such code is present
in drivers where multiple chipsets are supported as well as across drivers of different devices. The
functions are copies except for the constants as shown in the boxes. 49

4.1 Modern devices perform many operations during initialization such as setting up kernel and device
structures based on chipset and device features, checksumming device ROM data, various device tests
followed by driver initialization and configuration. 59

4.2 FGFT replicates driver entry points into a normal driver and an SFI driver module. A runtime support
module provides communication and recovery support. 61

4.3 Our device state checkpointing mechanism refactors code from existing suspend-resume routines to
create checkpoint and restore for drivers as shown in Figure (a). The checkpoint routine only stores
a consistent device snapshot to memory while the restore loads the saved state and re-initializes the
device. Figures (b) and (c) show checkpoint and restore routines in the rtl8139 driver. 65

4.4 FGFT behavior during successful and failed entry point executions. 69

List of Tables

2.1 Vendor recommendations for hardening drivers against hardware failures. Recommendations addressed
by Carburizer are marked with a ⋆. 10

2.2 Instances of hardware dependencies by modern Linux device drivers.(2.6.18.8 kernel) 18

2.3 Instances of device-reporting code inserted by Carburizer. Each entry shows the number of device
failures detected by the driver, followed by the number where the driver did not report failures and
Carburizer inserted reporting code. 21

2.4 Instances of fault-reporting code inserted by Carburizer compared against all errors detected in the
driver. Each entry shows the actual number of errors detected in the driver followed by the number of
errors reported using Carburizer. 22

2.5 TCP streaming send performance with netperf for regular and carburized drivers with automatic recov-
ery mechanism for the E1000 and forcedeth drivers. 26

2.6 TCP streaming and UDP request-response receive performance comparison of the E1000 between the
native Linux kernel and a kernel with the Carburizer runtime monitoring the driver’s interrupts. . . . 26

3.1 Research projects on drivers, the improvement type, and the number and class of drivers used to support
the claim end to end. Few projects test all driver interfaces thoroughly. Static analysis tools that do
not require driver modifications are available to check many more drivers. Also, some solutions, like
Carburizer [47], and SUD [13] support the performance claims on fewer drivers. 32

3.2 Common assumptions made in device driver research. 33

3.3 Comparison of modern buses on drivers across all classes. Xen and USB drivers invoke the bus for the
driver while PCI drivers invoke the device directly. 45

3.4 The total number of similar code fragments and fragment clusters across driver classes and action items
that can be taken to reduce them. 51

xiv

4.1 Faults injected to test failure resilience represent runtime and programming errors. Dynamic faults are
invoked using ioctls, and static faults are inserted with an additional compiler pass. 71

4.2 Fault injection table with number of unique faults injected per driver. FGFT is able to correctly restore
the driver and device state in each case. 71

4.3 TCP streaming send performance with netperf for regular and FGFT drivers with checkpoint based
recovery. 73

4.4 FGFT and restart based recovery times. Restart-based recovery requires additional time to replay logs
running over the lifetime of the driver. FGFT does not affect other threads in the driver. 73

4.5 Latency for device state checkpoint/restore. 73

4.6 Drivers with and without power management as measured with static analysis tools. USB drivers (audio
and storage) support hundreds of devices with a common driver, and support suspend/resume. . . . 74

4.7 Annotations required by FGFT isolation mechanisms for correct marshaling. Kernel annotations are
common to a class, and driver annotations are specific to a single driver. 75

4.8 Developer effort for checkpoint/restore driver callbacks. 75

7.1 Other uses for fast device state checkpointing. 87

Chapter 1
Introduction

My dissertation addresses the complexity problem in device access in modern operating systems. I look
at three problems arising due to rising hardware and software complexity: 1) Improving the reliability of
modern device drivers against peripheral device failures, 2) Surveying the breadth of driver code to gain
a deeper understanding of driver code complexity, and 3) Improving device downtime latency caused by
complex device initialization by introducing fast checkpoint-restore in modern drivers. I start by motivating
device access in modern computers.

1.1 Motivation

Computers are increasingly dependent on attached devices for the services they provide. Users are attaching
an ever growing, changing and evolving set of devices to make the computers more functional and inter-
esting. Furthermore, the introduction of new forms of I/O, such as touchscreens, accelerometers, and new
interfaces, such as thunderbolt, have further increased the required OS abstractions. These devices are also
being accessed in different environments such as through hypervisors or in mobile environments. Thus, not
only are number of devices growing but the requirements placed on supporting them are also growing.

Devices are supported in operating systems through device drivers. Drivers encapsulate details about
one or more devices, and export a standard device interface. This allows applications and OS services to com-
municate with a wide variety of devices without any knowledge of how a specific device works. Supporting
new and complex devices burdens the operating system. First, there is tremendous growth in number and
type of devices that are supported by a modern OS. This requires lots of complicated support code in the
OS that hurts its simplicity. Linux supports almost 3700 drivers in 73 different classes and each class im-
poses unique device support requirements on the OS. As an example, a 10G ethernet card and a credit card
reader, both recent devices, have very different requirements of performance and security from the device
stack supported in the OS.

Second, devices are prone to hardware failures due to design faults, wear-out or external conditions

2

(such as dirt and heat). By supporting multiple complex devices, the OS needs to ensure that peripheral
device failures does not hurt the reliability of the overall system.

Third, as devices are getting more sophisticated, with complex firmware and configuration options, the
device startup latency time has become significant [48]. This affects OS functions like reboot, upgrade and
live migration of direct attached devices. The reason is that these OS functions reset the device subsystem
and wait for devices to re-initialize, which can be slow.

Finally, with the tremendous growth of devices, the number of drivers have also increased tremen-
dously. This adds to the software complexity in the OS. Device drivers constitute 70% of the Linux code
base [85], and are likely a greater fraction of the code written for the Windows kernel, which supports many
more devices. For example, if we look at the newest kernel, Linux 3.8 (March 2013), drivers contribute 6.7
million LOC code; Other complex systems like memory management or file system code are almost an order
of magnitude smaller than drivers. Because this is the bulk of the kernel, and it is growing very rapidly,
it is difficult to understand how the existing driver architecture adapts to these new devices. If we under-
stand driver code better, we can improve device access, have less driver code, and find more opportunities
for research. To address the complexity problem, I briefly re-visit the existing body of work on driver-kernel
reliability research and identify what solutions are most effective.

Drivers are the dominant cause of OS crashes in desktop PCs [34, 73]. The reason is that the driver
development model consists of hundreds of developers adding thousands of lines of privileged code in a
rather unsafe language directly into the kernel. This is a recipe for complex system with reliability problems.
Consequently, driver research over the past decade has significantly focused on reliability problems using
software/hardware fault isolation techniques, bug detection tools, using special programming languages or
environments for surviving crashes in modern operating systems due to faulty or malicious device drivers [7,
13, 16, 17, 18, 19, 28, 32, 53, 64, 74, 83, 85, 86, 95, 103, 105, 112].

Amongst the driver reliability solutions developed, there is limited adoption of complete systems that
can detect and fix driver problems at runtime because they introduce a large body of code to the kernel and
validate their results on limited number of drivers. For example, Nooks [102] requires 23K lines of code but
only tested on six drivers and did not demonstrate how it applies to other drivers. Solutions that have had
significant impact in improving the driver kernel interface such as Windows SDV, Coverity, and Cocinelle [8,
11, 74] apply to a lot of drivers. However, they still require someone to go and fix the bugs and are not
complete systems. My plan to address the complexity problem is to re-use lessons from reliability research
and have complete solutions that limit changes to OS and apply to large number of drivers.

1.2 Thesis

The goal of my dissertation research is to look at important problems caused by hardware and software com-
plexity. I specifically look at: (i) With the increase in hardware complexity, how resilient are modern operating
systems against hardware failures? (ii) How can OS functions like fault tolerance, upgrade, reboot, that re-
quire resetting the device subsystem be made fast without adding large kernel subsystems? and finally (iii)
How can we better understand and reduce the software complexity of drivers and improve device support?
I will discuss these problems in the order I reviewed them in graduate school and propose the thesis of my
dissertation.

3

Device Failures The device and driver interact through a protocol specified by the hardware. Failure in ad-
herence to this protocol can lead to serious security and reliability issues since drivers operate in a privileged
domain in modern operating systems. These hardware failures manifest due to device complexity, wear-out
and manufacturing faults and external environmental conditions. It is difficult to verify complex devices do
not have latent problems in them that can manifest as hardware failures [88]. Furthermore, internal software
failures can occur in devices that execute embedded firmware, sometimes up to millions of lines of code [117].
Wear-out or electrical interference [55] can cause bit flips and stuck-ats in hardware inputs from the device.
Finally, environmental conditions such as heat, dirt, radiation, interference can cause transient or permanent
errors in devices. Applying the same solutions as those used for driver software bugs may not address reli-
ability due to unreliable hardware. This is because software stress testing cannot simulate hardware failures
and only tests driver behavior by providing different software inputs. Hence, it is important to assess the
nature of hardware unreliability issues that plague modern drivers and design mechanisms to address these
issues.

Understanding Modern Device Drivers In order to improve device access, I looked at the range of problems
that affect device drivers. However, I realized that only limited information about the breadth of drivers is
available. For example, most research projects consider only a small set of PCI devices, and then generalize
to all driver classes. However, many devices for consumer PCs are connected over USB, and hence these
designs may not apply. There is a second class of research that looks at many drivers using static analysis tools
but is focused towards finding software bugs. These tools do a great job of finding bugs but ignore normal
functioning code and driver code properties. Furthermore, some times bugs do not correctly represent the
problems but are mere symptoms of broader issues [60].

The result is that our research view is limited to small set of drivers or a list of bugs, and much of
driver code has never been looked at. The implications of broad information about drivers used in practice
extend beyond the applicability of existing research. They help guide the fundamental type of research that
we should perform as a community. The large, unknown code base makes it hard to generalize about drivers
and also discourages major changes to driver model. Hence, it is necessary to review the driver code in
modern settings such as advancements in hardware and programming language techniques with a broader
lens.

Device Checkpoint/Restore Support for checkpoint and restore has long been regarded as a useful feature
for fault tolerance. However, to date it has not been possible for device drivers because they share state
with their devices that is not available through memory. As a result, capturing enough state to restore driver
functionality following a failure is difficult.

Past approaches to driver recovery instead rely on restart/replay, which can be slow since the device
needs to be cold booted. Second, it requires writing wrapper code to log all driver/kernel interactions that
increases overhead on high-performance devices such as solid-state drives and high-speed NICs. Even log-
ging may be insufficient, though, if the semantics of requests are ambiguous. During my study of drivers, I
found that 44% of drivers contain such semantics and restart based recovery may not work correctly for these
drivers. In addition, existing approaches either require large subsystems that must be kept up-to-date as the
kernel changes, or require substantial rewriting of drivers.

Thus, a better approach is needed. In order to re-initialize devices correctly and quickly, I argue that

4

drivers should export checkpoint and restore operations. When used for fault tolerance, checkpoints can
reduce the latency of recovery by restarting drivers more quickly and reduce the cost and complexity of
logging. Furthermore, checkpoints also solve the problems of replaying vendor-specific semantics since upon
failure, the driver and device can be restored to the checkpointed state.

Therefore, I propose the following three-part thesis for improving the state of art in device access:

First, many drivers make incorrect assumptions about hardware behavior. They use hardware
values in critical control and data paths. Furthermore, these drivers also miss reporting device fail-
ures and do not provide any provisions for recovery. Using static analyses and runtime watchdog
support, problems with driver-hardware abstractions can be improved with little/no runtime costs.

Second, our exposure to drivers is limited to bugs and our view is largely reliability centric. A
study to evaluate driver code functions, interactions and abstractions can provide valuable new
insights about driver code. The study can help verify research assumptions, and understand driver
code behavior, device/kernel interactions and measure redundant abstractions in device drivers.

Third, the decade old driver-restart mechanisms for driver recovery are slow. This hampers the
availability of many OS functions such as fault tolerance, OS restart and VM Migration. Re-
factoring the existing power management code can provide device checkpoint functionality which
improves the speed of driver recovery. Furthermore, it enables new applications like providing
fault tolerance to specific portions of driver code.

1.3 Contributions

I now briefly describe the three major systems that I have developed that contribute towards this thesis. These
systems address the three problems I describe in my thesis.

Tolerating hardware device failures in software I reviewed the hardware abstractions in device drivers
and found that hardware devices can fail, but many drivers assume they do not. When confronted with
real devices that misbehave, these assumptions can lead to driver or system failures. Even though major
operating system and device vendors recommend that drivers detect and recover from hardware failures,
I find that there are many drivers that will crash or hang when a device fails. Such bugs cannot easily be
detected by regular stress testing because the failures are induced by the device and not the software load.

To address the above problem, I developed Carburizer, a code-manipulation tool and associated run-
time that improves system reliability in the presence of faulty devices. Carburizer analyzes driver source code
to find locations where the driver incorrectly trusts the hardware to behave. Carburizer identified almost 1000
such bugs in Linux drivers with a false positive rate of less than 8 percent. With the aid of shadow drivers
for recovery, Carburizer can automatically repair 840 of these bugs with no programmer involvement. To
facilitate pro-active management of device failures, Carburizer can also locate existing driver code that de-
tects device failures and inserts missing failure-reporting code. Finally, the Carburizer runtime can detect
and tolerate interrupt-related bugs, such as stuck or missing interrupts.

5

Understanding and improving modern driver code To broaden our insights about the reality of drivers, I
performed the largest-ever study of Linux driver source code [49]. I developed a set of static analysis tools
to analyze 5.4 million lines of driver code across various axes. Broadly, my study looks at three aspects of
driver code (i) what are the characteristics of driver code functionality and how applicable is driver research
to all drivers? (ii) how do drivers interact with the kernel, devices, and buses, and how can we achieve driver
code standardization? (iii) are there similarities between drivers that can be abstracted into libraries to reduce
driver size and complexity?

My study produced several interesting results with several important implications and I will mention
the top three. First, majority of the driver code is dedicated to driver initialization and cleanup (about 36%)
and only 23% is dedicated to handling I/O and interrupts. These results indicate that efforts at reducing the
complexity of drivers should not only focus on request handling, but also on better mechanisms for initial-
ization. Second, I found that many assumptions made by driver research do not apply to all drivers. For
example, drivers are categorized into different classes based on their functionality such as network, disk etc.
However, I found that at least 44% of drivers have functionality outside this class definition. Hence, existing
driver recovery techniques will fail to correctly recover from failures for 44% of the devices. Finally, from
the similarity study, I found 8% (or about 500 KLoC) of all driver code is substantially similar to code for
other drivers and adds unnecessary complexity to drivers. This code can be removed with new abstractions,
libraries or programming techniques. My study has provided the community with a better understanding of
driver behavior, of the applicability of existing research to these drivers, and of the opportunities that exist
for future research such as driver synthesis and remote driver execution.

Fine-Grained Fault Tolerance To address the problem of low latency device recovery, I developed a novel
checkpointing mechanism that re-uses existing suspend/resume code in drivers and described a principled
way to re-factor existing drivers to export the checkpoint-restore interface. I demonstrate its utility by building
Fine-Grained Fault Tolerance (FGFT), a system that provides fine-grained control over the code protected [46].
FGFT shifts the burden of fault tolerance to faulty code. Instead of introducing a large fault tolerance sub-
system in the OS, FGFT uses static analysis and code generation to provide isolation and fault detection in
existing driver code. It executes driver entry points as a transaction and uses software-fault isolation to pre-
vent corruption and detect failures. When a call fails, FGFT discards the software state and restores the device
from a checkpoint. Furthermore, FGFT can be integrated with static analysis tools (such as Carburizer), to
provide fault tolerance for specific entry points statically or during runtime, when specific inputs occur.

Results from FGFT are encouraging: First, taking a checkpoint is fast, averaging only 20µs. Second,
checkpoints remove the need for logging and hence remove the problem of incomplete recovery arising from
unique device semantics. Third, the implementation effort of FGFT is small: I added 38 lines of code to the
kernel to trap processor exceptions, and found that device checkpoint code can be constructed with little
effort from power-management code. Furthermore, this code is present in 76% of drivers in common driver
classes. Through fault injection experiments I demonstrate that FGFT is able to tolerate a range of driver
failures. While I applied checkpoints to fault tolerance, there are more opportunities to use them, such as in
OS migration, fast reboot, and persistent operating systems.

To summarize the overall contributions, my dissertation presents the first research consideration of
the implications of hardware unreliability problems on drivers. It also introduces the term “hardware de-
pendence bugs”, which represents a new class of bugs representing instances where drivers make incorrect
assumptions about hardware behavior. Next, my dissertation includes the first-ever large scale study of de-

6

vice drivers, to understand what they are actually doing, how modern research applies to them and what
are the opportunities for future research. Finally, I introduced a novel checkpoint-restore facility in modern
drivers for low latency recovery. My dissertation has resulted in multiple kernel patches and an article aimed
at informing Linux kernel developers about hardware dependence bugs in Linux Weekly News [24].

1.4 Thesis Organization

The dissertation is organized as follows: Chapter 2 describes the problem of hardware failures and how
drivers can tolerate these failures using Carburizer. Chapter 3 presents my comprehensive study on drivers
and describes its results. Chapter 3 also includes a brief backgorund on device drivers. Chapter 4 describes
how checkpoint/restore can be introduced in modern drivers and how it improves recovery using FGFT.
Chapter 5 presents related work for Carburizer and FGFT. Finally, I describe some lessons and future work
in Chapter 6 and 7 and finally conclude in Chapter 8.

Chapter 2
Tolerating Hardware Device Failures in

Software

Reliability remains a paramount problem for operating systems. As computers are further embedded within
our lives, we demand higher reliability because there are fewer opportunities to compensate for their failure.
At the same time, computers are increasingly dependent on attached devices for the services they provide.

Applications invoke devices through device drivers. The device and driver interact through a protocol
specified by the hardware. When the device obeys the specification, a driver may trust any inputs it receives
from the device. These are inputs responses from the device based on its interaction with the device and
not the user data such as packets or disk blocks. Unfortunately, devices do not always behave according to
their specification. Some failures are caused by wear-out or electrical interference [55]. In addition, internal
software failures can occur in devices that execute embedded firmware, sometimes up to millions of lines of
code [117].

Studies of Windows servers at Microsoft demonstrate the scope of the problem [4]. In one study of
Windows servers, eight percent of systems suffered from a storage or network adapter failure [4]. Many of
these failures are transient: hardware vendors repeatedly report that the majority of returned devices operate
correctly and retrying an operation often succeeds [3, 6, 77]. In total, 9% of all unplanned reboots of servers
at Microsoft during a separate study were caused by adapter or hardware failures. Most importantly, when
running platforms with the same adapters and software that tolerates hardware faults, reported device failures
rates drop from 8 percent to 3 percent [4]. This evidence suggests that (1) device failure is a major cause of system
crashes, (2) transient device failures are common, and (3) drivers that tolerate device failures can improve reliability.
Without addressing this problem, the reliability of operating systems is limited by the reliability of devices.

Device hardware failures cause system hangs or crashes when drivers cannot detect or tolerate the
failure. The Linux kernel mailing list contains numerous reports of drivers waiting forever and reminders
from kernel experts to avoid infinite waits [58]. Nevertheless, this code persists. For example, the code below
from the 3c59x.c network driver in the Linux 2.6.18.8 kernel will loop forever if the device never returns the

8

right value:

while (ioread16(ioaddr + Wn7_MasterStatus))
& 0x8000)

;

To address this problem, major OS vendors have issued recommendations on how to harden drivers to
device failures [38, 99, 44]. These recommendations include validating all inputs from a device, ensuring that
all code waiting for a device will terminate, and reporting all hardware failures. Despite these recommenda-
tions, we found that a large number of Linux drivers do not properly tolerate hardware failures. I see two
reasons for this: (1) testing drivers against hardware failures is difficult, and (2) hardening drivers by hand is
challenging. Common testing procedures, such as stress testing, will not detect failures related to hardware.
Instead, fault-injection testing is required [4, 40, 119]. Unlike other software testing, device drivers require
that an instance of the device be present, which limits the number of machines that can run tests.

Previous work on driver fault tolerance has concentrated on two major approaches: static bug find-
ing [7, 8, 31, 79] and run-time fault tolerance [112, 105, 42, 118, 103]. Static approaches check for bugs in the
interface between the driver and the kernel to ensure that the driver does not violate kernel-programming
rules, such as by failing to release a lock. But, these tools do not verify that the driver validates inputs received
from the device.

Systems that tolerate faults at run time, such as SafeDrive [118] and Nooks [103], either instrument
driver code or execute it in an isolated environment. These systems detect faults, including hardware-induced
faults, dynamically and trigger a recovery mechanism. However, these systems have had limited deployment,
perhaps due to the heavyweight nature of the solution.

This chapter presents Carburizer,1 a code-manipulation tool and associated runtime that automatically
hardens drivers. A hardened driver is one that can survive the failure of its device and if possible, return the de-
vice to its full function. Carburizer implements three major hardening recommendations: (1) validate inputs
from the device, (2) verify device responsiveness, and (3) report hardware failures so that an administrator
can proactively manage the failing hardware [4, 38, 44, 99].

Carburizer analyzes driver code to find where it accepts input from the device. If the driver uses device
data without checking its correctness, Carburizer modifies the driver to insert validation code. If the driver
checks device data for correctness, Carburizer inserts code to report a failure if the data is incorrect. Finally,
the Carburizer runtime detects stuck interrupts and non-responsive devices and causes the driver to poll the
device. To automatically repair bugs, Carburizer also invokes a generic recovery service that can reset the
device. I rely on shadow drivers [102] to provide this recovery service.

Despite the common application of static analysis tools to the Linux kernel [26], Carburizer uncovers a
large number of problems. Carburizer identified 992 bugs in existing Linux drivers where a hardware failure
may cause the driver to crash or hang. With manual inspection of a random subset, I determined that the
false positive rate is 7.4%, for approximately 919 true bugs found. Discounting for false positives, Carburizer
repairs approximately 845 real bugs by inserting code to detect hardware failures and recover at runtime.
When run with common I/O workloads, drivers modified by Carburizer perform similarly to native drivers.

1Carburizing is a process of hardening steel through heat treatment.

9

In the remainder of this chapter, I first discuss hardware failures and OS vendor guidelines for hard-
ening drivers. I then present the three major functions of Carburizer in Sections 2.2, 2.3 and 2.4. Section 2.5
presents the overhead of our code changes, and I finish with a summary.

2.1 Device Hardware Failures

In this section, I describe the problem of hardware device failures and vendor recommendations on how to
tolerate and manage device failures.

2.1.1 Failures Types

Modern CMOS devices are prone to internal failures and without significant design changes, this problem is
expected to worsen as transistors shrink. Prior studies indicate that these devices experience transient bit-flip
faults, where a single bit changes value; permanent stuck-at faults, when a bit assumes a fixed value for an
extended period; and bridging faults when an adjacent pair of bits are electrically mated, causing a logical-and
or logical-or gate between the bits [110, 55]. Environmental conditions such as electromagnetic interference
and radiation can cause transient faults. Wear-out and insufficient burn-in may result in stuck-at and bridging
faults in the devices.

In addition, when a device contains embedded firmware, or even an embedded operating system [117],
any software-related failure is possible, such as out-of-resource errors from memory leaks or concurrency
bugs.

Failure manifestations Device drivers observe failures when they access data generated by the device. For
PCI drivers, which perform I/O through memory or I/O ports, the driver reads incorrect values from the
device. For USB drivers, which use a request/response protocol, a device failure may cause a response packet
to contain incorrect data [55]. Sources at Microsoft report that device hangs and interrupt storms are common
manifestations of faulty hardware [35].

Many hardware failures are likely to manifest as corrupt values in device registers. A single bit-flip
internal to a device controller may propagate to other internal registers before the device driver reads a gar-
bled value exposed through a device register. Similarly, an internal stuck-at failure may result in a transient
corruption in a device register, a stuck value in a register, a stuck interrupt request line, or unpredictable
DMA accesses. Bugs in device firmware may manifest as incorrect output values or timing failures, when a
device does not respond within the specified time period.

2.1.2 Vendor Recommendations

Major OS vendors provide recommendations to driver writers on how to tolerate device failures [4, 38, 44,
99]. Table 2.1 summarizes the recommendations of Microsoft, IBM, Intel, and Sun on how to prevent faulty
hardware from causing system failures. The advice can be condensed to four major actions:

10

Validation
Input validation. Check pointers, array indexes, packet lengths, and status data received from hard-
ware [99, 38, 44]. ⋆
Unrepeatable reads. Read data from hardware once. Do not reread as it may be corrupt later [99]
DMA protection. Ensure that the device only writes to valid DMA memory [99, 44]
Data corruption. Use CRCs to detect data corruption if higher layers will not also check [99, 44]

Timing
Infinite polling. Ensure that spinning while waiting on the hardware can time out, and bound all

loops [99, 44, 38]. ⋆
Stuck interrupts. Handle interrupts that cannot be dismissed [40, 99] ⋆
Lost request. Use a watchdog to verify hardware responsiveness [4, 38] ⋆
Excessive delay. Avoid delaying the OS, busy waiting, and holding locks for extended periods [4, 38]
Unexpected events. Handle out-of-sequence events [44, 38]

Reporting
Report hardware failures. Notify the operating system of errors, log all useful information [4, 38, 44,

99] ⋆
Recovery
Handle all failures. Handle error conditions, including generic and hardware-specific errors [4, 38,

99] ⋆
Cleanup properly. Ensure the driver cleans up resources after a fault [99, 44] ⋆
Conceal failure. Hide recoverable faults from applications [38] ⋆
Do not crash. Avoid halting the system [4, 38, 44, 91] ⋆
Test drivers. Test driver using fault injection [119, 40, 44]
Wrap I/O memory access. Use only wrapper functions to perform programmed/memory-mapped

I/O [99, 44, 91]

Table 2.1: Vendor recommendations for hardening drivers against hardware failures. Recommendations addressed by Carburizer
are marked with a ⋆.

1. Validate. All input from a device should be treated as suspicious and validated to make sure that values
lie within range.

2. Timeout. All interaction with a device should be subject to timeouts to prevent waiting forever when
the device is not responsive.

3. Report. All suspect behavior should be reported to an OS service, allowing centralized detection and
management of hardware failures.

4. Recover. The driver should recover from any device failure, if necessary by restarting the device.

The goal of my work is to automatically implement these recommendations. First, I seek to make drivers
tolerate and recover from device failures, so device failures do not lead to system failures. For this aspect
of my work, I focus on transient failures that do not recur after the device is reset. Second, I seek to make
drivers report device failures so that administrators learn of transient failures and can proactively replace
faulty devices.

Carburizer addresses all four aspects of vendor recommendations described above. Section 2.2 ad-
dresses bugs that can be found through static analysis, including infinite polling and input validation. Sec-
tion 2.3 addresses reporting hardware failures to a centralized service. Section 2.4 addresses runtime support
for tolerating device failures, including recovery, stuck interrupts, and lost requests. The recommendations
that Carburizer can apply automatically are marked in Table 2.1. The remaining recommendations can be

11

Execution ComponentsCompile-time Components

Original
Driver
Source

Hardened DriverCarburizer

Faulty
Device

Carburizer
Runtime

OS Kernel

Static Analysis and
Code Generation

Runtime Failure
Detection and

Recovery
Bug Lists

Figure 2.1: The Carburizer architecture. Existing kernel drivers are converted to hardened drivers and execute with runtime support
for failure detection and recovery.

addressed with other techniques, such as an IOMMU for DMA memory protection, or cannot be applied
without semantic information about the device.

2.2 Hardening Drivers

This section describes how Carburizer finds and fixes infinite polling and input validation bugs from Table 2.1.
These are hardware dependence bugs that arise because the software depends on the hardware’s correctness for
its own correctness. The goal of my work is to (1) find places where driver code uses data originating from
a device, (2) verify that the driver checks the data for validity before performing actions that could lead to
a crash or hang, and if not, (3) automatically insert validity or timing checks into the code. These checks
invoke a generic recovery mechanism, which I describe in Section 2.4. When used without a recovery service,
Carburizer identifies bugs for a programmer to fix.

Figure 2.1 shows the overall architecture of our system. Carburizer takes unmodified drivers as input
and with a set of static analyses produces (1) a list of possible bugs and (2) a driver with these bugs repaired,
i.e. drivers that validate all input coming from hardware before using it in critical control or data flow paths.
The Carburizer runtime detects additional hardware failures at runtime and can restore functionality after a
hardware failure.

I implement Carburizer with CIL [72]. CIL reads in pre-processed C code and produces an internal
representation of the code suitable for static analysis. Tools built with CIL can then modify the code and
produce a new pre-processed source file as output.

I next describe the analyses for hardening drivers in Carburizer and our strategies for automatically
repairing these bugs. I experiment with device drivers from the Linux 2.6.18.8 kernel.

12

1 static int amd8111e_read_phy(.......)
2 {
3 .
4 reg_val = readl(mmio + PHY_ACCESS);
5 while (reg_val & PHY_CMD_ACTIVE)
6 reg_val = readl(mmio + PHY_ACCESS);
7 .
8 }

Figure 2.2: The AMD 8111e network driver (amd8111e.c) can hang if the readl() call in line 6 always returns the same value.

2.2.1 Finding Sensitive Code

Carburizer locates code that is dependent on inputs from the device. When a driver makes a control decision,
such as a branch or function call, based on data from the device, the control code is sensitive because it is
dependent on the correct functioning of the device. If code uses a value originating from a device in an
address calculation, for example as an array index, use of the address is dependent on the device. Carburizer
finds hardware-dependent code that is incorrect for some device inputs.

Carburizer’s analyses are performed in two passes. The first pass is common to all analyses and identi-
fies variables that are tainted, or dependent on input from the device. Carburizer consults a table of functions
known to perform I/O, such as readl for memory-mapped I/O or inb for port I/O. Initially, Carburizer marks
all heap and stack variables that receive results from these functions as tainted. Carburizer then propagates
taint to variables that are computed from or aliased to the tainted variables. Carburizer considers the static
visibility of variables but does not consider possible calling contexts. For compound variables such as struc-
tures and arrays, the analysis is field insensitive and assumes that the entire structure is tainted if any field
contains a value read from the device. I find that in practice this occurs rarely, and therefore yields a simpler
analysis that is almost as precise as being sensitive to fields.

The output of the first pass is a table containing all variables in all functions indicating if the variable
is tainted. Carburizer also stores a list of tainted functions that return values calculated from device inputs.
The table from the first pass is used by second-pass analyses described below.

Infinite Polling

Drivers often wait for a device to enter a given state by polling a device register. Commonly, the driver sits
in a tight loop reading the device register until a bit is set to the proper value, as shown in Figure 2.2. If the
device never sets the proper value, this loop will cause the system to hang. Driver developers are expected to
ensure these loops will timeout eventually. I find, though, that in many cases device drivers omit the timeout
code and loops terminate only if the device functions correctly.

To identify these unbounded loops, I implement an analysis to detect control paths that wait forever for
a particular input from the device. Carburizer locates all loops where the terminating conditions are tainted
(i.e., dependent on the device). For each loop, Carburizer computes the set of conditions that cause the loop to
terminate through while clauses as well as conditional break, return and goto statements. If all the terminating
conditions for a loop are hardware dependent, the loop may iterate infinitely when the device misbehaves.
Figure 2.2 shows a bug detected by our analysis. The code in lines 5-6 can loop infinitely if readl, a function to
read a device register, never returns the correct value. While this is a simple example, our analysis can detect

13

1 static void __init attach_pas_card(...) {
2 .
3 if ((pas_model = pas_read(0xFF88)))
4 {
5 char temp[100];
6
7 sprintf(temp,
8 ”%s rev %d”,
9 pas_model_names[(int) pas_model],

10 pas_read(0x2789));
11 .
12 }

Figure 2.3: The Pro Audio Sound driver (pas2_card.c) uses the pas_model variable as an array index in line 9 without any checks.

complex cases, such as loops that contain case statements or that call functions performing I/O.

Checking Array Accesses

Many drivers use inputs from a device to index into an array. When the range of the variable (e.g., 65536
for a 16-bit short) is larger than the array, an incorrect index can lead to reading an unmapped address (for
large indices) or corrupting adjacent data structures. Figure 2.3 shows a loop in the Pro Audio sound driver
(pas2_card.c) that does not check for bounds while accessing an array. While many drivers always check
array bounds, some drivers are not as conscientious. Furthermore, a single driver may be inconsistent in its
checks.

I implement an analysis in Carburizer to determine whether tainted variables are used as array indices
in static arrays. If the array is accessed using a tainted variable, Carburizer flags the access as a potential
hardware dependence bug. The analysis can detect when values returned by one function are used as array
indices in another. In addition, when an array index is computed from multiple variables, Carburizer checks
whether all the input variables are untainted.

Carburizer also detects dynamic (variable-sized) array dereferencing with tainted variables. CIL con-
verts all dynamic array accesses into pointer arithmetic and memory dereferencing, so it requires a separate
analysis from static arrays (those declared as arrays with a fixed size). In the second analysis pass, Carburizer
detects whether a tainted variable is used for pointer arithmetic or as the address of a memory dereference.
In both cases, Carburizer detects a potentially unsafe memory reference. I report a bug where the pointer
arithmetic is performed rather than where a dereference occurs; this is the location where a bounds check is
required, as the offset may not be available when memory is actually dereferenced. If the pointer is never
used, this may result in a false positive.

Figure 2.4 shows driver code where unsafe data from device is used for pointer arithmetic. At line 3,
bScbIdx is assigned value from the ORC_RD macro, which reads a 32-bit value from the device. At line 9, this
value is used as an offset for pointer pScb. If a single bit of the incoming data is flipped, the pointer dereference
in line 11 could cause memory corruption or, if the address is unmapped, a system crash.

While rare, drivers may also read a pointer directly from a device. Figure 2.5 shows an example from

14

1 static void orc_interrupt(...) {
2 .
3 bScbIdx = ORC_RD(hcsp->HCS_Base,
4 ORC_RQUEUE);
5
6 pScb = (ORC_SCB *) ((ULONG)
7 hcsp->HCS_virScbArray
8 + (ULONG)
9 (sizeof(ORC_SCB) * bScbIdx));

10
11 pScb->SCB_Status = 0x0;
12
13 inia100SCBPost((BYTE *)
14 hcsp, (BYTE *) pScb);
15 .
16 }

Figure 2.4: The pScbIdx variable is used in pointer arithmetic in line 11 without any check in the a100 SCSI driver (a100u2w.c).
1 void hptiop_iop_request_callback(...) {
2 .
3 p = (struct hpt_iop_cmd __iomem *)req;
4 arg = (struct hi_k *)
5 (readl(&req->context) |
6 ((u64) readl(&req->context_hi32)<<32));
7
8 if (readl(&req->result) == IOP_SUCCESS) {
9 arg->result = HPT_IOCTL_OK;

10 }
11 .
12 }

Figure 2.5: The HighPoint RR3xxx SCSI driver (hptiop.c) reads arg from the controller in line 5 and dereferences it as a pointer in
line 9.

a SCSI driver where the driver reads a 64-bit pointer in lines 5 and 6 and dereferences it in line 9. Carburizer
also flags this use of pointers as a bug.

Removing False Positives

False positives may arise when the driver has a timeout in a loop or validates input that our analysis does not
detect. From the suspect loops, Carburizer determines whether the programmer has already implemented
a timeout mechanism by looking for the use of a timeout counter. A timeout counter is a variable that is (1)
either incremented or decremented in the loop, (2) not used as an array index or in pointer arithmetic, and (3)
used in a terminating condition for the loop, such as a while clause or in an if before a break, goto, or return
statement. If a loop contains a counter, Carburizer determines that it will not loop infinitely. I also detect the
use of the kernel jiffies clock as a counter.

False positives for unsafe pointer dereferencing and array indexing may occur if the driver already
validates the pointer or index with a comparison to NULL or a shift/mask operation on the incoming pointer
data from the device. Carburizer does not flag a bug when these operations occur between the I/O operation
and the pointer arithmetic or pointer dereference.

Carburizer removes false positives that occur when a tainted variable is used multiple times without an

15

1 static int amd8111e_read_phy(.......)
2 {
3 .

4 unsigned long long delta = (cpu/khz/HZ)*2;
5 unsigned long long _start = 0;
6 unsigned long long _cur = 0;
7 timeout = rdtscll(start) + delta ;

8 reg_val = readl(mmio + PHY_ACCESS);
9 while (reg_val & PHY_CMD_ACTIVE) {

10 reg_val = readl(mmio + PHY_ACCESS);
11

12 if (_cur < timeout) {
13 rdtscll(_cur);
14 } else {
15 __shadow_recover();
16 }

17 .
18 }

Figure 2.6: The code from Figure 2.2 fixed by Carburizer with a timeout counter.

intervening I/O operation and when a tainted variable is re-assigned with an untainted value. I keep track of
where in the code a variable becomes tainted, and only detect a bug if the pointer dereference or array index
occurs after the taint.

I find that the false positive techniques have been helpful. Identifying validity checks and repeated
use of a variable reduced the number of detected dynamic-array access bugs from 650 to 150, and the other
techniques further reduced it by almost half. For infinite polling, these techniques identified half the results
as false positives where the driver correctly broke out of the loop.

2.2.2 Repairing Sensitive Code

Finding driver bugs alone is valuable, but reliability does not improve until the bug is fixed. After finding a
bug, Carburizer in many cases can generate a fix. Repairing sensitive code consists of inserting a test to detect
whether a failure occurred and code to handle the failure. To recover, Carburizer inserts code that invokes
a generic recovery function capable of resetting the hardware. While repeating a device read operation may
fix the bug, this is not safe in general because device-register reads can have side effects. As recovery affects
performance, I ensure it will not be invoked unless an unhandled failure occurs and the driver could otherwise
crash or hang.

Carburizer relies on a generic recovery function common to all drivers. However, some drivers already
implement recovery functionality. For example, the E1000 gigabit Ethernet driver provides a function to
shutdown and resume the driver when it detects an error. For such drivers, it may be helpful to modify
Carburizer to generate code invoking a driver-specific function instead.

Fixing infinite polling When Carburizer identifies a loop where a driver may wait infinitely, it generates
code to break out of the loop after a fixed delay. I selected maximum delays based on the delays used in
other drivers. For loops that do not sleep, I found that most drivers wait for two timer ticks before timing

16

1 static void __init attach_pas_card(...)
2 {
3 .
4 if ((pas_model = pas_read(0xFF88)))
5 {
6 char temp[100];
7
8 if ((int)pas_model < 0 ||
9 (int)pas_model >= 5) {

10 __shadow_recover();
11 }

12 sprintf(temp,
13 ”%s rev %d”,
14 pas_model_names[(int) pas_model],
15 pas_read(0x2789));
16 .
17 }

Figure 2.7: The code from Figure 2.3 fixed by Carburizer with a bounds check.

out; I chose five ticks, a slightly longer delay, to avoid incorrectly breaking out of loops. For loops that invoke
a sleep function such as msleep, I insert code that breaks out of loops after five seconds, because the delay
does not impact the rest of the system. This is far longer than most devices require and ensures that if my
analysis does raise false positives, the repair will not break the driver. As shown in Figure 2.6, for tight loops
Carburizer generates code to read the processor timestamp counter before the loop and breaks out of the
loop after the specified time delay. When the loop times out, the driver invokes a generic recovery function.
This repair will only be invoked after a previously infinite loop times out, ensuring that there will not be any
falsely detected failures.

Fixing invalid array indices When array bounds are known, Carburizer can insert code to detect invalid
array indices with a simple bounds check before the array is accessed. Carburizer computes the size of static
arrays and inserts bounds checks on array indices when the index comes from the device. When an array
index is used repeatedly, Carburizer only inserts a bounds check before the first use of the tainted array
indice.

For dynamically sized arrays, the bound is not available. Carburizer reports the bug but does not gen-
erate a repair. With programmer annotations indicating where array bounds are stored [37, 118], Carburizer
could also generate code for dynamic bounds checking.

Figure 2.7 shows the code from Figure 2.3 after repair. In this code, the array size is declared statically
and Carburizer automatically generates the appropriate range check. This check will only trigger a recovery
if the index is outside the array bounds, so it never falsely detects a failure.

When repairing code that reads a pointer directly from a device, Carburizer does not know legal values
for the pointer. As result, it only ensures that the pointer is non-NULL. Unlike other fixes, this only prevents
a subset of crashes, because legal values of the pointer are not known. Figure 2.8 shows repaired code where
data from device is dereferenced.

17

1 void hptiop_iop_request_callback(...) {
2 .
3 p = (struct hpt_iop_cmd __iomem *)req;
4 arg = (struct hi_k *)
5 (readl(&req->context) |
6 ((u64) readl(&req->context_hi32)<<32));
7
8 if (readl(&req->result) == IOP_SUCCESS) {

9 if (arg == NULL)
10 __shadow_recover();

11 arg->result = HPT_IOCTL_OK;
12 }
13 .
14 }

Figure 2.8: The code from Figure 2.5 after repair. Carburizer inserts a null-pointer check in line 9.

Fixing driver panics Carburizer can also fix driver code that intentionally crashes the system when hard-
ware fails. Many drivers invoke panic when they encounter abnormal hardware situations. While OS vendors
discourage this practice, it is used when driver developers do not know how to recover and ensures that er-
rors do not propagate and corrupt the system. If a recovery facility is available then crashing the system is not
necessary. Carburizer incorporates a simple analysis to identify calls to panic, BUG, ASSERT and other system
halting functions and replace them with calls to the recovery function.

2.2.3 Summary

The static analysis performed by Carburizer finds many bugs but is neither sound nor complete: it may
produce false positives, and identify code as needing a fix when it is in fact correct, and false negatives by
missing some bugs. Nonetheless, I find that it identifies many true bugs.

False positives may occur when the driver already contains a validity check that Carburizer does not
recognize. For example, if the timeout mechanism for a loop is implemented in a separate function, Carburizer
will not find it and will falsely mark the loop as a bug. Carburizer only detects counters implemented as
standard integer types. When drivers use custom data-types, Carburizer does not detect the counter and
again falsely marks the loop as an error. For array indexing, Carburizer does not consider shift operations as
a validity check because, if the array is not a power of two in size, some index values will cause accesses past
the end of the array.

False negatives can occur because our interprocedural analysis only passes taint through return val-
ues. When a tainted variable is passed as an argument, Carburizer does not detect its use as sensitive code.
Carburizer also cannot detect silent failures that occur when the hardware produces a legal but wrong value,
such as in incorrect index that lies within the bounds of the array.

2.2.4 Analysis Results

I ran our code across all drivers in the Linux 2.6.18.8 kernel distribution. In total, I analyzed 6359 source files
across the drivers and sound directories. For major driver classes, Table 2.2 shows the number of bugs found
of each type. Despite analyzing over 2.8 million lines of code, on a 2.4 GHz Core 2 processor the analysis only

18

Driver Infinite Polling Static Array Dynamic Array Panic
Class Found Found Found Fixed
net 117 2 21 2
scsi 298 31 22 121
sound 64 1 0 2
video 174 0 22 22
other 381 9 57 32
Total 860 43 89 179

Table 2.2: Instances of hardware dependencies by modern Linux device drivers.(2.6.18.8 kernel)

takes thirty seven minutes to run, output repaired source files and compile the driver files.

The results show that hardware dependence bugs are widespread, with 992 bugs found across various
driver classes. Of these, Carburizer can automatically repair the 903 infinite loop and static array index bugs.
Only the 89 dynamic-array dereferences require programmer involvement.

I estimate the false positive rate by randomly sampling bugs and inspecting the code. With weighted
sampling across all classes of bugs, I compute that Carburizer is able to detect bugs at a false positive rate
of 7.4% ± 4.3% with 95% confidence.For the infinite loop bugs, I inspected 140 cases and found only 5 false
positives. In these cases, the timeout mechanism was implemented in a function separate from the loop,
which Carburizer does not detect. However, Carburizer’s timeout was more relaxed than the driver’s, and as a
result did not harm the driver. This low false positive rate demonstrates that a fairly simple and fast analysis can
detect infinite loops with high accuracy.

For static arrays, I randomly sampled 15 identified bugs and found 6 true bugs that could cause a
system crash if the hardware experienced a transient failure, such as a single bit flip in a device register.
Most of the remaining false positives occurred because the array was exactly the size of the index’s range, for
example 256 entries for an unsigned byte index. However, even in the case of false positives, the code added
by Carburizer correctly checked array bounds and does not falsely detect a failure. The only harm done to
the driver is the overhead of an unnecessary bounds check. More advanced analysis could remove these false
positives.

For dynamic arrays and memory dereferencing, I sampled 35 bugs and found 25 real bugs for a pro-
grammer to fix. Most false positives manifested in drivers that use mechanisms other than a mask or compar-
ison for verifying an index. For example, the Intel i810_audio driver uses the modulo operation on a dynamic
array offset. The SIS graphic driver calls a function to validate all inputs, and Carburizer’s analysis cannot
detect validation done in a separate function. Better interprocedural analysis is needed to prevent these false
positives.

Overall, I found that 498 driver modules out of the 1950 analyzed contained bugs. The bugs followed
two distributions. Many drivers had only one or two hardware dependence bugs. The developers of these
drivers were typically vigilant about validating device input but forgot in a few places. A small number of
drivers performed very little validation and had a large number of bugs. For example, Carburizer detected
24 infinite loops in the telespci ISDN driver and 80 in the ATP 870 SCSI driver.

These bugs demonstrate that language or library constructs can improve the quality of driver code.
For example, constructs to wait for a device condition safely, with internally implemented timeouts, reduce
the problem of hung systems due to devices. Past work on language support for concurrency in drivers has

19

investigated providing similar language features to avoid correctness violations [17] . Furthermore, when
re-running Carburizer on a newer kernel (2.6.37.6), we found found 1064 polling, 200 array dereference and
200 panic calls. This indicates that this problems continue to increase unabated. In Chapter 6, I describe my
efforts towards getting the attention of Linux kernel community towards this problem.

2.2.5 Experimental Results

I verify that the Carburizer’s repair transformation works by testing it on three Ethernet drivers. Testing
every driver repair is not practical because it would require obtaining hundreds of devices. We focus on
network drivers because I have only implemented the recovery mechanism for this driver class. I test whether
carburized drivers, those modified by Carburizer, can detect and recovery from hardware faults.

Of the devices at our disposal, through physical hardware or emulation in a virtual machine, only two
100Mbps network interface cards use drivers that had bugs according to our analysis: a DEC DC21x4x card
using the de4x5 driver, and a 3Com 3C905 card using the 3c59x driver. I also tested the forcedeth driver
for NVIDIA MCP55 Pro gigabit devices because it places high performance demands on the system (see
Section 2.5). In the case of forcedeth, since there are no bugs in the driver, I emulate problematic code by
manually inserting bugs, running Carburizer on the driver, and testing the resulting code.

I inject hardware faults with a simple fault injection tool that modifies the return values of the read(b,w,l)
and in(b,w,l) I/O functions. I modified the forcedeth driver by inserting code that returns incorrect output
for a specific device read operation on a device register. I then simulated a series of transient faults in the reg-
ister of interest. I injected hardware read faults at three locations in the de4x5 driver to induce an infinite-loop
in interrupt context. The loop continued even if the hardware returned 0xffffffff, a code used to indicate that
the hardware is no longer present in the system. I injected a similar set of faults into the 3c59x driver to create
an infinite loop in the interrupt handler and trigger recovery. I did not test all the bugs in each driver, because
a single driver may support many devices, and some bugs only occur for a specific device. As a result, I could
not force the driver through all buggy code paths with a single device.

In each test, I found that the driver quickly detected the failure with the generated code and triggered
the recovery mechanism. After a short delay while the driver recovered, it returned to normal function with-
out interfering with applications. I stopped injecting faults in the de4x5 and 3c59x drivers after they each re-
covered four times. The forcedeth driver successfully recovered from more than ten of these transient faults.
These tests demonstrate that automatic recovery can restart drivers after hardware failures.

2.3 Reporting Hardware Failures

A transient hardware failure, even while recoverable, reduces performance and may portend future fail-
ures [77]. As a result, OS and hardware vendors recommend monitoring hardware failures to allow proactive
device repair or replacement. For example, the Solaris Fault Management Architecture [98] feeds errors re-
ported by device drivers and other system components into a diagnosis engine. The engine correlates failures
from different components and can recommend a high-level action, such as disabling or replacing a device.
In reading driver code, I found Linux drivers only report a subset of errors and often omit the failure details.

When Carburizer repairs a hardware dependence bug, it also inserts error-reporting code. Thus, a cen-

20

1 static int phy_reset(...) {
2 .
3 while (miicontrol & BMCR_RESET) {
4 msleep(10);
5 miicontrol = mii_rw(...);
6 if (tries++ > 100)
7 return -1;
8 }
9 .

10 }

Figure 2.9: The forcedeth network driver polls the BMCR_RESET device register until it changes state or until a timeout occurs.
The driver reports only a generic error message at a higher level and not the specific failure where it occurred.

tralized fault management system can track hardware errors and correlate hardware failures to other system
reliability or performance problems. Currently, I use printk to write to the system log, as Linux does not have
a failure monitoring service.

To support administrative management of hardware failures, Carburizer will also insert monitoring
code into existing drivers where the driver itself detects a failure. Carburizer in this case relies on the driver
to detect hardware failures, through the timeouts and sanity checks. Figure 2.9 shows code where the driver
detects a failure with a timeout and returns an error, but does not report any failure. In this case, Carburizer
will insert logging code where the error is returned and include standard information, such as the driver
name, location in the code, and error type (timeout or corruption). If the driver already reports an error, then
I assume its report is sufficient and Carburizer does not introduce additional reporting.

I implement analyses in Carburizer to detect when the driver either detects a failure of the hardware or
returns an error specifically because of a value read from the hardware. These analyses depend on the bug-
finding capabilities from the preceding section to find sensitive code. In this case, the infinite polling loops
that would have been false positives, because the failure is handled by the driver, becomes the condition to
search.

2.3.1 Reporting Device Timeouts

Carburizer detects locations where a driver correctly times out of a polling loop. This code indicates that a
device failure has occurred because the device did not output the correct value within the specified time. This
analysis is the same as the false-positive analysis used for pruning results for infinite loops, except that the
false positives are now the code I seek. Figure 2.9 shows an example of code that loops until either a timeout is
reached or the device produces the necessary value. Carburizer detects whether a logging statement, which
we consider a function taking a string as a parameter, occurs either before breaking out of the loop or just
after breaking out. If so, Carburizer determines that the driver already reports the failure.

Once loops that timeout are detected, Carburizer identifies the predicate that holds when the loop
breaks due of a timeout. Carburizer identifies any return statements based on such predicates and places a
reporting statement just before the return. The resulting code is shown in Figure 2.10. If the test is incor-
porated into while or for loop predicate then Carburizer inserts code into the loop to report a failure if the
expression holds. CIL converts for loops into while(1) loops with break statements so that code can be in-
serted between the variable update and the condition evaluation. Thus, the driver will test the expression,

21

1 static int phy_reset(...) {
2 .
3 while (miicontrol & BMCR_RESET) {
4 msleep(10);
5 miicontrol = mii_rw(...);
6 if (tries++ > 100) {

7 printk(”...”);

8 return -1;
9 }

10 }
11 .
12 }

Figure 2.10: Carburizer inserts a reporting statement automatically in the case of a timeout, which indicates the device is not
operating according to specification.

Driver Device Timeout Incorrect Output
Class found/fixed found/fixed
net 483/321 249/97
scsi 302/249 137/110
sound 359/297 81/53
other 411/268 361/207
Total 1555/1135 828/467

Table 2.3: Instances of device-reporting code inserted by Carburizer. Each entry shows the number of device failures detected by the
driver, followed by the number where the driver did not report failures and Carburizer inserted reporting code.

report a failure, test the expression again, and break out of the loop.

2.3.2 Reporting Incorrect Device Outputs

Carburizer analyzes driver code to find driver functions that return errors due to hardware failures. This
covers range tests on array indices and explicit comparisons of status or state values. Carburizer identifies
that a hardware failure has occurred when the driver returns an error as a result of reading data from a device.
Specifically, it identifies code where three conditions hold: (a) a driver function returns a negative integer
constant; (b) the error return value is only returned based on the evaluation of a conditional expression,
and (c), the expression references variables that were read from the device. I further expand the analysis to
detect sites where an error variable is set, such as when the driver sets the return value and jumps to common
cleanup code. If these conditions hold, Carburizer inserts a call to the reporting function just before the return
statement to signify a hardware failure.

2.3.3 Results

Table 2.3 shows the result of our analysis. In total, Carburizer identified 1555 locations where drivers detect a
timeout. Of these, drivers reported errors only 420 times, and Carburizer inserted error-reporting code 1135
times. Carburizer detected 828 locations where the driver detected a failure with comparisons or range tests.
Of these, the driver reported a failure 361 times and Carburizer inserted an error report 467 times.

22

Driver Class Actual errors Reported Errors
bnx2 net 24 17
mptbase scsi 28 17
ens1371 sound 10 9

Table 2.4: Instances of fault-reporting code inserted by Carburizer compared against all errors detected in the driver. Each entry
shows the actual number of errors detected in the driver followed by the number of errors reported using Carburizer.

I evaluate the effectiveness of Carburizer at introducing error-reporting code by performing the same
analysis by hand to see whether it finds all the locations where drivers detect a hardware failure. For the
drivers listed in Table 2.4, I identified every location where the original driver detects a failure and whether
it reports the failure through logging.

I manually examined the three drivers, one from each major class, and counted as an error any code
that clearly indicated the hardware was operating outside of specification. This code performs any of the
following actions on the basis of a value read from the device: (1) returning a negative value, (2) printing an
error message indicating a hardware failure, or (3) detecting a failed self-test. I did not count errors found in
any code removed during preprocessing, such as ASSERT statements.

Table 2.4 shows the number of failures the driver detects (according to our manual analysis), whether
reported or not, compared with the number of errors reported by Carburizer. In these three drivers, Carbur-
izer did not produce any false positives: all of the errors reported did indicate a device malfunction. However,
Carburizer missed several places where the driver detected a failure. Out of 62 locations where the driver
detected a failure, Carburizer identified 43.

I found three reasons for these false negatives. First, some drivers, such as the bnx2 network driver,
wrap several low-level read operations in a single function, and return the tainted data via an out parameter.
Carburizer does not propagate taint through out parameters. Second, Carburizer’s analysis is not sophis-
ticated enough to track tainted structure members across procedure boundaries. The mptbase SCSI driver
reads data into a member variable in one procedure and returns an error based on its value in another, and
I do not detect the member as tainted where the failure is returned. Finally, some drivers detect a hardware
failure and print a message but do not subsequently return an error. Thus, Carburizer does not identify that
a hardware failure was detected.

To verify the operation of the reporting statements, I injected targeted faults designed to cause the
carburized driver to report a failure. I tested four drivers with fault injection to ensure they reported failures.
I injected synthetic faults into the ens1371 sound driver and the de4x5, 8139cp, and 8139too network drivers
using the tool from Section 2.2. I verified that targeted fault injection triggered every reporting statement that
applies to these hardware devices.

The only false positive I found occurred in the 8139too network driver during during device initializa-
tion. This driver executes a loop that is expected to time out, and Carburizer falsely considers this a hardware
fault. The other carburized drivers do not report any false positives. I injected faults with a fixed probability
every time the driver invoked a port or I/O memory read operation, both during driver initialization and
while running a workload. The drivers did not report any additional errors compared to unmodified drivers
under these conditions, largely because none of the injected faults would lead to a system crash.

Overall, I found that Carburizer was effective at introducing additional error logging to drivers where
logging did not previously exist. While it does not detect every hardware failure, Carburizer increases the

23

number of failures logged and can therefore improve an administrator’s ability to detect when hardware is
failing, as compared to driver failures caused by software.

2.4 Runtime Fault Tolerance

The Carburizer runtime provides two key services. First, it provides an automatic recovery service to restore
drivers and devices to a functioning state when a failure occurs. Second, it detects classes of failures that
cannot be addressed by static analysis and modification of driver code, such as tolerating stuck interrupts.

2.4.1 Automatic Recovery

Static analysis tools have proved useful as bug finding tools. But, programmers must still write code to re-
pair the bugs that are found. Carburizer circumvents this limitation by relying on automatic recovery to restore
drivers and devices to a functioning state when a failure is detected. The driver may invoke a recovery func-
tion at any time, which will reset the driver to a known-good state. For stuck-at hardware failures, resetting
the device can often correct the problem. I rely on the same mechanism to recover from transient failures,
although a full reset may not be required in every case.

I leverage shadow drivers [102] to provide automatic recovery because they conceal failures from ap-
plications and the OS. A shadow driver is a kernel agent that monitors and stores the state of a driver by
intercepting function calls between the driver and the kernel. During normal operation, the shadow driver
taps all function calls between the driver and the kernel. In this passive mode, the shadow driver records op-
erations that change the state of the driver, such as configuration operations and requests currently being
processed by the driver.

Shadow drivers are class drivers, in that they are customized to the driver interface but not to its im-
plementation. Thus, a separate shadow driver is needed to recover from failures in each unique class, such as
network, sound, or SCSI. I have only implemented recovery for network drivers so far, although other work
shows that they work effectively for sound, storage [102] and video drivers [51] .

When the driver invokes the recovery function, the shadow driver transitions into active mode, where
it performs two functions. First, it proxies for the device driver, fielding requests from the kernel until the
driver recovers. This process ensures that the kernel and application software is unaware that the device
failed. Second, shadow drivers unload and release the state of the driver and then restart the driver, causing
it to reinitialize the device. When starting this driver, the shadow driver uses its log to configure the driver to
its state prior to recovery, including resubmitting pending requests. Once this is complete, the shadow driver
transitions back to passive mode, and the driver is available for use.

The shadow driver recovery model works when resetting the device clears a device failure. For devices
that fail permanently or require a full power cycle to recover, shadow drivers will detect that the failure is not
transient when recovery fails and can notify a management agent.

I obtained the shadow driver implementation used for virtual machine migration [48] and ported the
recovery functions for network device drivers to the 2.6.18.8 kernel. However, I did not port the entire Nooks
driver isolation subsystem [103]. Nooks prevents memory corruption and detects failures through hardware

24

traps, which are unnecessary for tolerating hardware failures. Nooks’ isolation also causes a performance
drop from switching protection domains, which Carburizer avoids. The remaining code consists of wrappers
around the kernel/driver interface, code to log driver requests, and code to restart and restore driver state
after a failure. In addition, I export the __shadow_recover function from the kernel, which a driver may call to
initiate recovery after a hardware failure.

2.4.2 Tolerating Missing Interrupts

In addition to providing a recovery service, the Carburizer runtime also detects failures that cannot be de-
tected through static modifications of driver code. Devices may fail by generating too many interrupts or by
not generating any. The first case causes a system hang, because no useful work can occur while the interrupt
handler is running, while the second case can result in an inoperable device.

To address the scenario in which the device stops generating interrupts, Carburizer monitors the driver
and invokes the interrupt handler automatically if necessary. With monitoring, an otherwise operative device
need not generate interrupts to provide service. Unlike other hardware errors, Carburizer does not force the
driver to recover in this case because I cannot detect precisely whether an interrupt is missing. Instead, the
Carburizer runtime pro-actively calls the driver’s interrupt handler to process any pending requests

The Carburizer runtime increments a counter each time a driver’s interrupt handler is called. Period-
ically, a low priority kernel thread checks this counter. If the counter value has changed, Carburizer does
nothing since the device appears to be working normally. If, however, the interrupt handler has not been
executed, the device may not be delivering interrupts.

The Carburizer runtime detects whether there has been recent driver activity that should have caused
an interrupt by testing whether driver code has been executed. Rather than recording every driver invocation,
Carburizer polls the reference bits on the driver’s code pages. If any of the code pages have been referenced,
Carburizer assumes that a request may have been made and that the interrupt handler should be called soon.

Because every driver is different, Carburizer implements a dynamic approach to increase or decrease
the polling interval exponentially, depending on whether previous calls were productive or not. By default,
Carburizer checks the referenced bits every 16ms. I chose this value because it provides a relatively good
response time in the event of a single missing interrupt. If Carburizer’s call to the interrupt handler returns
IRQ_NONE, indicating the interrupt was spurious, then Carburizer doubles the polling interval, up to a maxi-
mum of one second. Conversely, if the interrupt handler returns IRQ_HANDLED, indicating that there was work
for the driver, then Carburizer decreases the polling interval to a minimum of 4ms. Thus, Carburizer calls
the interrupt handler repeatedly only if it detects that the driver is doing useful work during the handler.

Relying on the handler return value to detect whether the handler was productive works for devices
that support shared interrupts. Spurious interrupt handler invocations can occur with shared interrupts be-
cause the kernel cannot detect which of the devices sharing the interrupt line needs service. However, some
drivers report IRQ_HANDLED even if the device does not require service, leading Carburizer to falsely detect that
it has missed an interrupt.

Carburizer’s polling mechanism adds some overhead when the kernel invokes a driver but does not
cause the device to generate an interrupt. For network drivers, this occurs when the kernel invokes an ethtool
management function. The Carburizer runtime will call the interrupt handler even though it is not necessary

25

for correct operation. The driver treats this call to its interrupt handler as spurious. Because Carburizer
decreases the polling interval in these cases, there is little unnecessary polling even when many requests are
made of a driver that do not generate interrupts.

Some Linux network drivers, through the napi interface, already support polling. In addition, many
network drivers implement a watchdog function to detect when the device stops working. For these drivers,
it may be sufficient to direct the kernel to poll rather than relying on a separate mechanism. However, this
approach only works for network drivers, while the Carburizer runtime approach works across all driver
classes.

2.4.3 Tolerating Stuck Interrupts

The Carburizer runtime detects stuck interrupts and recovers by converting the device from interrupts to
polling by periodically calling the driver’s exported interrupt function. A stuck interrupt occurs when the
device does not lower the interrupt request line even when directed to do so by the driver. The Carburizer
runtime detects this failure when a driver’s interrupt handler has been called many times without intervening
progress of other system functions, such as the regular timer interrupt. The Linux kernel can detect unhandled
interrupts [59], but it recovers by disabling the device rather than enabling it to make progress.

Similar to missing interrupts, the Carburizer runtime does not trigger full recovery here (although
that is possible), but instead disables the interrupt request line with disable_IRQ. It then relies on the polling
mechanism previously described to periodically call the driver’s interrupt handler.

2.4.4 Results

I experiment with stuck and missing interrupts using fault injection on the E1000 gigabit Ethernet driver,
the ens1371 sound driver, and a collection of interdependent storage drivers: ide-core, ide-generic, and ide-
disk. On all three devices, I simulate missing interrupts by disabling the device’s interrupt request line. I
simulate stuck interrupts with the E1000 by inserting a command to generate an interrupt from inside the
interrupt handler. For E1000, I compare throughput and CPU utilization between an unmodified driver,
a driver undergoing monitoring for stuck/disabled interrupts, and a driver whose interrupt line has been
disabled.

In the case of E1000, I found that the Carburizer runtime was able to detect both failures promptly,
and that the driver continued running in polling mode. Because interrupts occur only once every 4ms in
the steady state, receive throughput drops from 750 Mb/s to 130 Mb/s. With more frequent polling, the
throughput would be higher. Similarly, Carburizer detected both failures for the IDE driver. The IDE disk
operated correctly in polling mode but throughput decreased by 50%. The ens1371 driver in polling mode
played back sound with a little distortion, but otherwise operated normally. These tests demonstrate that
Carburizer’s stuck and missing interrupt detection mechanism works and can keep devices functioning in
the presence of a failure.

26

NVIDIA MCP55 Pro gigabit NIC (forcedeth)
System Throughput CPU Utilization

Linux 2.6.18.8 Kernel 940 Mb/s 31%
Carburizer Kernel 935 Mb/s 36%

(with shadow driver)
Intel Pro/1000 gigabit NIC (E1000)

System Throughput CPU Utilization
Native Kernel 721 Mb/s 16%

Carburizer Kernel 720 Mb/s 16%
(with shadow driver)

Table 2.5: TCP streaming send performance with netperf for regular and carburized drivers with automatic recovery mechanism for
the E1000 and forcedeth drivers.

Intel Pro/1000 gigabit NIC (E1000)
System Throughput CPU %

Native Kernel - TCP 750 Mb/s 19%
Carburizer Monitored - TCP 751 Mb/s 19%

Native Kernel - UDP-RR 7328 Tx/s 6%
Carburizer Monitored - UDP-RR 7310 Tx/s 6%

Table 2.6: TCP streaming and UDP request-response receive performance comparison of the E1000 between the native Linux kernel
and a kernel with the Carburizer runtime monitoring the driver’s interrupts.

2.5 Overhead Evaluation

The primary cost of using Carburizer is the time spent running the tool and fixing bugs that cannot be auto-
matically repaired. However, the code transformations introduced by Carburizer, shadow driver recovery,
and interrupt monitoring introduce a small runtime cost. In this section I measure the overhead of running
carburized drivers.

I measure the performance overhead on gigabit Ethernet drivers, as they are the most performance-
intensive of our devices: a driver may receive more than 75,000 packets to deliver per second. Thus, any
overhead of Carburizer’s mechanisms will show up more clearly than on lower-bandwidth devices. Past
work on Nooks and shadow storage drivers showed a greater difference in performance than for the network,
but the CPU utilization differences were far greater for network drivers [102].

I measure performance with netperf [45] between two Sun Ultra 20 workstation with 2.2Ghz AMD
Opteron processors and 1GB of RAM connected via a crossover cable. I configure netperf to run enough
experiments to report results accurate to 2.5% with 99% confidence.

Table 4.3 shows the throughput and CPU utilization for sending TCP data with a native Linux ker-
nel and one with the Carburizer runtime with shadow driver recovery enabled and a carburized network
driver. The network throughput with Carburizer is within one-half percent of native performance, and CPU
utilization increases only five percentage points for forcedeth and not at all for the E1000 driver. These results
demonstrate that supporting the generic recovery service, even for high-throughput devices, has very little
runtime cost.

Table 2.6 shows performance overhead of interrupt monitoring but with no shadow driver recovery.
The table shows the TCP receive throughput and CPU utilization for the E1000 driver on the native Linux
kernel, and on a kernel with Carburizer interrupt monitoring enabled. The TCP receive and transmit socket

27

buffers were left at their default sizes of 87,380 and 655,360 bytes, respectively. The table also shows UDP
request-response performance with 1-byte packets, a test designed to highlight driver latency. While these
results are for receiving packets, I also compared performance with TCP and UDP-RR transmit benchmarks
and found similar results: the performance of the native kernel and the kernel with monitoring are identical.

These two sets of experiments demonstrate that the cost of tolerating hardware failures in software,
either through explicit invocation of a generic recovery service or through run-time interrupt monitoring,
is low. Given this low overhead, Carburizer is a practical approach to tolerate even infrequent hardware
failures.

2.6 Summary

System reliability is limited by the reliability of devices. Evidence suggests that device failures cause a mea-
surable fraction of system failures, and that most hardware failures are transient and can be tolerated in soft-
ware. Carburizer improves reliability by automatically hardening drivers against device failures without new
programming languages, programming models, operating systems, or execution environments. Carburizer
finds and repairs hardware dependence bugs in drivers, where the driver will hang or crash if the hardware
fails. In addition, Carburizer inserts logging code so that system administrators can proactively repair or
replace hardware that fails.

In an analysis of the Linux kernel, Carburizer identified over 992 hardware dependence bugs with
fewer than 8% false postives. Discounting for false positives, Carburizer could automatically repair approxi-
mately 845 real bugs by inserting code to detect when a failure occurs and invoke a recovery service. When
re-running these results on a newer Linux kernel (2.6.37.6), we found about 1264 instances of hardware de-
pendence bugs indicating that this problem continues to persist. Repairs made to false positives have no
correctness impact. In performance tests, hardening drivers had almost no visible performance overhead.

There are still more opportunities to improve device drivers. Carburizer assumes that if a driver detects
a hardware failure, it correctly responds to that failure. In practice, I find this is often not the case. In addition,
Carburizer does not assist drivers in handling unexpected events; I have seen code that crashes when the
device returns a flag before the driver is prepared. Thus, there are yet more opportunities to improve driver
quality.

28

Chapter 3
Understanding Modern Device Drivers

Modern computer systems are communicating with an increasing number of devices, each of which requires
a driver. For example, a modern desktop PC may have tens of devices, including keyboard, mouse, display,
storage, and USB controllers. Device drivers constitute 70% of the Linux code base [85], and likely are a greater
fraction of the code written for the Windows kernel, which supports many more devices. Several studies have
shown that drivers are the dominant cause of OS crashes in desktop PCs [34, 73]. As a result, there has been
a recent surge of interest in techniques to tolerate faults in drivers [32, 103, 102, 118], to improve the quality
of driver code [50]; and in creating new driver architectures that improve reliability and security [13, 36, 53,
62, 63, 83, 112].

However, most research on device drivers focuses on a small subset of devices, typically a network card,
sound card, and storage device, all using the PCI bus. These are but a small subset of all drivers, and results
from these devices may not generalize to the full set of drivers. For example, many devices for consumer PCs
are connected over USB. Similarly, the devices studied are fairly mature and have standardized interfaces,
but many other devices may have significant functionality differences.

Thus, it is important to study all drivers to review how the driver research solutions being developed
are applicable to all classes of drivers. In addition, a better understanding of driver code can lead to new
abstractions and interfaces that can reduce driver complexity and improve reliability.

This chapter presents a comprehensive study of all the drivers in the Linux kernel in order to broadly
characterize their code. I focus on (i) what driver code does, including where driver development work is
concentrated, (ii) the interaction of driver code with devices, buses, and the kernel, and (iii) new opportunities
for abstracting driver functionality into common libraries or subsystems. I use two static analysis tools to
analyze driver code. To understand properties of driver code, I developed DrMiner, which performs data-
flow analyses to detect properties of drivers at the granularity of functions. I also developed the DrComp
tool, which uses geometric shape analysis [10] to detect similar code across drivers. DrComp maps code to
points in coordinate space based on the structure of individual driver functions, and similar functions are at
nearby coordinates.

30

The contributions of this chapter are as follows:

• First, I analyze what driver code does in order to verify common assumptions about driver code made
by driver research. I show that while these assumptions hold for most drivers, there are a significant
number of drivers that violate these assumptions. I also find that several rapidly growing driver classes
are not being addressed by driver research.

• Second, I study driver interactions with the kernel and devices, to find how existing driver architecture
can adapt to a world of multicore processors, devices with high-power processors and virtualized I/O.
I find that drivers vary widely by class, and that USB drivers are more efficient in supporting multiple
chipsets than PCI drivers. Furthermore, I find that XenBus drivers may provide a path to executing
drivers outside the kernel and potentially on the device itself.

• Third, I study driver code contents to find opportunities to reduce or simplify driver code. I develop
new analysis tools for detecting similar code structures and their types that detect over 8% of Linux
driver code is very similar to other driver code, and offer insights on how this code can be reduced.

In the remainder of this chapter, I first discuss device driver background and develop a taxonomy
of drivers. I then present the three broad classes of results on driver behavior in Sections 3.2 and 3.3. In
Section 3.4 I present results showing the extent of repeated code in drivers. Section 3.5 discusses my findings.

3.1 Background

A device driver is a software component that provides an interface between the OS and a hardware device.
The driver configures and manages the device, and converts requests from the kernel into requests to the
hardware. Drivers rely on three interfaces: (i) the interface between the driver and the kernel, for communi-
cating requests and accessing OS services; (ii) the interface between the driver and the device, for executing
operations; and (iii) the interface between the driver and the bus, for managing communication with the
device.

3.1.1 Driver/Device Taxonomy

The core operating system kernel interacts with device drivers through a set of interfaces that abstract the
fundamental nature of the device. In Linux, the three categories of drivers are character drivers, which are byte-
stream oriented; block drivers, which support random-access to blocks; and network drivers, which support
streams of packets. Below these top-level interfaces, support libraries provide common interfaces for many
other families of devices, such as keyboards and mice within character drivers.

In order to understand the kinds of drivers Linux supports, I begin by taxonomizing drivers according
to their interfaces. I consider a single driver as a module of code that can be compiled independently of other
code. Hence, a single driver can span multiple files. We consider all device drivers, bus drivers and virtual
drivers that constitute the driver directories (/sound and /drivers) in the Linux 2.6.37.6 kernel, dated April,
2011. I perform our analyses on all drivers that compile on the x86 platform, using the kernel build option to
compile all drivers. Overall, I consider 3,217 distinct drivers. While there are a significant number of Linux
drivers that are distributed separately from the kernel, I do not consider them for this work.

I detect the class of a driver not by the location of its code, but by the interfaces it registers: e.g.,

31

ata (1%)

cdrom

ide

md (RAID)

mmc

network RAID

mtd (1.5%)
scsi (9.6%)floppy

tape

acpi blue tooth

crypto
fire wire

gpu (3.9%)

input
joy stick

key board

mouse

touch screentablet game port

serio

leds

media (10.5%)

isdn (3.4%)

sound (10%)

pcm

midi

mixer

thermal

tty

char (52%)

block (16%) net (27%)

other (5%)

atm

ethernet

infiniband

wireless

wimax

token ring

Linux
 Device Drivers

gpio

tpm
serial

display

lcd

back light

video (5.2%)

pata

disk

sata

disk

 fiber channel

iscsi

usb-storageosd

raid

drm

vga

bus drivers

xen/lguest

dma/pci libs

video

radio

digital video broadcasting

wan

uwb

driver libraries

Figure 3.1: The Linux driver taxonomy in terms of basic driver classes. The size (in percentage of lines of code) is mentioned for 5
biggest classes. Not all driver classes are mentioned.

32

Improvement type System Driver classes tested Drivers
tested

New func-
tionality

Shadow driver migra-
tion [48]

net 1

RevNIC [18] net 4
Reliability (H/W

Protection)
CuriOS [28] serial port, NOR flash 2
Nooks [?] net, sound 6
Palladium [19] custom packet filter 1
Xen [32] net, sound 2

Reliability (Isolation)

BGI [16] net, sound, serial, ramdisk, libs 16
Shadow Drivers [?] net, sound, IDE 13
XFI [105] ram disk, dummy 2

Specification

Devil [64] scsi, video 2
Dingo [85] net 2
Laddie [114] net, UART, rtc 3
Nexus [112] net, sound, USB-mouse, USB-storage 4
Termite [86] net, mmc 2

Static analysis tools

Carburizer [47] All/net All/3
Cocinelle [74] Various All
SDV [7] basic ports, storage, USB, 1394-

interface,
126

mouse, keyboard, PCI battery

Type safety
Decaf Drivers [83] net, sound, USB controller, mouse 5
Safedrive [118] net, USB, sound, video 6
Singularity [95] Disk 1

User-level device
drivers

Microdrivers [36] net, sound, USB controller 4
SUD [13] net, wireless, sound, USB controllers,

USB
6/1

User-level drivers [53] net, disk (ata) 2

Table 3.1: Research projects on drivers, the improvement type, and the number and class of drivers used to support the claim end to
end. Few projects test all driver interfaces thoroughly. Static analysis tools that do not require driver modifications are available to
check many more drivers. Also, some solutions, like Carburizer [47], and SUD [13] support the performance claims on fewer drivers.

register_netdev indicates a driver is a network device. I further classify the classes into sub-categories to
understand the range of actual device types supported by them through manual classification, using the de-
vice operations they register, the device behavior and their location. While Linux organizes related drivers
in directories, this taxonomy is not the same as the Linux directory organization: network drivers are split
under drivers/net, drivers/atm and other directories. However, block drivers are split by their interfaces under
drivers/scsi, drivers/ide and other directories

Figure 3.1 shows the hierarchy of drivers in Linux according to their interfaces, starting from basic
driver types i.e. char, block and net. I identify 72 unique classes of drivers. The majority (52%) of driver
code is in character drivers, spread across 41 classes. Network drivers account 25% of driver code, but have
only 6 classes. In contrast to the rich diversity of Figure 3.1, Table 3.1 lists the driver types used in research.
Most driver research (static-analysis tools excepted) neglects the heavy tail of character devices. For example,
video and GPU drivers contribute significantly towards driver code (almost 9%) due to complex devices with
instruction sets that change each generation, but these devices are largely ignored by driver research due to
their complexity.

I also looked at low-level buses, which provide connectivity to devices and discover the devices at-
tached to a system. The majority of devices are either PCI (36% of all device identifiers) or USB (35%), while

33

Driver interactions
Class membership: Drivers belong to common set of classes, and the class completely determines their
behavior.
Procedure calls: Drivers always communicate with the kernel through procedure calls.
Driver state: The state of the device is completely captured by the driver.
Device state: Drivers may assume that devices are in the correct state.

Driver architecture
I/O: Driver code functionality is only dedicated to converting requests from the kernel to the device.
Chipsets: Drivers typically support one or a few device chipsets.
CPU Bound: Drivers do little processing and mostly act as a library for binding different interfaces

together.
Event-driven: Drivers execute only in response to kernel and device requests, and to not have their

own threads.

Table 3.2: Common assumptions made in device driver research.

other buses support far fewer: I2C represents 4% of devices, PCMCIA is 3% and HID is 2.5% (mostly USB
devices). The remaining devices were supported by less popular or legacy buses such as ISA or platform
devices. I also found that 8% of devices perform low-level I/O without using a bus, interconnect, or support
virtual devices. Higher-level protocols such as SCSI (8.5%) and IDE (2%) use one of these underlying low-
level buses such as PCI and USB. While PCI drivers still constitute the greatest fraction of drivers, the number
of devices supported by USB is similar to PCI. Hence, driver research should validate their performance and
reliability claims on USB devices as well.

3.1.2 Driver Research Assumptions

Most research makes some simplifying assumptions about the problem being solved, and driver research is
no different. For example, Shadow Drivers [102] assume that all drivers are members of a class and there are
no unique interfaces to a driver. Similarly, the Termite driver-synthesis system assumes that drivers are state
machines and perform no computations [86]. Table 3.2 lists the assumptions made by recent research into
device drivers.

I separate these assumptions into two categories: (i) interactions refers to assumptions about how drivers
interact with the kernel, and (ii) architecture refers assumptions about the role of the driver: is it a conduit
for data, or does it provide more substantial processing or services? Interaction assumptions relate to how
the kernel and driver interact. For example, systems that interpose on driver/device communication, such
as Nooks [103], typically assume that communication occurs over procedure calls and not shared memory.
Nooks’ isolation mechanism will not work otherwise. Similarly, Shadow Drivers assume that the complete
state of the device is available in the driver by capturing kernel/driver interactions [102]. However, network
cards that do TCP-offload may have significant protocol state that is only available in the device, and cannot
be captured by monitoring the kernel/driver interface.

Several recent projects assume that drivers support a single chipset, such as efforts at synthesizing
drivers from a formal specification [86]. However, many drivers support more than one chipset. Hence,
synthesizing the replacement for a single driver may require many more drivers. Similarly, enforcing safety
properties for specific devices [112] may be cumbersome if many chipsets must be supported for each driver.

34

Other efforts at reverse engineering drivers [18] similarly may be complicated by the support of many chipsets
with different hardware interfaces. Furthermore, these synthesis and verification systems assume that devices
always behave correctly, and their drivers may fail unpredictably with faulty hardware.

Another assumption made by driver research is that drivers are largely a conduit for communicat-
ing data and for signaling the device, and that they perform little processing. Neither RevNIC [18]) nor
Termite [86] support data processing with the driver, because it is too complex to model as a simple state
machine.

While these assumptions all hold true for many drivers, this research seeks to quantify their real gen-
erality. If these assumptions are true for all drivers, then these research ideas have broad applicability. If not,
then new research is needed to address the outliers.

3.2 What Do Drivers Do?

Device drivers are commonly assumed to primarily perform I/O. A standard undergraduate OS textbook
states:

“A device driver can be thought of a translator. Its input consists of high-level commands such as “retrieve
block 123.” Its output consists of low-level, hardware-specific instructions that are used by the hardware
controller, which interfaces the I/O device to the rest of the system.”

Operating Systems Concepts [93]

However, this passage describes the functions of only the small portion of driver code that which actually
performs I/O. Past work revealed that the bulk of driver code is dedicated to initialization and configuration
for a sample of network, SCSI and sound drivers [36].

I seek to develop a comprehensive understanding of what driver code does: what are the tasks drivers
perform, what are the interfaces they use, and how much code does this all take. The goal of this study is to
verify the driver assumptions described in the previous section, and to identify major driver functions that
could benefit from additional research.

3.2.1 Methodology

To study the driver code, I developed the DrMiner static analysis tool using CIL [72] to detect code properties
in individual drivers. DrMiner takes as input unmodified drivers and a list of driver data-structure types
and driver entry points. As drivers only execute when invoked from the kernel, these entry points allow
us to determine the purpose of particular driver functions. For example, I find the different devices and
chipsets supported by analyzing the device_id structures registered (e.g., pci_device_id, acpi_device_id etc.)
with the kernel. I also identify the driver entry points from the driver structure registered (e.g., pci_driver,
pnp_device) and the device operations structure registered (e.g., net_device). DrMiner analyzes the function
pointers registered by the driver to determine the functionality of each driver. I then construct a control-flow
graph of the driver that allows us to determine all the functions reachable through each entry point, including
through function pointers.

35

I use a tagging approach to labeling driver code: DrMiner tags a function with the label of each entry
point from which it is reachable. Thus, a function called only during initialization will be labeled initializa-
tion only, while code common to initialization and shutdown will receive both labels. In addition, DrMiner
identifies specific code features, such as loops indicating computation.

I run these analyses over the entire Linux driver source and store the output in a SQL database. The
database stores information about each driver as well as each function in the driver. The information about
the driver consists of name, path, size, class, number of chipsets, module parameters, and interfaces registered
with the kernel. The information about each driver function consists of function name, size, labels, resources
allocated (memory, locks etc.), and how it interacts with the kernel and the device. From the database, de-
termining the amount of code dedicated to any function is a simple query. In our results, I present data for
about 25 classes with the most code.

3.2.2 What is the function breakdown of driver code?

Drivers vary widely in how much code they use for different purposes; a simple driver for a single chipset
may devote most of its code to processing I/O requests and have a simple initialization routine. In contrast,
a complex driver supporting dozens of chipsets may have more code devoted to initialization and error han-
dling than to request handling.

Figure 3.2 shows the breakdown of driver code across driver classes. The figure shows the fraction
of driver code invoked during driver initialization, cleanup, ioctl processing, configuration, power manage-
ment, error handling, /proc and /sys handling, and most importantly, core I/O request handling (e.g., sending
packet for network devices, or playing audio for sound card) and interrupt handling across different driver
classes.

The largest contributors to driver code are initialization and cleanup, comprising almost 36% of driver
code on average, error handling (5%), configuration (15%), power management (7.4%) and ioctl handling
(6.2%). On average, only 23.3% of the code in a driver is dedicated to request handling and interrupts.

Implications: These results indicate that efforts at reducing the complexity of drivers should not only focus
on request handling, which accounts for only one fourth of the total code, but on better mechanisms for
initialization and configuration. For example, as devices become increasingly virtualization aware, quick
ways to initialize or reset are critical for important virtualization features such as re-assignment of devices
and live migration [48]. Drivers contain significant configuration code (15%), specifically in network (31%)
and video (27%) drivers. As devices continue to become more complex, driver and OS research should look
at efficient and organized ways of managing device configuration [89].

3.2.3 Where is the driver code changing?

Over time, the focus of driver development shifts as new device classes become popular. I compared the
breakdown of driver code between the 2.6.0 and 2.6.39 for new source lines of code added annually to different
driver classes. I obtain the source lines of code across different classes in 9 intermediate revisions (every
December since 2.6.0) using sloccount [111].

36

uwb
net

in!niband
atm
scsi
mtd
md
ide
block
ata

watchdog
video
tty

sound
serial
pnp

platform
parport
misc

message
media
leds
isdn
input
hwmon
hid
gpu
gpio
!rewire
edac
crypto
char
cdrom
bluetooth
acpi

init cleanup ioctl con!g power error proc core intr

0

10

20

30

40

50

Percent-
age of LOC

uwb
net

in!niband
atm
scsi
mtd
md
ide
block
ata

watchdog
video
tty

sound
serial
pnp

platform
parport
misc

message
media
leds
isdn
input
hwmon
hid
gpu
gpio
!rewire
edac
crypto
char
cdrom
bluetooth
acpi

init cleanup ioctl con!g power error proc core intr

0

10

20

30

40

50

Percent-
age of LOCch

ar
 d

riv
er

s
bl

oc
k

dr
ive

rs
ne

t d
riv

er
s

Figure 3.2: The percentage of driver code accessed during different driver activities across driver classes.

37

2.6.0 2.6.10 2.6.13.5 2.6.18.6 2.6.23.12 2.6.27.10 2.6.32 2.6.36 2.6.39

0

50

100

150

200

250

300

350

400

O
O O O

O
O

O

O
O

Linux kernel trees every December (2003-2010) and May 2011

%
gr
ow

th
in

li
n
es

of
co
d
e
fr
om

2.
6.
0
b
as
el
in
e

ethernet&wireless scsi video gpu media sound O overall

1

Figure 3.3: The change in driver code in terms of LOC across different driver classes between the Linux 2.6.0 and Linux 2.6.39
kernel.

Figure 3.3 shows the growth in driver across successive years from the 2.6.0 baseline for 8 major driver
classes. Overall, driver code has increased by 185% over the last eight years. We identify three specific trends
in this growth. First, there is additional code for new hardware. This code includes wimax, GPU, media,
input devices and virtualization drivers. Second, there is increasing support for certain class of devices, in-
cluding network (driven by wireless), media, GPU and SCSI. From 2.6.13 to 2.6.18, the devices supported by a
vendor (QLogic) increased significantly. Since, they were very large multi-file SCSI drivers, the drivers where
coalesced to a single driver, reducing the size of SCSI drivers in the driver tree. In Section 3.4, I investigate
whether there are opportunities to reduce driver code in the existing code base. Third, there is minor code
refactoring. For example, periodically, driver code is moved away from the driver or bus library code into
the respective classes where they belong. For example, drivers from the i2c bus directory were moved to misc
directory.

Implications: While Ethernet and sound, the common driver classes for research, are important, research
should look further into other rapidly changing drivers, such as media, GPU and wireless drivers.

3.2.4 Do drivers belong to classes?

Many driver research projects assume that drivers belong to a class. For example, Shadow Drivers [102] must
be coded with the semantics of all calls into the driver so it can replay them during recovery. However, many
drivers support proprietary extensions to the class interface. In Linux drivers, these manifest as private ioctl

38

drivers/ide/ide-cd.c:
static int cdrom_read_tocentry(...) {
// Read table of contents data
for (i = 0; i <= ntracks; i++) {
if (drive->atapi_flags &

IDE_AFLAG_TOCADDR_AS_BCD) {
if (drive->atapi_flags &

IDE_AFLAG_TOCTRACKS_AS_BCD)
toc->ent[i].track =
bcd2bin(toc->ent[i].track);

msf_from_bcd(&toc->ent[i].addr.msf);}
toc->ent[i].addr.lba =
msf_to_lba(toc->ent[i].addr.msf.minute,

toc->ent[i].addr.msf.second,
toc->ent[i].addr.msf.frame);

}
}

Figure 3.4: The IDE CD-ROM driver processes table-of-contents entries into a native format.

options, /proc or /sys entries, and as load-time parameters. If a driver has one of these features, it may have
additional behaviors not captured by the class.

I use DrMiner to identify drivers that have behavior outside the class by looking for load-time parame-
ters and code to register /proc or /sys entries. I do not identify unique ioctl options. Overall, I find that most
driver classes have substantial amounts of device-specific functionality. Code supporting /proc and /sys is
present in 16.3% of drivers. Also, 36% of drivers have load-time parameters to control their behavior and
configure options not available through the class interface. Overall, 44% of drivers use atleast one of the two
non-class features. Additionally, ioctl code comprises 6.2% of driver code. This code includes class defined
ioctls and private ioctls and the latter contributes towards non-class behavior in driver code.

As an example of how these class extensions are used, the e1000 gigabit network driver has 15 load-
time parameters that allow control over interrupt processing and transmit/receive ring sizing, and interrupt
throttling rate. This feature is not part of any standard network device interface and is instead specific to this
device. Similarly, the i915 DRM GPU driver supports load parameters for down-clocking the GPU, altering
graphic responsibilities from X.org to the kernel, and power saving. These parameters change the code path
of the driver during initialization as well as during regular driver operations. While the introduction of these
parameters does not affect the isolation properties of the reliability solutions, as the interfaces for setting and
retrieving these options are standard, it limits the ability to restart and restore the driver to a previous state
since the semantics of these options are not standardized.

Implications: While most driver functionality falls into the class behavior, many drivers have significant
extensions that do not. Attempts to recover driver state based solely on the class interface [102] or to synthe-
size drivers from common descriptions of the class [18, 86] may not work for a substantial number of drivers.
Thus, future research should explicitly consider how to accommodate unique behaviors efficiently.

3.2.5 Do drivers do significant processing?

39

As devices become more powerful and feature processors of their own, it is often assumed that drivers per-
form little processing and simply shuttle data between the OS and the device. However, if drivers require
substantial CPU processing, for example to compute parity for RAID, checksums for networking, or display
data for video drivers, then processing power must be reserved. Furthermore, in a virtualized setting, heavy
I/O from one guest VM could substantially reduce CPU availability for other guest VMs.

DrMiner detects processing in drivers by looking for loops that (i) do no I/O, (ii) do not interact with
the kernel, and (iii) are on core data paths, such as sending/receiving packets or reading/writing data. This
ensures that polling loops, common in many drivers, are not identified as performing processing.

I find that 15% of drivers have at least one function that performs processing, and that processing occurs
in 1% of all driver functions. An even higher fraction (28%) of sound and network drivers do processing.
Wireless drivers, such as ATH, perform processing to interpolate power levels of the device under different
frequencies and other conditions. Many network drivers provide the option of computing checksums on
the outgoing/incoming packets. Finally, even CD-ROM drivers, which largely read data off the device, do
computation to analyze the table of content information for CD-ROMs, as shown in Figure 3.4.

Implications: A substantial fraction of drivers do some form of data processing. Thus, efforts to generate
driver code automatically must include mechanisms for data processing, not just converting requests from
the OS into requests to the device. Furthermore, virtualized systems should account for the CPU time spent
processing data when this processing is performed on behalf of a guest VM. These results also point to new
opportunities for driver and device design: given the low cost of embedded processors, can all the computa-
tion be offloaded to the device, and is there a performance or power benefit to doing so?

3.2.6 How many device chipsets does a single driver support?

Several driver research projects require or generate code for a specific device chipset. For example, Nexus
requires a safety specification that is unique to each device interface [112]. If a driver supports only a single
device, this requirement may not impose much burden. However, if a driver supports many devices, each
with a different interface or behavior, then many specifications are needed to fully protect a driver.

I measure the number of chipsets or hardware packagings supported by each Linux driver by counting
the number of PCI, USB or other bus device IDs (i.e., i2c, ieee1394) that the driver recognizes. These structures
are used across buses to identify (and match) different devices or packagings that are supported by the driver.
Figure 3.5 shows the average number of chipsets supported by each driver in each driver class. While most
drivers support only a few different devices, serial drivers support almost 36 chipsets on average, and network
drivers average 5. The Radeon DRM driver supports over 400 chipsets, although many of these may indicate
different packagings of the same internal chipset. Generic USB drivers such as usb-storage and usb-audio
support over 200 chipsets each, and the usb-serial driver supports more than 500 chipsets. While not every
chipset requires different treatment by the driver, many do. For example, the 3c59x 100-megabit Ethernet
driver supports 37 chipsets, 17 sets of features that vary between chipsets, and two complete implementations
of the core send/receive functionality. Overall, I find that 28% of drivers support more than one chipset and
these drivers support 83% of the total devices.

In order to measure the effects of number of chipsets on driver code size, I measured the least-square
correlation coefficient between the number of chipsets support by a driver and the amount of code in the

40

char drivers block drivers net drivers

ac
p
i

b
lu
et
oo

th
cr
yp

to

fi
re
w
ir
e

gp
io

gp
u

hw
m
on

in
p
u
t

is
d
n

le
d
s

m
ed
ia

m
is
c

p
ar
p
or
t

p
n
p

se
ri
al

so
u
n
d

vi
d
eo

w
at
ch
d
og at
a

id
e

m
d

m
td

sc
si

at
m

in
fi
n
ib
an

d
n
et

uw
b

0

20

40

60

80

100

120

140

160

Driver Classes

D
ev
ic
e
ca
ll
s
an

d
b
u
s
ca
ll
s
p
er

d
ri
ve
r

portio/mmio
dma
bus

1

ac
p
i

b
lu
et
oo

th
cr
yp

to

fi
re
w
ir
e

gp
io

gp
u

hw
m
on

in
p
u
t

is
d
n

le
d
s

m
ed
ia

m
is
c

p
ar
p
or
t

p
n
p

se
ri
al

so
u
n
d

vi
d
eo

w
at
ch
d
og at
a

b
lo
ck id
e

m
td

sc
si

at
m

in
fi
n
ib
an

d
n
et

uw
b

0

5

10

15

20

25

30

35

40

Driver Classes

N
o.

of
ch
ip
se
ts

char
block
net

1

Figure 3.5: The average number of chipsets supported by drivers in each class.

driver and found them to be weakly correlated (0.25), indicating that drivers supporting more chipsets were
on average larger than those that did not. However, this does not completely explain the amount of initial-
ization code, as the correlation between the number of chipsets and the percentage of initialization code was
0.07, indicating that the additional chipsets increased the amount of code throughout the driver.

Implications: These results indicate that Linux drivers support multiple chipsets per driver and are rela-
tively efficient, supporting 14,070 devices with 3,217 device and bus drivers, for an average of approximately
400 lines of code per device. Any system that generates unique drivers for every chipset or requires per-
chipset manual specification may lead to a great expansion in driver code and complexity. Furthermore,
there is substantial complexity in supporting multiple chipsets, as seen in Figure 3.6, so better program-
ming methodologies, such as object-oriented programming [83] and automatic interface generation, similar
to Devil [64], should be investigated.

3.2.7 Discussion

The results in this section indicate that while common assumptions about drivers are generally true, given the
wide diversity of drivers, one cannot assume they always hold. Specifically, many drivers contain substantial
amounts of code that make some of the existing research such as automatic generation of drivers difficult,
due to code unique to that driver and not part of the class, code that processes data, and code for many chip
sets.

41

static int __devinit cy_pci_probe(...)
{
if (device_id == PCI_DEVICE_ID_CYCLOM_Y_Lo) {

...
if (pci_resource_flags(pdev,2)&IORESOURCE_IO){

..
if (device_id == PCI_DEVICE_ID_CYCLOM_Y_Lo ||

device_id == PCI_DEVICE_ID_CYCLOM_Y_Hi) {
..

}else if (device_id==PCI_DEVICE_ID_CYCLOM_Z_Hi)
....
if (device_id == PCI_DEVICE_ID_CYCLOM_Y_Lo ||

device_id == PCI_DEVICE_ID_CYCLOM_Y_Hi) {
switch (plx_ver) {
case PLX_9050:
...
default: /* Old boards, use PLX_9060 */
...

}

Figure 3.6: The cyclades character drivers supports eight chipsets that behaves differently at each phase of execution. This makes
driver code space efficient but extremely complex to understand.

3.3 Driver Interactions

The preceding section focused on the function of driver code, and here I turn to the interactions of driver
code: how do drivers use the kernel, and how do drivers communicate with devices? I see three reasons to
study these interactions. First, extra processing power on devices or extra cores on the host CPU provide
an opportunity to redesign the driver architecture for improved reliability and performance. For example, it
may be possible to move many driver functions out of the kernel and onto the device itself. Or, in virtualized
systems, driver functionality may execute on a different core in a different virtual machine. Second, much
of the difficulty in moving drivers between operating systems comes from the driver/kernel interface, so
investigating what drivers request of the kernel can aid in designing more portable drivers. Third, the cost
of isolation and reliability are proportional to the size of the interface and the frequency of interactions, so
understanding the interface can lead to more efficient fault-tolerance mechanisms.

I examine the patterns of interaction between the driver, the kernel and the device, with a focus on (i)
which kernel resources drivers consume, (ii) how and when drivers interact with devices, (iii) the differences
in driver structure across different I/O buses, and (iv) the threading/synchronization model used by driver
code.

3.3.1 Methodology

I apply the DrMiner tool from Section 3.2 to perform this analysis. However, rather than propagating labels
down the call graph from entry points to leaf functions, here I start at the bottom with kernel and device
interactions. Using a list of known kernel functions, bus functions, and I/O functions, I label driver functions
according to the services or I/O they invoke. Additionally, I compute the number of invocations of bus, device
and kernel invocations for each function in a driver. These call counts are also propagated to determine how
many such static calls could be invoked when a particular driver entry point is invoked.

42

ac
p
i

b
lu
et
oo

th
cr
yp

to

fi
re
w
ir
e

gp
io

gp
u

hw
m
on

in
p
u
t

is
d
n

le
d
s

m
ed
ia

m
is
c

p
ar
p
or
t

p
n
p

se
ri
al

so
u
n
d

vi
d
eo

w
at
ch
d
og at
a

id
e

m
d

m
td

sc
si

at
m

in
fi
n
ib
an

d
n
et

uw
b

−20

0

20

40

60

80

100

120

140

160

180

200

220

240

Driver Classes

K
er
n
el

ca
ll
s
p
er

d
ri
ve
r

kernel-library memory sync
device-library kernel-services

1

char drivers block drivers net drivers

ac
p
i

b
lu
et
oo

th
cr
yp

to

fi
re
w
ir
e

gp
io

gp
u

hw
m
on

in
p
u
t

is
d
n

le
d
s

m
ed
ia

m
is
c

p
ar
p
or
t

p
n
p

se
ri
al

so
u
n
d

vi
d
eo

w
at
ch
d
og at
a

id
e

m
d

m
td

sc
si

at
m

in
fi
n
ib
an

d
n
et

uw
b

0

20

40

60

80

100

120

140

160

Driver Classes

D
ev
ic
e
ca
ll
s
an

d
b
u
s
ca
ll
s
p
er

d
ri
ve
r

portio/mmio
dma
bus

1

Figure 3.7: The average kernel library, memory, synchronization, kernel device library, and kernel services library calls per driver
(bottom to top in figure) for all entry points.

43

3.3.2 Driver/Kernel Interaction

Drivers vary widely in how they use kernel resources, such as memory, locks, and timers. Here, I investigate
how drivers use these resources. I classify all kernel functions into one of five categories:

1. Kernel library (e.g., generic support routines such as reporting functions,1 timers, string manipulation,
checksums, standard data structures)

2. Memory management (e.g., allocation)
3. Synchronization (e.g., locks)
4. Device library (e.g., subsystem libraries supporting a class of device and other I/O related functions)
5. Kernel services (e.g., access to other subsystems including files, memory, scheduling)

The first three are generic library routines that have little interaction with other kernel services, and could
be re-implemented in other execution contexts. The fourth category, device library, provides I/O routines
supporting the driver but does not rely other kernel services, and is very OS dependent. The final category
provides access to other kernel subsystems, and is also OS dependent.

Figure 3.7 shows, for each class of drivers, the total number of function calls made by drivers in every
class. The results demonstrate several interesting features of drivers. First, the majority of kernel invocations
are for kernel library routines, memory management and synchronization. These functions are primarily local
to a driver, in that they do not require interaction with other kernel services. Thus, a driver executing in a
separate execution context, such as in user mode or a separate virtual machine, need not call into the kernel
for these services. There are very few calls into kernel services, as drivers rarely interact with the rest of the
kernel.

The number of calls into device-library code varies widely across different classes and illustrates the
abstraction level of the devices: those with richer library support, such as network and SCSI drivers, have a
substantial number of calls into device libraries, while drivers with less library support, such as GPU drivers,
primarily invoke more generic kernel routines.

Finally, a number of drivers make very little use of kernel services, such as ATA, IDE, ACPI, and UWB
drivers. This approach demonstrates another method for abstracting driver functionality when there is little
variation across drivers: rather than having a driver that invokes support library routines, these drivers are
themselves a small set of device-specific routines called from a much larger common driver. This design is
termed a “miniport” driver in Windows. Thus, these drivers benefit from a common implementation of most
driver functionality, and only the code differences are implemented in the device-specific code. These drivers
are often quite small and have little code that is not device specific.

These results demonstrate a variety of interaction styles between drivers and the kernel: drivers with
little supporting infrastructure demonstrate frequent interactions with the kernel for access to kernel services
but few calls to device support code. Drivers with a high level of abstraction demonstrate few calls to the
kernel over all. Drivers with a support library demonstrate frequent calls to kernel generic routines as well
as calls to device support routines.

1I leave out printk to avoid skewing the numbers from calls to it.

44

char drivers block drivers net drivers

ac
p
i

b
lu
et
oo

th
cr
yp

to

fi
re
w
ir
e

gp
io

gp
u

hw
m
on

in
p
u
t

is
d
n

le
d
s

m
ed
ia

m
is
c

p
ar
p
or
t

p
n
p

se
ri
al

so
u
n
d

vi
d
eo

w
at
ch
d
og at
a

id
e

m
d

m
td

sc
si

at
m

in
fi
n
ib
an

d
n
et

uw
b

0

20

40

60

80

100

120

140

160

Driver Classes

D
ev
ic
e
ca
ll
s
an

d
b
u
s
ca
ll
s
p
er

d
ri
ve
r

portio/mmio
dma
bus

1

ac
p
i

b
lu
et
oo

th
cr
yp

to

fi
re
w
ir
e

gp
io

gp
u

hw
m
on

in
p
u
t

is
d
n

le
d
s

m
ed
ia

m
is
c

p
ar
p
or
t

p
n
p

se
ri
al

so
u
n
d

vi
d
eo

w
at
ch
d
og at
a

id
e

m
d

m
td

sc
si

at
m

in
fi
n
ib
an

d
n
et

uw
b

0

20

40

60

80

100

120

140

160

Driver Classes

D
ev
ic
e
ca
ll
s
an

d
b
u
s
ca
ll
s
p
er

d
ri
ve
r

portio/mmio
dma
bus

1

Figure 3.8: The device interaction pattern representing port I/O, memory mapped I/O, bus resources (bottom to top) invoked via all
driver entry points.

Implications: Drivers with few calls into device libraries may have low levels of abstraction, and thus are
candidates for extracting common functionality. Similarly, drivers with many kernel interactions and de-
vice library interaction may benefit from converting to a layered “miniport” architecture, where more driver
functionality is extracted into a common library.

Furthermore, a large fraction of driver/kernel interactions are for generic routines (memory, synchro-
nization, libraries) that do not involve other kernel services. Thus, they could be implemented by a runtime
environment local to the driver. For example, a driver executing in a separate virtual machine or on the device
itself can make use of its local OS for these routines, and drivers in user space can similarly invoke user-space
versions of these routines, such as the UML environment in SUD [13].

3.3.3 Driver/Device Interaction

I next look at interaction between the driver and the device. I analyzed all functions in all drivers, and if a
function does I/O itself, or calls a function that results in an I/O, I label it as perform I/O. I categorize driver/de-
vice interactions around the type of interaction: access to memory-mapped I/O (MMIO) regions or x86 I/O
ports (port IO) are labeled mmio/portio, DMA is DMA access, either initiated by the driver or enabled by the
driver creating a DMA mapping for a memory region, and calls to a bus, such as USB or PCI (bus). I could

45

Kernel Interactions Device Interactions
BUS mem sync dev lib. kern lib. kern services port/mmio dma bus avg devices/driver

PCI 15.6 57.8 13.3 43.2 9.1 125.1 7.0 21.6 7.5
USB 9.6 25.5 5.6 9.9 3.0 0.0 2.22 13.8 13.2
Xen 10.3 8.0 7.0 6.0 2.75 0.0 0.0 34.0 1/All

Table 3.3: Comparison of modern buses on drivers across all classes. Xen and USB drivers invoke the bus for the driver while PCI
drivers invoke the device directly.

not determine statically when a device initiates DMA, although I do count calls to map a page for future
DMA (e.g., pci_map_single) as a DMA action. My analysis can detect memory mapped I/O through accessor
routines such as read/writeX family, ioread/iowrite family of routines and port I/O using the in/outX fam-
ily. DrMiner cannot identify direct dereferences of pointers into memory-mapped address ranges. However,
direct dereference of I/O addresses is strongly discouraged and most non-conforming drivers have been con-
verted to use accessor routines instead. I also note that all I/O routines on x86 eventually map down to either
port or MMIO. Here, though, I focus on the I/O abstractions used by the driver.

Figure 3.8 shows, for each class of device, the number of device interactions in the entire driver. The
results demonstrate that driver classes vary widely in their use of different I/O mechanisms. IDE and ATA
drivers, both block devices, show very different patterns of interaction: IDE drivers do very little port or
MMIO, because they rely on the PCI configuration space for accessing device registers. Hence, they show
a greater proportion of bus operations. Additionally, virtual device classes such as md (RAID), do page-
level writes by calling the block subsystem through routines like submit_bio rather than by accessing a device
directly.

Second, these results demonstrate that the cost of isolating drivers can vary widely based on their
interaction style. Direct interactions, such as through ports or MMIO, can use hardware protection, such
as virtual memory. Thus, an isolated driver can be allowed to access the device directly. In contrast, calls
to set up DMA or use bus routines rely on software isolation, and need to cross protection domains. Thus,
drivers using higher-level buses, like USB, can be less efficient to isolate, as they can incur a protection-domain
transition to access the device. However, as I show in the next section, access devices through a bus can often
result in far fewer operations.

Implications: The number and type of device interactions vary widely across devices. Thus, the cost of
isolating drivers, or verifying that their I/O requests are correct (as in Nexus [112]) can vary widely across
drivers. Thus, any system that interposes or protects the driver/device interaction must consider the variety
of interaction styles. Similarly, symbolic execution frameworks for drivers [50] must generate appropriate
symbolic data for each interaction style.

3.3.4 Driver/Bus Interaction

The plurality of drivers in Linux are for devices that attach to some kind of PCI bus (e.g., PCIe or PCI-X).
However, several other buses are in common use: the USB bus for removable devices and XenBus for virtual
devices [116]. Architecturally, USB and Xen drivers appear to have advantages, as they interact with devices
over a message-passing interface. With USB 3.0 supporting speeds up to 5 Gbps [107] and Xen supporting 10
Gbps networks [80], it is possible that more devices will be accessed via USB or XenBus.

46

In this section, I study the structural properties of drivers for different buses to identify specific dif-
ferences between the buses. I also look for indications that drivers for a bus may have better architectural
characteristics, such as efficiency or support for isolation. I focus on two questions: (i) does the bus support
a variety of devices efficiently, (ii) will it support new software architectures that move driver functionality
out of the kernel onto a device or into a separate virtual machine? Higher efficiency of a bus interface results
from supporting greater number of devices with standardized code. Greater isolation results from having
less device/driver specific code in the kernel. If a bus only executes standardized code in the kernel, then it
would be easier to isolate drivers away from kernel, and execute them inside a separate virtual machine or
on the device itself such as on an embedded processor.

Table 3.3 compares complexity metrics across all device classes for PCI, USB, and XenBus. First, I look
at the efficiency of supporting multiple devices by comparing the number of chipsets supporting by a driver.
This indicates the complexity of supporting a new device, and the level of abstraction of drivers. A driver
that supports many chipsets from different vendors indicates a standardized interface with a high level of
common functionality. In contrast, drivers that support a single chipset indicate less efficiency, as each device
requires a separate driver.

The efficiency of drivers varied widely across the three buses. PCI drivers support 7.5 chipsets per
driver, almost always from the same vendor. In contrast, USB drivers average 13.2, often from many vendors.
A large part of the difference is the effort at standardization of USB protocols, which does not exist for many
PCI devices. For example, USB storage devices implement a standard interface [106]. Thus, the main USB
storage driver code is largely common, but includes call-outs to device-specific code. This code includes
device-specific initialization, suspend/resume (not provided by USB-storage and left as an additional feature
requirement) and other routines that require device-specific code. While there are greater standardization
efforts for USB drivers, it is still not complete

Unlike PCI and USB drivers, XenBus drivers do not access devices directly, but communicate with a
back-end driver executing in a separate virtual machine that uses normal Linux kernel interfaces to talk to any
driver in the class. Thus, a single XenBus driver logically supports all drivers in the class. in a separate domain
so we report them as a single chipset. However, device-specific behavior, described above in Section 3.2.4, is
not available over XenBus; these features must be accessed from the domain hosting the real driver. XenBus
forms an interesting basis for comparison because it provides the minimum functionality to support a class
of devices, with none of the details specific to the device. Thus, it represents a “best-case” driver.

I investigate the ability of a bus to support new driver architectures through its interaction with the ker-
nel and device. A driver with few kernel interactions may run more easily in other execution environments,
such as on the device itself. Similarly, a driver with few device or bus interactions may support accessing
devices over other communication channels, such as network attached devices [66]. I find that PCI drivers
interact heavily with the kernel unless kernel resources are provided by an additional higher-level virtual bus
(e.g., ATA). In contrast, Xen drivers have little kernel interaction, averaging only 34 call sites compared to 139
for PCI drivers. A large portion of the difference is that Xen drivers need little initialization or error handling,
so they primarily consist of core I/O request handling.

The driver/device interactions also vary widely across buses: due to the fine granularity offered by PCI
(individual bytes of memory), PCI drivers average more device interactions (154) than USB or XenBus devices

2USB drivers invoke DMA via the bus.

47

(14-34). Thus, USB drivers are more economical in their interactions, as they batch many operations into a
single request packet. XenBus drivers are even more economical, as they need fewer bus requests during
initialization and as many operations as USB for I/O requests. Thus, USB and XenBus drivers may efficiently
support architectures that access drivers over a network, because access is less frequent and coarse grained.

Implications: These results demonstrate that the flexibility and performance of PCI devices comes with a
cost: increased driver complexity, and less interface standardization. Thus, for devices that can live within the
performance limitations of USB or in a virtualized environment for XenBus, these buses offer real architectural
advantages to the drivers. With USB, significant standardization enables less unique code per device, and
coarse-grained access allows efficient remote access to devices [2, 29, 41].

XenBus drivers push standardization further by removing all device-specific code from the driver and
executing it elsewhere. For example, it may be possible to use XenBus drivers to access a driver running on
the device itself rather than in a separate virtual machine; this could in effect remove many drivers from the
kernel and host processor.

The mechanism for supporting non-standard functionality also differs across these buses: for PCI, a
vendor may write a new driver for the device to expose its unique features. For USB, a vendor can add
functionality to the existing common drivers just for the features. For XenBus, the features must be accessed
from the domain executing the driver and are not available to a guest OS.

3.3.5 Driver Concurrency

Another key requirement of drivers in all modern operating systems is the need to multiplex access to the de-
vice. For example, a disk controller driver must allow multiple applications to read and write data at the same
time, even if these applications are not otherwise related. This requirement can complicate driver design, as it
increases the need for synchronization among multiple independent threads. I investigate how drivers multi-
plex access across long-latency operations: do they tend towards threaded code, saving state on the stack and
blocking for events, or toward event-driven code, registering callbacks either as completion routines for USB
drivers or interrupt handlers and timers for PCI devices. If drivers are moved outside the kernel, the driver
and kernel will communicate with each other using a communication channel and supporting event-driven
concurrency may be more natural.

I determine that a driver entry point requires a threaded programming style if it makes blocking calls
into the kernel, or busy-waits for a device response using msleep() which enables blocking. All other entry
points are considered “event friendly”, in that they do not suspend the calling thread. I did not detect specific
routines that use event-based synchronization, as they often rely on the device to generate the callback via an
interrupt rather than explicitly registering with the kernel for a callback .

The results, shown in Figure 3.9 in the bars labeled event friendly and threaded, show that the split of
threaded and event-friendly code varies widely across driver classes. Overall, drivers extensively use both
methods of synchronization for different purposes. Drivers use threaded primitives to synchronize driver
and device operations while initializing the driver, and updating driver global data structures, while event-
friendly code is used for core I/O requests. Interestingly, network drivers and block drivers, which are not
invoked directly by user-level code, have a similar split of code to sound drivers, which are invoked directly
from application threads. This arises because of the function of most driver code, as reported in Section 3.2.2:

48

char drivers block drivers net drivers

ac
p
i

b
lu
et
oo

th
cr
yp

to

fi
re
w
ir
e

gp
io

gp
u

hw
m
on

in
p
u
t

is
d
n

le
d
s

m
ed
ia

m
is
c

p
ar
p
or
t

p
n
p

se
ri
al

so
u
n
d

vi
d
eo

w
at
ch
d
og at
a

id
e

m
d

m
td

sc
si

at
m

in
fi
n
ib
an

d
n
et

uw
b

0

20

40

60

80

100

120

140

160

Driver Classes

D
ev
ic
e
ca
ll
s
an

d
b
u
s
ca
ll
s
p
er

d
ri
ve
r

portio/mmio
dma
bus

1

ac
p
i

b
lu
et
oo

th
cr
yp

to

fi
re
w
ir
e

gp
io

gp
u

hw
m
on

in
p
u
t

is
d
n

le
d
s

m
ed
ia

m
is
c

p
ar
p
or
t

p
n
p

se
ri
al

so
u
n
d

vi
d
eo

w
at
ch
d
og at
a

id
e

m
d

m
td

sc
si

at
m

in
fi
n
ib
an

d
n
et

uw
b

0

10

20

30

40

50

60

70

80

90

100

Driver Classes

P
er
ce
nt
ag
e
of

th
re
ad

ed
vs

ev
en
t
fr
ie
n
d
ly

fu
n
ct
io
n
s

threaded event friendly

1

Figure 3.9: The percentage of driver entry points under coverage of threaded and event friendly synchronization primitives.

initialization and configuration. This code executes on threads, often blocking for long-latency initialization
operations such as device self-test.

Implications: Threaded code is difficult to run outside the kernel, where the invoking thread is not available.
For example, Microdrivers [37] executes all driver code in an event-like fashion, restricting invocation to
a single request at a time. Converting drivers from threads to use event-based synchronization internally
would simplify such code. Furthermore, events are a more natural fit when executing driver code either in
separate virtual machine or on a device itself, as they naturally map to a stream of requests arising over a
communication channel [87].

3.4 Driver Redundancy

Given that all the drivers for a class perform essentially the same task, one may ask why so much code is
needed. In some cases, such as IDE devices, related devices share most of the code with a small amount of
per-device code. Most device classes, though, replicate functionality for every driver. The problem of writing
repeated/redundant code is well documented. It causes maintainability issues in software development [33],
and is also a significant cause of bugs in the Linux kernel [21, 74, 56]. Providing the right abstractions also
helps in code standardization and integrating kernel services such as power management in a correct fashion

49

DrComp signature: 1.798865
static int hpt374_fn1_cable_detect(....)
{
struct pci_dev *pdev = to_pci_dev(...);

unsigned int mcrbase = 0x50
+ 4 * ap->port_no;

u16 mcr3;
u8 ata66;

/*Do the extra channel work */
pci_read_config_word(pdev,

mcrbase+2,&mcr3);
/*Set bit 15 of 0x52 to enable ..*/
pci_write_config_word(pdev,

mcrbase + 2,..);
pci_read_config_byte(pdev,

0x5A,&ata66);
/*Reset TCBLID/FCBLID to output */
pci_write_config_word(pdev,

mcrbase+2,mcr3);
if (ata66 & (2 >> ap->port_no))

return ATA_CBL_PATA40;
else

return ATA_CBL_PATA80;
}

DrComp signature: 1.8
static int hpt37x_cable_detect(...)
{
struct pci_dev *pdev = to_pci_dev(...);

u8 scr2, ata66;

pci_read_config_byte(pdev,
0x5B, &scr2);

pci_write_config_byte(pdev,
0x5B,...);

udelay(10); /* debounce */

/* Cable register now active */
pci_read_config_byte(pdev,

0x5A,&ata66);
/* Restore state */
pci_write_config_byte(pdev,

0x5B,scr2);
if (ata66 & (2 >> ap->port_no))

return ATA_CBL_PATA40;
else

return ATA_CBL_PATA80;
}

Figure 3.10: Similar code between two different HPT ATA controller drivers essentially performing the same action. These are
among the least-similar functions that DrComp is able to detect these functions as related. The boxes show differentiating statements
in the two functions that account for the close signature values.
DrComp signature:1.594751
static int nv_pre_reset(......)
{

..struct pci_bits nv_enable_bits[] = {
{ 0x50, 1, 0x02, 0x02 },
{ 0x50, 1, 0x01, 0x01 }

};

struct ata_port *ap = link->ap;
struct pci_dev *pdev = to_pci_dev(...);
if (!pci_test_config_bits
(pdev,&nv_enable_bits[ap->port_no]))
return -ENOENT;
return ata_sff_prereset(..);
}

DrComp signature:1.594751
static int amd_pre_reset(...)
{

..struct pci_bits amd_enable_bits[] = {
{ 0x40, 1, 0x02, 0x02 },
{ 0x40, 1, 0x01, 0x01 }

};

struct ata_port *ap = link->ap;
struct pci_dev *pdev = to_pci_dev(...);
if (!pci_test_config_bits
(pdev,&amd_enable_bits[ap->port_no]))
return -ENOENT;
return ata_sff_prereset(..);
}

Figure 3.11: The above figure shows identical code that consumes different register values. Such code is present in drivers where
multiple chipsets are supported as well as across drivers of different devices. The functions are copies except for the constants as
shown in the boxes.

across all drivers. Without a global view of drivers, it can be difficult to tell whether there are opportunities
to share common code.

To address this question, I developed a scalable, code similarity tool for discovering similar code pat-
terns across related drivers and applied it to Linux drivers. The goal of this work is to find driver functions
with substantially similar code, indicating that the common code could be abstracted and removed from all
drivers to reduce driver code size and complexity.

3.4.1 Methodology

I developed a new code-similarity tool to handle the number of Linux drivers to find similarities rather than
exact copies. I needed to parse through the entire driver source tree consisting of 5 million lines of code,
with close to a million lines of code in large classes like network drivers. Most existing clone-detection tools

50

develop a stream of tokens or tree/graphs and perform an n x n comparison of all code snippets to detect
clones, which given the size of the driver classes, is not possible. In addition, I needed a similarity detector
for finding code that that is closely related but not identical. With more control over how similar regions are
detected using information from the semantics of drivers, I are able to detect more useful similar code. For
example, while parsing function calls, I treat calls to the device and kernel differently, improving the accuracy
of our similarity-detection tool.

Our similarity tool, DrComp, is based on shape analysis3 [30]. This is a method to determine whether
clusters of points have a similar shape and variants of these technique are often used to cluster data, to deter-
mine nature of data distribution, and to detect identical shapes in computer vision [10].

DrComp generates a set of multidimensional coordinates for every function in every driver. It then de-
tects as similar two functions whose coordinate sets (shape) are similar. DrComp processes a driver function
and adds a point to the function’s shape for every statement or action in statement for loop, kernel inter-
action, conditionals, device interaction, variable assignment, break and return statements. The coordinates
of the point are the offset into the function (line number) and the statement type. To improve accuracy, it
is important that the generated shape of the code emphasizes the important characteristics of the function.
Hence, I also reinforce the shape of the function by weighting statements that are important yet sparse, such
as a function returns and calls to kernel functions. The shape of each driver function is a cloud of points
on plane representing the structure of the program. While I consider only two dimensions of the code, the
statement type and edit distance to generate the points, our tool can easily be extended to include additional
dimensions based on code features (such as nesting depth) or driver features (such as interrupt frequency).

To eliminate complex comparison of two driver functions, I further reduce the shape of a driver down
to a single signature value. I compute the signature as a function of Euclidean distance between all the points
in the code cluster obtained above. The output of DrComp is a signature for every function in every driver.
Thus, two functions with identical code will have identical signatures. Furthermore, code that is similar, in
that it has a similar structure of loops and I/O operations, will have similar signatures.

Figure 3.10 shows an example of some of the least similar related code in drivers I found. These two func-
tions have signatures within 0.05% of each other. DrComp only looks for the code structure from statement
types (also distinguishing kernel and device invocations) and edit distance, so functions may use different
arguments (register values), compare against different values or loop on different conditions, and still be
grouped as similar code.

3.4.2 Redundancy Results

DrComp detected that 8% of all driver code is very similar to other driver code. The results of our similarity
study are shown in Table 3.4. For classes with many similarities, I show the number of fragment clusters (sets
of similar code), as well as the total number of functions that are similar to another function. For the results
in above table, I show results within individual driver classes and not across classes, as they are less likely to
benefit from a shared abstraction.

Overall, I identified similarities within a single driver, across a subset of drivers in a class, and in some

3I perform geometric shape analysis, not the program analysis technique of the same name.

51

Driver
class

Driver
subclass

Similar
code
fragments

Fragment
clusters

Fragment
size
(Avg.
LOC)

Redundancy results and action items to remove redundant
code

acpi 64 32 15.1
Procedural abstraction for centralized access to kernel re-
sources and passing get/set configuration information as ar-
guments for large function pairs.

gpu 234 108 16.9
Procedural abstractions for device access. Code replicated
across drivers, like in DMA buffer code for savage, radeon,
rage drivers, can be removed by supporting more devices per
driver.

isdn 277 118 21.0 Procedural abstraction for kernel wrappers. Driver abstrac-
tion/common library for ISDN cards in hisax directories.

char input 125 48 17.23
Procedural abstraction for kernel wrappers. Driver abstrac-
tion/common driver for all touchscreen drivers. Procedural
abstraction in Aiptek tablet driver.

media 1116 445 16.5
Class libraries for all Micron image sensor drivers. Procedu-
ral abstraction in saa 7164 A/V decoder driver and ALI 5602
webcam driver.

video 201 88 20
Class libraries for ARK2000PV, S3Trio, VIA VT8623drivers in
init/cleanup, power management and frame buffer opera-
tions. Procedural abstraction in VESA VGA drivers for all
driver information functions.

sound 1149 459 15.1

Single driver for ICE1712 and ICE1724 ALSA drivers. Proce-
dural abstraction for invoking sound libraries, instead of re-
peated code with different flags. Procedural abstraction for
AC97 driver and ALSA driver for RME HDSPM audio inter-
face.

ata 68 29 13.3
Common power management library for ALI 15x3, CMD640
PCI, Highpoint ATA controllers, Ninja32, CIL 680, ARTOP
867X, HPT3x3, NS87415 PATA drivers and SIS ATA driver.
Table driven programming for device access in these drivers.

block ide 18 9 15.3 Procedural abstraction for the few wrappers around power
management routines.

scsi 789 332 25.6
Shared library for kernel/scsi wrappers for Qlogic HBA
drivers; pmc sierra and marvell mvsas drivers. Large redun-
dant wrappers in mp2sas firmware, Brocade FC port access
code.

net Ethernet/
wireless 1906 807 25.1

Shared library for wireless drivers for talking to device/ker-
nel and wireless routines. Lot of NICs share code for most
routines like configuration, resource allocation and can be
moved to a single driver with support for multiple chipsets.
A driver sub-class library for all or vendor specific Ethernet
drivers.

infiniband 138 60 15.0 Procedural abstraction for Intel nes driver.

Table 3.4: The total number of similar code fragments and fragment clusters across driver classes and action items that can be taken
to reduce them.

52

cases across most drivers in a class. Within a single driver, I found that the most common form of repeated
code was wrappers around device I/O, driver library or kernel functions. These wrappers either convert
data into the appropriate format or perform an associated support operation that is required before calling
the routines but differ from one another because they lie on a different code path. These wrappers could be
removed if the kernel interface supported the same data types as the device or if drivers provided appropriate
abstractions to avoid such repeated code.

I also find swaths of similar functions across entire classes of drivers. The major difference between
drivers for different chipsets of the same device are often constant values, such as device registers or flag
values. For example, ATA disk drivers abstract most of the code into a core library, libata, and each driver
implements a small set of a device-specific functionality. Commonly, these functions are short and perform
one or two memory-mapped I/O reads or writes, but with different values for every driver. Figure 3.11 shows
two functions from different ATA drivers with substantially similar code. This practice generates large bodies
of very similar drivers with small differences. Further abstraction could additionally simplify these drivers,
for example, replacing these routines with tables encoding the different constants. Similarly, a hardware
specification language [64] may be able to abstract the differences between related devices into a machine-
generated library.

Finally, I note similarities across subsets of drivers in a class. For example, another common class of
similarities is wrappers around kernel functions and driver libraries for that class: the release method for
frame buffers is virtually identical across many of the drivers, in that it checks a reference count and restores
the VGA graphics mode. There are a few small differences, but refactoring this interface to pull common
functionality into a library could again simplify these drivers.

Implications: Overall, these results demonstrate that there are many opportunities for reducing the volume
of driver code by abstracting similar code into libraries or new abstractions. I visually inspected all function
clusters to determine how a programmer could leverage the similarity by having a single version of the code.
I see three methods for achieving this reduction: (i) procedural abstractions for driver sub-classes, (ii) better
multiple chipset support and (iii) table driven programming.

The most useful approach is procedural abstraction, which means to move the shared code to a library and
provide parameters covering the differences in implementation. There is significant code in single drivers or
families of drivers with routines performing similar functions on different code paths. Creating driver-class
or sub-class libraries will significantly reduce this code. Second, existing driver libraries can be enhanced
with new abstractions that cover the similar behavior. There are many families of drivers that replicate code
heavily, as pointed out in Table 3.4. Abstracting more code out these families by creating new driver abstrac-
tions that support multiple chipsets can simplify driver code significantly. Finally, functions that differ only
by constant values can be replaced by table-driven code. This may also be applicable to drivers with larger
differences but fundamentally similar structures, such as network drivers that use ring buffers to send and
receive packets. By providing these abstractions, I believe there is an opportunity to reduce the amount of
driver code, consequently reducing the incidence of bugs and improving the driver development process by
producing concise drivers in the future.

53

3.5 Summary

The purpose of this study is to investigate the complete set of drivers in Linux, to avoid generalizing from
the small set of drivers commonly used for research, and to form new generalizations.

Overall, I find several results that are significant to future research on drivers. First, a substantial
number of assumptions about drivers, such as class behavior, lack of computation, are true for many drivers
but by no means all drivers. For example, instead of request handling, the bulk of driver code is dedicated to
initialization/cleanup and configuration, together accounting for 51% of driver code. A substantial fraction
(44%) of drivers have behavior outside the class definition, and 15% perform significant computations over
data. Thus, relying on a generic frontend network driver, as in Xen virtualization, conceals the unique features
of different devices. Similarly, synthesizing driver code may be difficult, as this processing code may not be
possible to synthesize. Tools for automatic synthesis of driver code should also consider driver support for
multiple chipset as I find that Linux supports over 14,000 devices with just 3,217 bus and device drivers.

Second, our study of driver/device/kernel interactions showed wide variation in how drivers interact
with devices and the kernel. At one end, miniport drivers contain almost exclusively device-specific code
that talks to the device, leaving kernel interactions to a shared library. At the other end, some drivers make
extensive calls to the kernel and very few into shared device libraries. This latter category may be a good
candidate for investigation, as there may be shared functionality that can be removed. Overall, these results
also show that the cost of isolating drivers may not be constant across all driver classes.

Third, our investigation of driver/device interaction showed that USB and XenBus drivers provide
more efficient device access than PCI drivers, in that a smaller amount of driver code supports access to
many more devices, and that coarse-grained access may support moving more driver functionality out of the
kernel, even on the device itself. Furthermore, many drivers require very little access to hardware and instead
interact almost exclusively with the bus. As a result, such drivers can effectively be run without privileges,
as they need no special hardware access. I find that USB and Xenbus provide the opportunity to utilize the
extra cycles on devices by executing drivers on them and can effectively be used to remove drivers from the
kernel leaving only standardized bus code in the kernel.

Finally, I find strong evidence that there are substantial opportunities to reduce the amount of driver
code. The similarity analysis shows that there are many instances of similar code patterns that could be re-
placed with better library abstractions, or in some cases with tables. Furthermore, the driver function break-
down in Section 3.2 shows that huge amounts of code are devoted to initialization; this code often detects the
feature set of different chipsets. Again, this code is ripe for improvement through better abstractions, such as
object-oriented programing technique and inheritance [83].

While this study was performed for Linux only, I believe many similar patterns, although for different
classes of devices, will show in other operating systems. It may also be interesting to compare the differences
in driver code across operating systems, which may demonstrate subtle differences in efficiency or complexity.
My study is orthogonal to most studies on bug detection. However, correlating bugs with different driver
architectures can provide insight on the reliability of these architectures in real life.

54

Chapter 4
Fine-Grained Fault Tolerance Using Device

Checkpoints

In most commodity operating systems, third-party driver code executes in privileged mode. Faulty device
drivers cause many reliability issues in these systems [21, 85]. Hence, there has been significant research to
tolerate driver failures using programming-language and hardware-protection techniques [13, 16, 32, 37, 53,
62, 112]. These systems execute the entire driver as a single isolated component. However, much of this work
focuses on detecting failures and isolating drivers from the rest of the system. Few of these systems address
how to restore driver functionality beyond simply reloading the driver, which may leave applications non-
functioning.

Most driver-reliability systems do not try to restore device state and instead completely restart failed
drivers [103, 118, 42], effectively resetting device state to a known-good configuration. The state-of-the-art
mechanism for restoring driver functionality, shadow drivers [102], logs state-changing operations at the
driver/kernel interface. Following a failure, shadow drivers restart the driver and replay the log in order to
restore internal driver and device state. This resets the driver and device to a state functionally equivalent to
its pre-failure state. This approach, complete driver isolation and logging for recovery, poses four problems:

1. Too hard: Shadow drivers must be written for every class of driver and must be updated when the
interface changes. This adds a large body of code to the kernel requiring constant maintenance, which
is a high barrier to adoption. Other systems require substantially rewriting drivers, which is also a
barrier.

2. Not enough: Shadow drivers must encode the semantics of the kernel/driver interface. However, many
drivers have proprietary commands that cannot be captured by a shadow driver common to an entire
class, leading to incomplete recovery. Recent work showed that up to 44% of drivers have non-class
behavior [49].

3. Too expensive: Shadow drivers must interpose on and log all invocations of a driver. Continuous mon-
itoring imposes a performance cost, particularly on high-performance devices such as SSDs and NICs
even when the critical I/O path is bug-free.

56

4. Too slow: Restarting a driver, the first step of log replay, can be slow (multiple seconds) due to complex
initialization code and therefore may not be useful in latency-sensitive environments.

A key source of these problems is that prior systems seek completeness: applying to all driver code at all
times. While this reduces the per-driver cost, it pushes up both development and runtime costs.

I developed a new driver fault tolerance mechanism to address these shortcomings called Fine-grained
Fault Tolerance (FGFT). Rather than isolating and recovering from the failure of an entire driver, FGFT executes
a driver entry point as a transaction and uses software fault isolation to prevent corruption and detect failures.
On entry to a driver, a stub copies parameters to the driver code. Only if the driver executes correctly are the
results copied back. If the call faults, FGFT destroys the copy to roll back driver state and fails the call.

In order to restore device state modified by a driver before faulting, we developed a novel device state
checkpointing mechanism that can capture the device state. The stub captures a checkpoint before invoking the
driver, and restores the checkpoint on failure. This mechanism leverages existing power-management code
present in most drivers, which greatly reduces the development cost of adopting FGFT.

FGFT shifts the cost of driver fault tolerance to the faulty code. While shadow drivers and whole-driver
isolation require up-front code for any instance of a class of drivers, FGFT instead requires small changes to the
driver itself to support isolation and implement checkpointing. Where past isolation mechanisms interpose
on all driver code and reduce its performance uniformly, FGFT only imposes a cost on entry points selected
for isolation. Thus, the cost of executing a single call with fault tolerance may be higher with FGFT than other
systems, but when applied only to code off the critical path it has much lower overhead because the critical
code is left unchanged. Thus, one possible use for FGFT is to apply it selectively to vulnerable code suspected
or known to have bugs.

The contributions of this chapter are:

• I describe Fine-Grained Fault Tolerance, a system consisting of a static analysis and code generation
tool that provides isolation by executing each driver request on a minimal copy of required driver
state. Our system can be used to isolate specific requests and I show from a study of published bugs
that fine-grained isolation is practical since bugs only affect 14% of all entry points in buggy drivers.

• I demonstrate a novel mechanism to create device checkpoints on a running system. In a study of six
drivers, I show that taking a checkpoint is fast, averaging only 20 µs.

• I show how to use checkpoints and transactional execution of driver code to provide fast recovery and
remove the permanent overhead of monitoring all requests.

• I show that the implementation effort of FGFT is small: I added 38 lines of code to the kernel to trap
processor exceptions, and found that device checkpoint code can be constructed with little effort from
power-management code present in 76% of drivers in common driver classes.

I begin with an overview of the FGFT design.

4.1 Design Overview

FGFT is a system to tolerate faults in drivers using a pay-as-you-go model based on checkpoints for recovery.
This system protects code from faults at the granularity of a single thread executing a single entry point. FGFT
recovers from any failures that occur during the function. This can greatly reduce the cost of isolating and

57

tolerating faults because far less code is affected.

I list four goals of providing fine-grained fault tolerance:

1. Class independent. Isolation and recovery should be independent of the driver-kernel interface and
should be able to recover driver actions from proprietary commands.

2. Low infrastructure. Little new code should be added to the kernel in support of FGFT.
3. Pay-as-you-go. FGFT should not have a fixed minimum overhead of isolation or monitoring driver

behavior. Furthermore, programmer effort should only be required when fault tolerance is desired.
4. Fast recovery. FGFT should restore driver functions quickly after a failure without resetting other

threads concurrently executing in the driver.

The first goal enables FGFT to apply to a broad range of drivers, and the second reduces the adoption cost
for an operating system. Pay-as-you-go ensures that for high-performance drivers, tolerating faults in code
off the critical path has little cost. Fast recovery enables its use in latency-sensitive environments.

The two major components of FGFT are an isolation mechanism to prevent a faulty driver from cor-
rupting the OS and to detect failures, and a recovery mechanism to restore the driver to a functioning state
after a failure. I begin a discussion of our fault model to motivate our design choices.

4.1.1 Fault Model

A driver entry point is a driver function invoked by the kernel or applications to access specific driver func-
tionality. Each driver registers a set of functions as entry points, such as to initialize the device or transmit a
packet. Driver entry points can be invoked by applications multiple times in arbitrary order. Hence, drivers
should not make assumptions about the order or past history of these invocations. FGFT provides fault tol-
erance at the granularity of a single entry point into a driver. In contrast, past systems treat the entire driver
as a component with internal state.

As the driver executes, the FGFT isolation mechanism enforces fine-grained memory safety. It ensures
that the driver entry point is only allowed to access data passed to the driver and its stack; access to anything
else will be treated as a fault. FGFT detects faults in driver entry points in three ways. First, FGFT de-
tects memory failures (such as null pointer dereferences) and reading/writing unintended kernel and driver
structures. Second, FGFT uses marshaling to copy data in and out of the driver. Type errors and malformed
structures that cause the marshaling to fail will be detected, although errors with compatible types (such as
treating an array of bytes as an array of longs), will not be. FGFT on its own does not provide any semantic
checks to enforce driver invariants. Hence, driver faults must be detected within the entry point where they
occur. Otherwise, failures that that are triggered when one entry point improperly sets a flag that another read
and faults cannot be tolerated. Third, FGFT catches processor exceptions such as NULL pointer exception,
general protection fault, alignment fault, divide error (divide by zero), missing segments, and stack faults. It
triggers recovery if an exception arises within an isolated driver entry point.

I design for an open-source environment, and therefore trust the compiler to produce code that correctly
accesses the stack. I also assume that the driver is unable to hang or damage the device, although it may
misconfigure the device.

A key benefit of FGFT is that by operating on specific entry points it can be selective about what code

58

should be hardened against faults. I call the entry points to be isolated suspect. The suspect code can execute
in isolation while the remainder of the driver executes in the kernel at full speed. Hence, FGFT is useful when
specific driver code is known to have problems, such as just-patched code or code with known but un-patched
vulnerabilities. I identify at least three cases where a fine-grained model is useful:

1. Untested code: Device drivers often contain untested code such as chipset-specific code or recovery
code that can be invoked safely using FGFT.

2. Statically found bugs: Often static analysis tools identify hard to find/trigger driver bugs with substan-
tial false positive rates. FGFT can be integrated with existing static analysis tools until a fix is issued,
which often takes considerable time. This approach limits the overhead to just the buggy code, just
when it contains known bugs.

3. Runtime monitoring tools: Runtime monitoring tools flag incoming requests based on their parameters,
such as a specific ioctl command code, or are enabled at run time through module parameters [57]
or security tools [75]. FGFT can dynamically decide whether to execute code in isolation or unsafely
at full speed.

In our evaluation I analyze a list of bugs and find that they only affect 14% of all driver entry points.
Hence, limiting the cost of fault tolerance to affected entry points can be useful. I now describe the two major
components of FGFT: isolation and recovery.

4.1.2 Fine-Grained Isolation

FGFT provides isolation by forcing suspect code to operate on a copy of driver and kernel data. This ensures
that anything the entry point does will not be seen by other threads or the kernel until it successfully com-
pletes, and allows quick recovery after a failure by deleting the copy. Thus, FGFT creates a clean copy of data
needed for a driver entry point on every invocation, which consists of all data referenced by the entry point:
parameters, global driver variables, and global kernel variables.

I use entry points as the granularity of isolation because it closely matches internal driver structure:
they provide a natural boundary for returning errors after a fault, and drivers already synchronize concurrent
invocation of entry points. If two driver threads cannot run concurrently in the driver, then driver synchro-
nization ensures that one of them blocks until the other successfully completes. Thus, FGFT reuses existing
synchronization mechanisms to ensure that when suspect code runs, no other threads are active in the driver.
This ensures that any changes to device state will not be seen until the entry point completes successfully or
it fails and recovery completes.

FGFT provides entry-point isolation with a copy-in/out model of driver and kernel state when sus-
picious entry-points are invoked. FGFT uses static analysis and code-generation to generate another kernel
module that contains suspect entry points instrumented for memory safety. FGFT also generates commu-
nication code containing marshaling routines to copy driver and kernel state necessary for executing these
entry points in isolation. Since the static analysis to marshal the data structures required by the isolated copy
can be imprecise, FGFT requires a programmer to annotate ambiguous data types in the driver code. In order
to provide even finer control over when to provide fault tolerance, FGFT automatically inserts taps, which
are predicates that can decide at runtime whether to invoke the normal or fault-tolerant version of an entry
point.

59

Module
Registration

Allocate device
structures

Map BAR
and I/O ports

Register device
operations

Detect chipset
capabilities

Cold boot hardware,
flash device memory

Perform EEPROM
checsumming

Set chipset
specific ops

Optional self
test on boot

Allocate driver
structures

Configure device to
working state

Device ready
for requests

Allocate device structures

Module registration

Map BAR and I/O ports

Register device operations

Detect chipset capabilities

Self test?
Self test on boot

Cold boot the device

Verify EEPROM checksum

Set chipset specific ops

Allocate driver structures

Configure device

Device ready
for requests

Figure 4.1: Modern devices perform many operations during initialization such as setting up kernel and device structures based on
chipset and device features, checksumming device ROM data, various device tests followed by driver initialization and configuration.

FGFT detects faults through run-time memory safety checks that detect access to unreachable addresses
– memory not passed as a parameter or allocated by the entry point. Since, FGFT generates the code for
copy-in/out, it is able to provide fine-grained memory safety (base and bound validation [69]). Furthermore,
for failure detection, FGFT interposes on kernel trap handlers and detects if the faults originate from the
suspicious entry-points and accordingly triggers recovery.

4.1.3 Checkpoint-based Recovery

FGFT relies on checkpoints prior to a driver entry point for recovery. Unlike log-based recovery, which re-
quires knowing how to replay requests, checkpoints can restore state independent of how a function modifies
driver state. For example, a checkpoint of a device prior to an ioctl call allows its state to be recovered no
matter what the call does.

Log-based recovery is also slow enough that the technique may not be useful in latency-sensitive envi-
ronments. The primary delay comes from probing the device all over again, which cold boots the device and
performs the initialization steps as shown in Figure 4.1. For example, during initialization a network driver
probes for the device, verifies EEPROM contents, tests the device, and registers the device with the kernel.

The checkpoint of the driver’s state in memory is captured automatically through the copy-in/out
model of invocation. Suspect code always executes on a copy of the driver state, so the original data is un-
modified and need not be restored. The major challenge, though, is the device state, which may be modified
unpredictably by the driver. I therefore require that drivers provide a facility for capturing and restoring de-
vice state. Prior to invoking suspect code, FGFT can take a checkpoint, and following a failure, it can restore

60

the checkpoint.

An appealing approach is to treat devices like memory and copy memory-mapped I/O regions. How-
ever, reading registers may have side effects such as clearing counters. In addition, some devices overlay two
logical registers, one for read and one for write, at the same address. Instead, I take inspiration from code
already present in many drivers that must perform nearly the same task as checkpoint/restore: power manage-
ment.

The functionality provided by power management, to suspend a device before entering a low power
mode and restoring it when transitioning to high power mode is similar to what is required to support device
checkpoints. I reuse the suspend/resume code by separating code that supports saving state to memory
from the code that actually suspends the device. Similarly, I identify code required for restoring this state. In
Section 4.3, I describe in detail how power management code can be re-factored to support checkpoint/restore
in device drivers and how existing driver synchronization can be used to arbitrate device access.

4.1.4 Design Summary

FGFT improves the state of art in driver recovery and meets its goals. FGFT provides class-independent
driver recovery with checkpoints as opposed to restarting the driver. Hence, FGFT discards failed requests
and retains proprietary driver state such as ioctls that were issued before the failure.

FGFT requires very little kernel code, as the code for isolation is generated automatically and the re-
covery code requires only small modifications to existing driver code. The annotation cost for isolation and
recovery is only required when a driver needs fault tolerance. Only when a suspicious request executes
does FGFT execute it in isolation, thus limiting isolation overhead to these requests. Compared to FGFT,
Nooks [103] and SUD [13] require a new kernel subsystem and writing and maintaining wrappers around
the driver-kernel interface.

There is also no recovery overhead of monitoring correctly executing requests at all times since driver
recovery is based on checkpoints. Finally, FGFT provides fast recovery since it does not restart the driver and
re-execute the complicated device probe routines. The device state is restored from a checkpoint, so recovery
is an order of magnitude faster as I demonstrate in the evaluation in Section 4.4.

4.2 Fine-Grained Isolation

Isolation ensures that the driver and kernel state changes made by a request are not propagated if the request
fails. I need the following properties from an isolation mechanism:

1. Transactional execution: I need to execute the driver entry points in a transactional fashion to keep a
clean copy of all data modified by the driver.

2. Memory safety and fault detection: I need to ensure a driver cannot corrupt the kernel or other threads in
the driver and provide mechanisms that detect when a driver has failed.

3. Synchronization: Threads executing in the driver need to synchronize with other threads to ensure they
do not corrupt shared state in the kernel, driver, or device.

61

Execution ComponentsCompile-time Components

Original
Driver
Source

Main driver module

FGFT
Isolator

Static Analysis and
Code Generation

Communication &
recovery support

User supplied
Annotations

SFI driver module

Marshaling/
Demarshaling

Object
tracking

Kernel
Undo Log

Stubs

Figure 4.2: FGFT replicates driver entry points into a normal driver and an SFI driver module. A runtime support module
provides communication and recovery support.

To achieve these goals, I rely on well-understood compile-time software fault isolation (SFI) [109]. As
a driver entry point operates on data shared with the rest of the driver, the SFI mechanism must allow ac-
cess to such data but prevent its corruption. FGFT therefore executes isolated code on a minimal copy of
the driver and kernel, which is a copy of data referenced from an entry point but not entire structures. For
example, when a network driver issues an ioctl to update its transmit ring parameters, FGFT uses points-
to analysis and pre-determines the fields an entry point can access, such as netdev→priv→tx_ring and
netdev→priv→rx_ring, and will only generate marshaling code to copy in/out only these fields to reduce
the generated code and the unnecessary copying of unused fields. If the entry point does not fail, FGFT
merges the copy back into the real driver and kernel structures. On a failure, the copy is discarded. In effect,
FGFT executes the suspect entry point as a transaction using lazy version management [52].

However, not all data can be copied. Structures shared with the device, such as network transmit and
receive rings, cannot be copied because the device will not share the copied structure. Instead, FGFT grants
suspect code direct read and/or write access to these structures and relies on device-state checkpointing to
restore these structures following a failure. Furthermore, driver code used for recovery cannot be isolated
and must be trusted.

I implemented FGFT for the Linux 2.6.29 kernel. Figure 4.2 shows the components of FGFT. I describe
how FGFT provides isolation, communicates with isolated code, and detects failures.

4.2.1 Software Fault Isolation

As FGFT targets open-source Linux device drivers, I implement SFI using a source-code rewriting tool called
FGFT Isolator written using CIL [72]. It generates isolation code into the driver and produces communication
code, described below, for communicating with the isolated code.

Isolator generates an additional driver module called the SFI module that contains a copy of all suspect
entry points and all driver functions transitively called from those functions, instrumented for SFI. In addition,
Isolator generates a new version of the driver that invokes the SFI module entry points. At the top of the
existing entry points, Isolator inserts a test to see whether to execute normally or in isolation, and if so invokes

62

the SFI module.

The decision to invoke a given entry point in isolation can be made in one of three ways. First, a devel-
oper can use the attribute __attribute__((isolate)) to manually specify which functions to isolate. This
causes the function to always execute with isolation. Second, FGFT can automatically use any static analysis
tool to identify buggy code and which entry points are affected. These entry points are then always executed
with isolation. Finally, the decision can be made at run time. A fault management system, such as the Solaris
Fault management Daemon [98], can call into the SFI module and specify which functions to execute with
isolation. Furthermore, it can register a function pointer at run time that takes the same arguments as the
suspicious function and returns a decision of whether to isolate or not.

In addition to producing the SFI driver code, Isolator produces communication code that invokes the
SFI driver and copies in the minimal driver and kernel state needed by the suspect entry points, copies out
any changes made by the SFI driver, and initiates recovery following a detected failure. Isolator manages
resource allocation, synchronization and I/O across the two copies. Isolator only detects memory failures.
For other failures, such as arithmetic exceptions, I trap processor exceptions and check if they originate from
SFI module.

Isolator uses CIL’s memory tracking module [72] to instrument all memory references in the driver. It
inserts a call to our memcheck function that verifies the target of a load/store is valid. If not, it detects a failure
and invokes the recovery mechanism. The memcheck routine consults a range table to verify memory references
and provide fine-grained memory protection by only allowing access to driver and kernel data as identified
at compile time. This table contains the addresses and lengths of copied data structures and buffers shared
with the device. The range table is created on every invocation of a suspect entry point and flushed on return.

I do not add all local variables to the range table because I trust the compiler to generate correct code
for moving variables between registers and the stack. However, if the driver ever takes the address of a local
variable, or creates an array as a local variable, then Isolator adds a call in the instrumented SFI driver to add
the variable’s address and length to the range table and remove it from the range table when the variable goes
out of scope. Similarly, I trust the compiler to produce valid control transfers and do not instrument branch
or call instructions.

Communication Code for Entry Points

FGFT Isolator generates stub code to invoke suspect entry points that copies data into and out of the driver.
Similar to RPC stubs, these stubs create a copy of the parameters passed to the suspect code, but also copy any
driver or kernel global variables it uses. When the suspect entry point completes, stub code copies modified
data structures and return values back to the regular driver and kernel in the current thread. An alternative
approach would be to rely on transactional-memory techniques to dynamically create a copy of data as it is
referenced, which may have lower copying costs but higher run-time costs [12].

Isolator automatically identifies the minimal data needed for an entry point through static analysis.
This data includes the structure fields from parameters referenced by the entry point or functions it calls plus
fields of global variables referenced. As they copy data, stubs update the range table with the address and
length of each object. For objects that cannot be copied (such as those shared with the device), stubs fill in the
existing address of the field, its length, and whether the entry point needs read, write, or read/write access.

63

If suspect code invokes the kernel, Isolator generates stubs for kernel functions that copy parameters
to the kernel and copies kernel return values back to suspect code. The SFI driver may pass in fields from its
parameters to the kernel as arguments. To avoid creating a new copy of these fields, as would be done by
RPC, FGFT maintains an object tracker that maps the address of kernel and regular driver objects to the address
of objects in the SFI driver. Stub code consults the object tracker when calling into the kernel to determine
whether arguments refer to a new or existing object. If an object exists, stubs copy the argument back to the
existing object and otherwise temporarily allocate a new object. To support recovery, stubs may generate a
compensation entry in a kernel undo log. This log records operations that must be reversed on failure, such as
freeing memory allocations.

The stub code must know the layout of data structures and whether data is shared with the driver in
order to correctly copy data. As driver code often contains ambiguous data structures such as void * pointers
or list pointers (e.g., struct list_head), I rely on programmer-provided annotations to disambiguate such
code [118]. These annotations also declare which structure fields or parameters are shared with the device
and should not be copied. In Section 4.4, I evaluate the difficulty of providing annotations.

Some driver functions trigger synchronous callbacks. For example, the pci_register_driver function
causes a callback on the same thread to the driver’s probe function. FGFT treats the callback as a nested trans-
action: it causes another isolated call operating on a second copy of the data.

Resource Access from SFI module

Some resources cannot be copied into the driver because they attach additional semantics or behavior to
memory.

I/O memory. Driver entry points may communicate with the device by writing to I/O memory. Stubs grant
the SFI driver read/write access to memory-mapped I/O regions and memory shared with the device via
dma_alloc_coherent. Isolator identifies these regions with annotations and creates stubs that grant drivers
direct read/write access.

Locks. Drivers synchronize with other threads using driver spin locks and mutexes. Hence, SFI grants read
access to driver locks and calls the locking API to acquire/release the locks. The stub code for kernel locking
routines add a compensation entry to the kernel undo log to release the lock after a failure. To ensure that
changes made by suspect code are not seen by the rest of the kernel, the lock stubs defer releasing driver locks
until after the entry point returns to the kernel. Apart from driver locks, drivers may acquire kernel-defined
locks indirectly through kernel calls. FGFT does not expand the scope of these locks and releases them upon
failure through compensation entries in the kernel undo log. Drivers can also directly manipulate kernel
data structures while holding kernel-defined locks. FGFT will not recover correctly for such entry points.
However, this is increasingly rare in Linux and there is an effort to ensure that kernel data structures are not
directly exposed to drivers.

The above mechanism protects shared structures across driver threads. However, the suspicious thread
can also block waiting for data to arrive on shared structures that have been copied over from other driver
threads. Fortunately, resynchronization across driver threads is uncommon. Using static analysis, I measure

64

how often driver threads wait for other threads using the Linux’s completion family of functions or by polling
in a loop.

Overall, I find driver resynchronization occurs in 2.7% of drivers and 1.4% of all entry points. Most
re-synchronizations occur during communication with the device: drivers wait for a device operation to fin-
ish and a callback sets the completion structure. In most cases, only the completion structure responsible for
device notifications needs to be annotated. However, complex drivers that communicate with devices using
a layered interface, such as SCSI or WIFI, may wait for lower layers to communicate with device and update
the appropriate drivers structures with the result of the operation. In such cases, annotations are required for
completion structures and shared device structures for the driver to work correctly. Finally, driver threads
also sleep inside loops waiting for other threads to finish by polling reference counts or driver structures. If
these threads modify state across threads, then FGFT will not recover correctly for this fraction of drivers/en-
trypoints.

Memory allocation. Stubs for allocators invoke the kernel allocator, add the returned memory region to the
range table and generate a compensation entry to free the memory on failure. The newly allocated memory is
not copied into the driver because its contents do not need to be preserved. For kernel callbacks that implicitly
allocate memory an appropriate compensation entry is generated.

4.2.2 Failure Detection

In addition to protecting the kernel and regular driver code from corruption, isolation provides the primary
means to detect failures. FGFT’s SFI mechanism implements spatial memory safety [69]: every memory refer-
ence must be within an object made accessible during the copy process. Thus, references outside the range
table indicate a failure.

Stubs can detect additional failures when copying data back to the kernel. For example, if the driver
writes an invalid address into a data structure, the copying code will dereference that address and generate
an exception. I also modified the Linux kernel exception handlers to detect unexpected traps from the SFI
driver as failures. If one occurs, the trap handler sets the instruction pointer to the recovery routine. This is
the only change to the Linux kernel, and required 38 lines of code.

The detection mechanisms may miss several categories of failures. First, if the driver violates its own
data structure invariants, stubs may not detect the problem. Recent work on identifying and verifying data
structure invariants could detect these faults [15]. For example, if a suspect entry point sets a flag indicating
that a field is valid but does not set the field, then corruption will leak out of the SFI driver. Second, the driver
does not provide strong type safety, so the driver may assign a structure field to the wrong type of data. While
this may be detected when the stub copies data, it is not guaranteed. Finally, FGFT does not enforce kernel
restrictions on the range of scalar values, such as valid packet lengths.

4.3 Checkpoint-based recovery

FGFT is built around checkpoint-based recovery. While checkpointing and restoring memory state is simple
using techniques such as transactional memory or copy-on-write, it has not previously been possible to cap-

65

(a) (b) (c)

int rtl8139_suspend (...)

/* save PCI config state */
pci_save_state (pdev);

/* disable device */
if (!netif_running (dev))

return 0;
netif_device_detach (dev);

spin_lock_irqsave
(&tp->lock, flags);

/* Disable interrupts,
stop Tx/Rx. */

RTL_W16 (IntrMask, 0);
RTL_W8 (ChipCmd, 0);

/* Copy out device state. */
dev->stats.rx_missed_errors +=

RTL_R32 (RxMissed);
RTL_W32 (RxMissed, 0);
spin_unlock_irqrestore

(&tp->lock, flags);

/* Suspend device */
pci_set_power_state (pdev, PCI_D3hot);

int rtl8139_checkpoint (...)

spin_lock_irqsave
(&tp->lock, flags);

/* save PCI config state */
pci_save_state (pdev);

/* Copy out device state. */
dev->stats.rx_missed_errors +=

RTL_R32 (RxMissed);

spin_unlock_irqrestore
(&tp->lock, flags);

int rtl8139_restore (...)

spin_lock_irqsave
(&tp->lock, flags);

/* disable device */
netif_device_detach (dev);

/* restore bus state */
pci_restore_state (pdev);

/* restart device */
if (!netif_running (dev))

return 0;
rtl8139_init_ring (dev);
rtl8139_hw_start (dev);

RTL_W32 (RxMissed, 0);

/* re-enable device */
netif_device_attach (dev);
spin_unlock_irqrestore

(&tp->lock, flags);

Figure 1: The above figures show the original suspend routine and refactored checkpoint and restore routines in rtl8139
driver. Driver checkpoint a consistent snapshot, while the heavy work of stopping and starting the device is moved to
restore.Drivers may also save non-standard registers during suspend which should be done during checkpoint.

4. Addresses of memory bu↵ers shared with the driver,
such as the DMA ring bu↵ers use by network
drivers to send or receive packets.

We note that a checkpoint may not actually contain the
full state of the device. Rather, it must contain enough
information that functionality can later be restored with-
out a↵ecting applications. Thus, device state that can
be recreated or recomputed need not be saved. Further-
more, the checkpoint only contains the device state. To
be restored properly, it requires a consistent copy of the
driver state taken at the same. Thus, it must be paired
with mechanisms such as transactional memory or copy-
on-write to save the driver’s state.
The configuration state is the easiest to save. Most

buses provide a method to save configuration infor-
mation. For example, PCI drivers in Linux use
pci save state, save includes a set of standard registers
and the base address registers (BARs). The remaining
state, though, must be handled separately by each driver.
The driver explicitly saves register contents and coun-

ters in an internal driver structure. The di↵erence be-
tween registers and counters arises during recovery, de-
scribed below, because counter values cannot be written
back to the device.
Memory bu↵ers shared with the device can be recre-

ated. As a result, most device drivers do not include the
address of these bu↵ers in a checkpoint. Instead, they
free bu↵ers during suspend and re-allocates them during
resume.

Figure 2(a) diagrams the tasks performed by suspend
and resume, and shows how that code is shu✏ed to cre-
ate checkpoint and restore functionality. Of the suspend
code, checkpointing reuses all the functionality except
detaching the device with the kernel and suspending the
device. As an example, Figure 2(b) shows the code to
checkpoint the 8139too driver.
It may be necessary to checkpoint a driver while it is

in use. Existing suspend routines assume the device is
quiescent when the device state is saved. Checkpoint,
though, may be called at any time. Thus, it must be syn-
chronized with other threads using the driver. However,
because device state checkpointing must be coordinated
with other mechanisms for capturing driver state, we do
put synchronization code in checkpoint. Instead, we re-
quire that the caller of checkpoint synchronize with other
threads. In Section 4 we show how this can be done with
existing driver locks.
3.3 Restore
The restore operation can be constructed from a mix of
suspend and resume code. Normally the resume function
is invoked when the device just returned to full power
needs to be re-configured. In the case of a checkpoint,
though, the device is already running at full power. Thus,
resume invokes the bottom half of the suspend routine to
disable the device before restoring state.
The restore operation proceeds in four steps:

4

Device suspend
Save configuration state

Save device registers

Disable device

Copy s/w device state

Suspend device

Device resume

Restore config state

Restore device registers

Restore s/w state & reset

Attach device

Device ready

Device checkpoint

Save configuration state

Save device registers

Lock device

Unlock device

Device restore

Restore config state

Restore device registers

Lock device

Unlock device

Copy s/w device state

Disable device

Re-start/enable device

Figure 4.3: Our device state checkpointing mechanism refactors code from existing suspend-resume routines to create checkpoint
and restore for drivers as shown in Figure (a). The checkpoint routine only stores a consistent device snapshot to memory while the
restore loads the saved state and re-initializes the device. Figures (b) and (c) show checkpoint and restore routines in the rtl8139
driver.

ture the state of a device. Without this, restoring memory state will lead to a driver that is inconsistent with
respect to its device, believing incorrectly that it has performed an action or is operating in a different mode.
I first describe device state checkpointing, which is the basis of FGFT’s recovery mechanism. I then describe
how FGFT uses device checkpoints to recover in case of a failure.

4.3.1 Device state checkpointing

To be useful, a device checkpoint mechanism should fulfill the following goals:

1. Lightweight. There should be no continuous monitoring or long-latency operations.
2. Broad. The mechanism must work with a wide range of devices/drivers, including those with unique

behavior.
3. Consistent. Drivers are often invoked on multiple threads, and checkpoints must be a consistent view

of device state.

I identified the suspend/resume code already present in many drivers as having much of the func-
tionality needed to implement checkpoint and restore. I next describe how power management for drivers
works, and then describe how to reuse the functionality for driver recovery with checkpoints.

Suspend/Resume Background

Modern operating systems can dynamically reduce their power consumption to provide a hot standby mode,
also called suspend to RAM, which disables processors and devices but leaves state in memory. One major
component of reducing power is to disable devices. Thus, operating systems direct devices to switch to a
low-power state when the system goes into standby mode. The behavior of devices is specified by the ACPI
specification for the platform and by buses, such as PCI and USB.

In order to transition quickly between standby and full-power mode, drivers implement a power-

66

management interface to save device state before entering standby mode, and to restore device state when
leaving standby mode [25, 65]. These operations must be quick to allow fast transitions. The system-wide
suspend-to-RAM mechanism saves the memory state of the driver, and the driver is responsible for saving
and restoring any volatile device state. Drivers implement a power management interface with methods to
save and restore state. For example, Linux PCI devices implement these two methods:

int (*suspend) (struct pci_dev *dev,
pm_message_t state);

int (*resume) (struct pci_dev *dev);

When saving device state to memory, the driver may invoke the bus to save bus configuration data, as
well as explicitly save the contents of select device registers that are not captured by the configuration state.
The driver then instructs the device to suspend itself. Simple devices that have no state simply disable the
device.

Upon resume, drivers wake the device, optionally perform a soft reset, restore their saved state. Since
the latency of a system to respond post-resume is critical, the initialization is lightweight compared to restart-
ing the driver, as it assumes the device has not changed. Similar to suspend, simple devices may just re-enable
the device without restoring state.

For a system to support standby mode, all drivers must support power management. While not all
drivers do (Linux is notorious for incomplete support [68]), it is widely implemented by Windows and MacOS
drivers, and support in Linux drivers is improving.

The functionality provided by driver power management is very similar to what is needed for device
state checkpointing. First, it provides the ability to save device state to memory in a way that allows applica-
tions to continue functioning. Second, even though the device may continue to receive power, the soft reset
that occurs when re-enabling a device ensures that any previous state is replaced by the restored state. Finally,
power management is implemented by most commonly used drivers. However, it is not directly usable for
checkpointing: power management routines lack the ability to continue executing after suspending a device
because the device has been disabled.

Checkpoint

Device state checkpointing is constructed from a subset of the device suspend support already present in
drivers. A device may have many distinct forms of state, each of which require a different mechanism for
checkpoint:

1. Device configuration information published through the bus configuration space.
2. Device registers with configuration data specific to the device.
3. Counters and statistics exported by the device and aggregated by the driver.
4. Addresses of memory buffers shared with the driver, such as the DMA ring buffers used by network

drivers to send or receive packets.

I note that a checkpoint may not actually contain the full state of the device. Rather, it must contain enough
information that functionality can later be restored without affecting applications. Thus, device state that can

67

be recreated or recomputed need not be saved. Furthermore, the checkpoint only contains the device state.
To be restored properly, it requires a consistent copy of the driver state taken at the same time. Thus, it must
be paired with mechanisms such as transactional memory or copy-on-write to save the driver’s state.

The configuration state is the easiest to save. Most buses provide a method to save configuration infor-
mation. For example, PCI drivers in Linux use pci_save_state, that saves a set of standard registers and the
base address registers (BARs) to memory. Each driver, though, must handle the remaining state, separately.

The driver explicitly saves register contents and counters in an internal driver structure. The difference
between registers and counters arises during recovery, described below, because counter values cannot be
written back to the device.

Memory buffers shared with the device can be recreated. As a result, most device drivers do not include
the address of these buffers in a checkpoint. Instead, they free buffers during suspend and re-allocate them
during resume.

Figure 4.3(a) diagrams the tasks performed by suspend and resume, and shows how that code is shuf-
fled to create checkpoint and restore functionality. Of the suspend code, checkpointing reuses all the func-
tionality except detaching the device with the kernel and suspending the device. As an example, Figure 4.3(b)
shows the code to checkpoint the 8139too driver.

It may be necessary to checkpoint a driver while it is in use. Existing suspend routines assume the
device is quiescent when the device state is saved. Checkpoint, though, may be called at any time. Thus,
it must be synchronized with other threads using the driver. Because device state checkpointing must be
coordinated with other mechanisms for capturing driver state, we do not put our own synchronization code
in the checkpoint routine but re-use existing device locks in the driver. Device locks protect against conflicting
configuration operations, or operations like resetting the device when I/O operations are in progress. This
ensures that we do not corrupt device state assumed by another thread in progress when we reset device state
in case of a failure.

Restore

The restore operation can be constructed from a mix of suspend and resume code. Normally the resume
function is invoked when the device returns to full power and needs to be reconfigured. In the case of a
checkpoint, though, the device is already running at full power. Thus, resume invokes the bottom half of the
suspend routine to disable the device before restoring state.

The restore operation proceeds in four steps:

1. Disable the device to put it in a quiescent, known state.
2. Restore bus configuration state.
3. Re-enable the device.
4. Restore device-specific state.

Figure 4.3(c) shows the code to restore state for a simple network driver. Of the four categories of driver
state, only configuration state and saved device registers can be reloaded. Counters, which cannot be written
back to the device, are restored by adjusting the driver’s version of the counter. Typically, the driver will
read the device counter and update a copy in memory, and reset the device’s counter. To restore the device’s

68

counter state, the driver only resets the device’s counter; the in-memory copy of the counter must be saved
as part of the driver’s memory state.

To restore shared buffers, the driver releases existing shared buffers after disabling the device. As part
of re-enabling the device, it recreates shared buffers and notifies the device of their new addresses. While this
slows restore, it makes checkpoint very efficient because only irretrievable state is saved.

Unlike suspend-resume, it may be useful to use device state checkpointing from interrupt contexts
where sleeping is not allowed. As a result, checkpoint and restore code must convert sleeps to busy waits
(udelay in Linux) and use memory allocation flags safe for interrupt context (GFP_ATOMIC in Linux).

Compared to full-driver restart, resume improves performance because it does not re-invoke device
probe, often the lengthiest part of starting a device normally. Furthermore, drivers for newer buses such as
USB and IEEE1394 do not restart the device because the bus handles this operation. This further reduces
restore times. For PCI devices, a further optimization is to avoid changing the power mode of the device.
However, we observed that many drivers do not require actually powering down the device before perform-
ing restore. For these drivers, restore can be sped up by skipping these unnecessary power mode changes.

Discussion

Device state checkpointing provides several benefits compared with a logging approach to capturing driver/de-
vice state. First, it can be invoked at any time and has no cost until invoked. Thus, it has no overhead for
infrequent uses. Second, it handles state unique to a device, such as configuration options. Correct standby
operation demands that devices remain correctly configured across standby, and hence drivers must already
save and restore any required state. However, device state checkpointing relies on power management code,
which may not be present in all devices. It also requires a programmer to implement checkpoint/restore for
every driver. We evaluate these concerns in Section 4.4.

Limitations. There is a risk in utilizing a mechanism for an unintended purpose: the driver continues run-
ning following a checkpoint and may thus further modify the device state. In contrast, devices are normally
idle between suspend and resume. Thus, it is possible that the state saved is insufficient to fully restore the
device to correct operation. However, the power management specifications require drivers to fully capture
device state in software since devices can transition to an even lower power state where the device is powered
off. In such cases, drivers must be able to be restore their original state, following a full reset. Thus, suspend
must store enough information to restore from any state.

FGFT does not work with devices with persistent internal state, such as disks and other storage devices,
since restore will only restore the transient device state and not the persistent state, such as the contents of
files. As a result, use of checkpoints must be coordinated with higher-level recovery mechanisms, such as
Membrane [100], to keep persistent data consistent.

4.3.2 Recovery with checkpoints

I now describe how FGFT uses isolation and device checkpoints to perform recovery from failures. When a
failure is detected, communication stubs call a recovery routine that is responsible for restoring correct driver

69

Fine-grained fault tolerance
selects requests to run in SFI if
they meets certain static or
dynamic predicates using taps
over entry points.!

Main
Module!

SUCCESS: EXECUTION OF UNSAFE REQUEST IN SFI!

X!

X!

 FAILURE: REQUEST FAILS AND TRAPS IN SFI!

Notation Used: !

 ! Control Flow!

 ! Application process!

4. De-marshal result and updated
drivers structures back to main
module. Release all locks.!

 App Checkpoint device !!

N dir Restore device!

Kernel undo log to
compensate kernel calls!

 !
REQUEST ARRIVES:!
ISOLATE ONDEMAND!

Main module! SFI module!

App!

Demarshal!

C

R

K log!
!

K log!
!

Main module! SFI module!

K log!
!

R

1. Checkpoint
device state.!

2. Replay kernel
log to restore
kernel state.!

3. Restore device state using
our fast device resume.!

4. Return error to main
module w/o de-marshaling.
Release all locks.!

C

Marshal! 2. Marshal minimal data
required by request into
SFI module.!

3. Execute request in SFI. Kernel
undo log updated to record kernel
calls such as locks, other resources.!

1. Trap on fault, restore CPU
registers to recovery routine,
unwind stack and start recovery.!

SFI module!
Request runs within software fault isolated part of
kernel module with spatial type checking and
hardware fault detectors (processor exceptions).!

App! App!
App!

5. Return error to
app. for this request!

App!

Figure 4.4: FGFT behavior during successful and failed entry point executions.

operation.

Failure anticipation. To prepare for an eventual recovery, generated stubs create a device checkpoint before
invoking a suspect entry point. They invoke the checkpoint routine. In addition, stubs for kernel functions log
compensation entries to undo their effects in the kernel undo log. Driver state is not explicitly checkpointed;
instead, suspect code operates on a copy of driver state as described in Section 4.2. In addition, the stub saves
its processor register state, allowing a jump right into the stub if the driver fails.

Recovery steps. In case a failure is detected by SFI or processor exceptions originating from a suspect mod-
ule, the recovery routine restores driver operation through a sequence of steps as shown in Figure 4.4:

1. Unwind thread. If not already in the stub, the instruction pointer is set to the address of the recovery
code in the entry point’s stub, which reloads the saved registers. Nested calls to drivers are logically
handled as separate transactions, so there is no need to unwind the thread to the outermost entry
point.

2. Restore device state checkpoint. The stub recovery code calls the driver’s restore routine to restore the
device state.

3. Free call state. All temporary structures created for the suspect entry point call such as the range table,
object tracker, and copies of kernel/driver structures are released.

4. Release locks. Any locks acquired before or during the call to the SFI driver are released, allowing other
threads to execute.

If a driver entry point fails, the stub returns an appropriate error indicator, such as a NULL pointer or an
error code, and relies on higher-level code to handle the failure. As only the single entry point fails, this failure
has little impact on applications. All application state relating to the device, such as open handles, remain
valid. Furthermore, other threads in the driver continue to run as soon as the recovery process completes and
releases all acquired locks.

Compared to other driver isolation systems, the recovery process is much simpler because only one
thread is affected, so other threads are not unwound. In addition, the driver state is left unmodified, so it is
not saved and restored. Finally, device state is restored quickly from a checkpoint rather than by replaying
a log. Hence, we see that checkpointing device state results in quicker and simpler recovery semantics for
driver recovery.

70

4.3.3 Implementation effort

A key goal for FGFT is to reduce the implementation effort to isolate a driver. FGFT consists of minimal
modifications to the kernel exception handlers (38 lines of code), a kernel module containing the object tracker,
range table, and recovery support, and the Isolator tool in OCaml. The module is 1,200 lines of C code, and
Isolator is 9700 lines of OCaml that implement: SFI isolation (400 lines), stub generation (7,800 lines), and
static analysis of references to parameter fields (1,500 lines). In comparison, Nooks adds 23,000 lines of kernel
code (85x more than FGFT) to isolate and reload device drivers and shadow drivers add another 1,100 lines
of code for recovery. FGFT also does not require any wrappers around the driver interface. Nooks required
14,000 lines of manually written wrappers, which are hard to maintain as the kernel interface changes. FGFT’s
isolator tool automatically generates similar code for stubs.

4.4 Evaluation

I implemented device state checkpoint and fine-grained fault tolerance for the Linux 2.6.29 kernel for six
drivers across three buses. The evaluation examines the following aspects of FGFT:

1. Fault Resilience. What failures can fine-grained fault tolerance handle? I evaluate FGFT using a series
of fault injection experiments and report our results.

2. Performance. What is the performance loss of fine-grained fault tolerance on steady-state operation? I
report the performance cost for applying FGFT on support and core I/O routines.

3. Recovery Time. What is the downtime caused by a driver failure? I compare the time taken by FGFT to
restore the device and cleanup the failed driver thread state with the time taken to unload and reload
a driver.

4. Usefulness of FGFT. Is selectively isolating entry points useful? I evaluate whether suspect entry points
can be identified in drivers and whether they reduce the amount of code isolated.

5. Device Checkpoint Support. Is re-using existing power management functionality reasonable? I examine
the frequency of power management support in existing drivers that facilitates device checkpoints.

6. Developer Effort. What is the overhead to the developer to enforce isolation in the system? I measure
the effort needed to annotate a driver for isolation and to add checkpointing code.

Unless otherwise specified, I compare FGFT against unmodified drivers running on an unmodified 2.6.29
Linux kernel.

4.4.1 Fault Resilience

I first evaluate how well FGFT can handle driver bugs using a combination of dynamic and static fault injec-
tion over six drivers. These tests evaluate both the ability of fine-grained fault tolerance to isolate and recover
driver state as well as the ability of device state checkpointing to restore device functionality. Table 4.1 de-
scribes the types of faults inserted in the SFI module. Static fault injection modifies the driver source code
to emulate programming bugs, while dynamic fault injection modifies driver data while running to emulate
run time errors. I perform a sequence of trials that test each fault site separately.

During each experiment, I run applications that use the driver to detect whether a driver failure causes

71

Fault Type Description of fault
Corrupt pointers Dynamic: Corrupt all pointers refer-

enced in a function to random values.
Corrupt stack Dynamic: corrupt execution stack by

copying large chunks of data over stack
variable addresses.

Corrupt expres-
sions

Static: corrupt arithmetic instructions
by adding invalid operations (like di-
vide by zero).

Skip assignment Static: remove assignment operations in
a function.

Skip parameters Dynamic: zero incoming parameters in
a function.

Table 4.1: Faults injected to test failure resilience represent runtime and programming errors. Dynamic faults are invoked using
ioctls, and static faults are inserted with an additional compiler pass.

Driver Injected
Faults

Benign
Faults

Native
crashes

FGFT
crashes

8139too 43 0 43 NONE
e1000 47 0 47 NONE
ens1371 36 0 36 NONE
pegasus 34 1 33 NONE
psmouse 22 1 21 NONE
r8169 46 0 46 NONE
Total 258 2 256 NONE

Table 4.2: Fault injection table with number of unique faults injected per driver. FGFT is able to correctly restore the driver and
device state in each case.

the application to fail. For network, I use ssh, and netperf, and for sound I use aplay and arecord from the
ALSA suite. I tested the mouse by scrolling the device manually as I performed the fault injection experiments.
After each injection experiment, I determine if there is an OS/driver crash or the application malfunctions.
We re-invoke the failed entry point without the fault to ensure that it continues to work, and that resources
such as locks have been released.

I injected a total of 258 unique faults in the native and FGFT drivers. Table 4.2 shows the number of
faults injected for every driver and the outcome. For the native driver, all but two faults crashed the driver
or resulted in kernel panics. The two benign faults were missing assignments.

In contrast, when I injected faults into driver entry points protected by FGFT, the driver and the OS
remain available for every single fault. Furthermore, in every case, applications continue to execute correctly
following the fault. For example, the sound application aplay skips for a few milliseconds during driver
recovery but continued to play normally. The shell notes this disruption with the message “ALSA buffer
underrun.”

I also verify that internal driver and device state is correctly recovered using the ethtool interface for
network drivers. We find that when failures happen while changing configuration settings, re-reading set-
tings after a crash always returns correct values.

Finally, I verify that changes to drivers made using non-class interfaces, such as the proc and sys file
systems, before injecting failures and present following recovery. In contrast, shadow drivers cannot replay
these actions since they cannot capture non-class driver interactions.

72

4.4.2 Performance

The primary cost of using FGFT is the time spent copying data in and out of the SFI module and creating device
checkpoints. I measure performance with a gigabit Ethernet driver, as it may send or receive receive more than
75,000 packets per second. Thus, the overhead of FGFT will show up more clearly than on low-bandwidth
devices. I evaluate the runtime costs of using FGFT and regular versions of drivers in four configurations:

1. Native: Unmodified e1000 driver.
2. FGFT static: Statically isolate 75% of code (all off I/O-path).
3. FGFT dyn-1/2: Dynamically isolate every other packet in I/O path.
4. FGFT dyn-all: Dynamically isolate every packet in I/O path.

The dynamic experiment measures the additional cost of choosing at runtime whether to invoke the regular
or SFI version of a function. Finally, the dyn-all test represents the worst case of invoking the SFI module on
the I/O path for a high-bandwidth device.

Our test machine consists of a 2.5 GHz Intel Core 2 Quad system configured with 4 GB DDR2 DRAM
and an Intel 82541PI gigabit NIC running FGFT. I measure performance with netperf [45] by connecting our
test machine to another machine with 1.2 GHz Intel Celeron processor and a Belkin NIC with a crossover
cable. Table 4.3 reports the average of 5 runs.

In the static test where code off the I/O-path code is isolated, performance and CPU utilization are
unaffected. These results demonstrate that FGFT achieves the goal of only imposing a cost on isolated code.

For the dyn-1/2 test that isolates at runtime, entry points on the I/O path (the packet send routine) for
every other packet, bandwidth dropped 4% and CPU utilization increased 0.5%. Thus, selectively applying
isolation, even on critical I/O paths, has a small impact.

The performance drops further when I isolate critical path code on every request since I copy shared
driver and kernel data across modules for each packet being transmitted. I find a 7.5% performance drop and
1% higher CPU utilization. FGFT is designed to limit isolation costs to specific requests and hence pays a cost
of isolation because it needs to setup isolation (create copies) as each packet requests isolation. Overall, these
results show that FGFT can be applied at no cost to high bandwidth devices off the I/O path and at marginal
cost on the I/O path.

Device Locking: I run netperf using multiple threads to measure the overhead from device locks in-
troduced at isolated entry points. I find that bandwidth drops an additional 2.6% and 4.6% with 10 and 100
threads respectively, as compared to FGFT running in a single thread. I also test the ens1371 sound driver
and find that playing multiple overlapping sound files does not result in any lags or distortions. These results
show that FGFT introduces low overhead with high bandwidth devices running multiple threads.

4.4.3 Recovery Time

A major benefit of checkpoint-based recovery is the speed of restoring service. Table 4.4 lists the time taken
by the driver to recover using FGFT and by unloading and reloading the driver. I measure recovery times by
recording the time from detection of failure to completion of the restore routine. Overall, FGFT is between 1.6
and 4,400 times faster than restart recovery, and between 145ms and 1.5s faster. The drivers with the largest

73

One thread
System Throughput CPU

Native 843.6 Mb/s 2.5%
FGFT static 843.6 Mb/s 2.5%
FGFT dyn-1/2 811.5 Mb/s 2.9%
FGFT dyn-all 784.4 Mb/s 3.4%

Multiple threads
Threads System Throughput CPU

10 Native 847.7 Mb/s 3.0%
FGFT dyn-all 791.4 Mb/s 4.2%

100 Native 941.7 Mb/s 4.2%
FGFT dyn-all 860.2 Mb/s 10.8%

Table 4.3: TCP streaming send performance with netperf for regular and FGFT drivers with checkpoint based recovery.

Driver Class Bus Restart
recovery

FGFT
recovery Speedup

8139too net PCI 0.31s 70µs 4400
e1000 net PCI 1.80s 295ms 6
r8169 net PCI 0.12s 40µs 3000
pegasus net USB 0.15s 5ms 30
ens1371 sound PCI 1.03s 115ms 9
psmouse input serio 0.68s 410ms 1.65

Table 4.4: FGFT and restart based recovery times. Restart-based recovery requires additional time to replay logs running over the
lifetime of the driver. FGFT does not affect other threads in the driver.

speedup have complicated probe routines that are avoided by restoring from a checkpoint. Hence, FGFT
provides low-latency recovery and frequently offers an order-of-magnitude lower recovery latencies.

Checkpoint/restore latency. I examine the device checkpoint latencies to understand the source of our re-
covery performance in the previous section. Table 4.5 shows the latency of a checkpoint or restore for the
same six drivers. Checkpointing is very fast, taking only 20µs on average and 33µs at worst. Thus, it is fast
enough to be called frequently, such as before the invocation of most driver entry points. Restore times are
longer, with a range from 30µs for the r8169 network driver to 390ms for psmouse. USB drivers store less
state because the USB bus controller stores configuration information instead of the driver. Thus, during a
normal resume, the bus restores configuration state before calling the driver to resume. The psmouse driver
represents a legacy device and does not support suspend/resume. Instead, I re-use existing driver code to
reset the mouse.

Driver Class Bus Checkpoint
times

Restore
times

8139too net PCI 33µs 62µs
e1000 net PCI 32µs 280ms
r8169 net PCI 26µs 30µs
pegasus net USB 0µs 4ms
ens1371 sound PCI 33µs 111ms
psmouse input serio 0µs 390ms

Table 4.5: Latency for device state checkpoint/restore.

74

Class Bus Drivers
reviewed Drivers with PM

net PCI 104 68 65%
net USB 32 27 84%
net PCMCIA 4 4 100%
sound PCI 72 63 88%
sound USB 3 1 33%
sound PCMCIA 2 2 100%
ATA PCI 61 45 74%
SCSI USB 1 1 100%
SCSI PCMCIA 5 5 100%
Total - 284 216 76%

Table 4.6: Drivers with and without power management as measured with static analysis tools. USB drivers (audio and storage)
support hundreds of devices with a common driver, and support suspend/resume.

4.4.4 Utility of Fine Granularity

I evaluate whether selectively isolating specific entry points is useful by looking for evidence that driver bugs
are confined to one or a few entry points. If the functions with bugs are reachable through a large number
of entry points, then full driver isolation is more useful than per-entry point isolation. For example, if a bug
occurs in a low level read routine, then the bug will affect a large number of entry points.

In order to have a large data set, I use a published list of hardware dependence bugs [47] that represent
one of the larger number of unfixed bugs in the drivers [24]. I were able to map these bugs in 210 drivers
(541 total bugs) to our kernel under analysis. For each driver, I calculate the number of entry points and the
fraction of code in the driver that must be isolated.

I find that the bugs are reachable through 643 entry points, for an average of 3 per driver. As a com-
parison, these drivers have a total of 4,460 entry points (21 per driver), so only 14% of entry points must be
isolated. The code reachable from these entry points comprises only 18% of the code in these drivers. These
results indicate that at least some classes of driver bugs are confined to a single entry point, and therefore
FGFT can reduce the cost of fault tolerance as compared to isolating the entire driver.

4.4.5 Device Checkpoint Support

Device state checkpointing relies on existing power-management code. I measure how broadly it applies to
Linux drivers by counting the number of drivers with power-management support. While modern ACPI-
compliant systems require that all devices support power management, many legacy drivers do not.

I perform a simple static analysis over all network, sound, and storage drivers using the PCI, USB,
and PCMCIA bus in Linux 2.6.37.6. The analysis scans driver entry points and identifies power management
callbacks. Table 4.6 shows the number of drivers scanned by class and bus and the number that support
power management. Overall, we found that 76% of the drivers support power management. Of the drivers
that do not support power management, most were either very old, from before Linux supported power
management, or worked with very simple devices. Only two modern devices, both Intel 10gb Ethernet cards,
did not provide suspend/resume. Thus, I find that nearly all modern devices support power management
and can therefore support device state checkpointing.

75

Driver Driver LoC
Isolation annotations

Driver An-
notations

Kernel An-
notations

8139too 1,904 15
20e1000 13,973 32

r8169 2,993 10
pegasus 1,541 26 12
ens1371 2,110 23 66
psmouse 2,448 11 19

Table 4.7: Annotations required by FGFT isolation mechanisms for correct marshaling. Kernel annotations are common to a class,
and driver annotations are specific to a single driver.

Driver Recovery additions
LOC

Moved
LOC

Added
8139too 26 4
e1000 32 10
r8169 17 5

pegasus 22 4
ens1371 16 6
psmouse 19 6

Table 4.8: Developer effort for checkpoint/restore driver callbacks.

4.4.6 Developer effort

The primary development cost in using FGFT is adding annotations, which describe how to copy data be-
tween the kernel and the SFI module. Table 4.7 shows the number of annotations needed to apply FGFT to
every function in each of the tested drivers. I separate annotations into driver annotations, which are made to
the driver code, and kernel-header annotations, which are a one-time effort common to all drivers in the class.
These annotations are the incremental cost of making a driver fault tolerant, and the implementation effort
of Isolator and the kernel code described in Section 4.3 are the up-front cost.

Overall, drivers averaged 20 annotations, with more annotations for drivers with more complex data
structures. Most driver classes required 20 or fewer kernel-header annotations except for sound drivers,
which have a more complex interface and required 66 annotations. Thus, the effort to annotate a driver
is only modest, as annotations touch only a small fraction of driver code. In comparison, SafeDrive [118]
changed 260 lines of code in the e1000 driver for isolation and another 270 lines for recovery. Nooks [103]
required 23,000 lines of code to isolate and reload drivers. Thus, these small annotations to drivers may be
much simpler than adding a large new subsystem to the kernel.

Checkpointing implementation. I evaluated the ease of implementing device state checkpointing by adding
support to the six drivers listed in Table 4.8. For each driver I show the amount of code I copied from sus-
pend/resume to create checkpoint/restore as well as the number of new lines added. On average, I moved
22 lines of code and added six lines. The new code adds support for checkpoint/restore in interrupt contexts
and avoids nested locks when the routines are invoked with a lock held. Even though device state check-
pointing requires adding new code, the effort is mostly moving existing code. In comparison, implementing
a shadow driver requires (i) building a model of driver behavior and (ii) writing a wrapper for every function
in the driver/kernel interface to log state changes.

76

4.5 Summary

The performance and development costs of existing driver fault-tolerance mechanisms have restricted their
adoption. In this chapter, I presented fine-grained fault tolerance, a pay-as-you-go model for tolerating driver
failures that can be dynamically invoked for specific requests. Fine-grained fault tolerance is made possible
due to device checkpoints. This functionality is often considered to require a significant re-engineering of
device drivers. However, I demonstrate that checkpoint functionality is already provided by existing sus-
pend/resume code. While I only applied checkpoints to fault tolerance, there are more opportunities to use
device checkpoint/restore, such as OS migration, fast reboot, and persistent operating systems that should
be explored.

Chapter 5
Related Work

To the best of my knowledge, Carburizer is the first research consideration of hardware failures in device
drivers. FGFT is the first system to focus on the problem of device startup latency and only the second system
to improve recovery in device drivers. First, Section 5.1 discusses past work comparisons with Carburizer.
Section 5.2 compares past work with FGFT.

5.1 Related work for Caburizer

Carburizer draws inspiration from past projects on driver reliability, bug finding, automatic patch generation,
device interface specification, and recovery.

Driver reliability Past work on driver reliability has focused on preventing driver bugs from crashing the
system. Much of this work can apply to hardware failures, as they manifest as a bug causing the driver to
access invalid memory or consume too much CPU. In contrast to Carburizer, these tools are all heavyweight:
they require new operating systems (Singularity [95], Minix [42], Nexus [112]), new driver models (Windows
UMDF [67], Linux user-mode drivers [54]), runtime instrumentation of large amounts of code (XFI [105] and
SafeDrive [118]), adoption of a hypervisor (Xen [32] and iKernel [104]), or a new subsystem in the kernel
(Nooks [103]). Carburizer instead fixes specific bugs, which reduces the code needed in the kernel to just
recovery and not fault detection or isolation. Thus, Carburizer may be easier to integrate into existing kernel
development processes. Furthermore, Carburizer detects hardware failures before they cause corruption,
while driver reliability systems using memory detection may not detect it until much later, after the corruption
propagates through the system.

Bug finding Tools for finding bugs in OS code through static analysis [7, 8, 31] have focused on enforcing
kernel-programming rules, such as proper memory allocation, locking and error handling. However, these
tools enforce kernel API protocols, but do not address the hardware protocol. Furthermore, these tools only

78

find bugs but do not automatically fix them.

Hardware dependence errors are commonly found through synthetic fault injection [4, 40, 99, 119].
This approach requires a machine with the device installed, while Carburizer operates only on source code.
Furthermore, fault injection is time consuming, as it requires injection of many possible faults into each I/O
operation made by a driver.

Automatic patch generation Carburizer is complementary to prior work on repairing broken error handling
code found through fault injection [101]. Error handling repair is an alternate means of recovering when
a hardware failure occurs by re-using existing error handling code instead of invoking a generic recovery
function. Other work on automatically patching bugs has focused on security exploits [27, 92, 94]. These
systems also address how to generate repair code automatically, but focus on bugs used for attacks, such as
buffer overruns, and not the infinite loop problems caused by devices.

Hardware Interface specification Several projects, such as Devil [64], Dingo [85], HAIL [97], Nexus [112],
Laddie [115] and others, have focused on reducing faults on the driver/device interface by specifying the
hardware interface through a domain specific language. These languages improve driver reliability by en-
suring that the driver follows the correct protocol for the device. However, these systems all assume that
the hardware is perfect and never misbehaves. Without runtime checking they cannot verify that the device
produces correct output.

Recovery Carburizer relies on shadow drivers [102] for recovery. However, since our implementation of
shadow drivers does not integrate any isolation mechanism, the overhead of recovery support is very low.
Other systems that recover from driver failure, including SafeDrive [118], and Minix [42], rely on similar
mechanisms to restore the kernel to a consistent state and release resources acquired by the driver could be
used as well. CuriOS provides transparent recovery and further ensures that client session state can be recov-
ered [28]. However, CuriOS is a new operating system and requires specially written code to take advantage
of its recovery system, while Carburizer works with existing driver code in existing operating systems.

To achieve high reliability in the presence of hardware failures, fault tolerant systems often use multiple
instances of a hardware device and switch to a new device when one fails [9, 43, 96]. These systems provide
an alternate recovery mechanism to shadow drivers. However, this approach still relies on drivers to detect
failures, and Carburizer improves that ability.

5.2 Related work for FGFT

FGFT draws inspiration from past projects on driver reliability, program partitioning and software fault iso-
lation systems.

Device driver recovery. Prior driver-recovery systems, including Nooks [103], Shadow drivers [102], SafeDrive [118]
and Minix 3 [42] all unload and restart a failed driver. In contrast, FGFT takes a checkpoint prior to invok-
ing the driver, and then rolls back to the most recent checkpoint, which is much faster. CuriOS provides

79

transparent recovery and further ensures that client session state can be recovered [28]. However, CuriOS is
a new operating system and requires specially written code to take advantage of its recovery system, while
FGFT works with existing driver code in existing operating systems. ReViveI/O [70], and similar systems
[81] provide whole-system checkpoint/restore by buffering I/O and only letting it reach the device after the
next memory checkpoint. However, this approach does not work with polling, where I/O operations cannot
be buffered and applied later.

Driver isolation systems. Driver isolation systems rely on hardware protection (Nooks [103] and Xen [32])
or strong in-situ detection mechanisms (BGI [16], LXFI [62], Mondrix [113] and XFI [105]) to detect failures
in driver execution. However, in latter systems if the failure is detected after any state shared with the kernel
has been modified then these systems cannot rollback to a last good state. Other driver isolation systems
such as SUD [13] and Linux user-mode drivers [53], require writing class-specific wrappers in the kernel
that are hard to maintain as the kernel evolves. FGFT differs from existing isolation systems by providing
transactional semantics and limits the runtime overheads only to suspect code.

Software fault tolerance. Existing SFI techniques use programmer annotations (SafeDrive [118]) or API
contracts (LXFI [62]) to provide type safety. XFI [105] transforms code binaries to provide inline software
guards and stack protection. In contrast, FGFT operates on source code and allows drivers to operate on a
copy of shared data. FGFT marshals the minimum required data and uses a range hash to provide spatial
safety.

Transactional kernels. FGFT executes drivers as a transaction by buffering their state changes until they
complete. VINO [90] similarly encapsulated extensions with SFI and used a compensation log to undo kernel
changes. However, VINO applied to an entire extension and did not address recovering device state. In ad-
dition, it terminated faulty extensions, while most users want to continue using devices following a failure.
FGFT is complementary to other transactional systems, such as TxOS [78], that provide transactional seman-
tics for system calls. These techniques could be applied to driver calls into the kernel instead of using a kernel
undo log of compensation records. Currently, these systems do not perform device I/O transactionally and
either rely on higher-level atomicity techniques (TxOS [78] and xCalls [108]) or serialize transactions with a
lock (TxLinux [84]).

Program Partitioning Program partitioning has been used for security [14, 20] and remote code execu-
tion [22]. Existing program partitioning tools statically partition user mode code or move driver code to user
mode [37]. FGFT is the first system to partition programs within the kernel and is hence able to provide
partitioning benefits to kernel specific components such as interrupt delivery and critical I/O path code. Fur-
thermore, instead of partitioning code in any one domain, FGFT replicates its entry points and decides on a
runtime basis whether a particular thread should run in isolation.

80

Chapter 6
Lessons

In this section, I describe the lessons from my dissertation. I describe the advantages of the fault isolation
techniques used, the implications in reliable driver design and my experience with the Linux kernel commu-
nity.

6.1 Hybrid Static/Run-Time Checking

Carburizer and FGFT are complete fault isolation systems because they detect faults and also provide isolation
and recovery. Both systems use a combination of language and system runtime techniques to provide fault
tolerance. In this subsection, I discuss the advantages of this approach.

The hybrid approach provides advantages that the static and runtime techniques provide individually.
The first advantage is wide applicability to variety of drivers. Static analysis techniques can be validated
against lots of drivers without requiring real hardware. Furthermore, the automatic code generation tools
help us avoid writing class specific fault tolerance code such as wrappers. Due the large number of classes
supported by Linux, this code can be significant. As an example, Nooks required about 14K LoC of wrapper
code [103].

Second, Carburizer and FGFT use static analysis to lower the performance overhead and reduce the
complexity of the OS runtime required. Carburizer is able to detect hardware failures before they propagate
to the operating system. Hence, it is able to avoid a large isolation system in the kernel and any overhead
that it may impose. Similarly, FGFT uses static analysis to only isolate faulty code and sets up fault tolerance
dynamically. Fault free code runs without isolation reducing overhead in the common case. Furthermore,
FGFT sets up fault tolerance during the compile phase and reduces the runtime complexity by removing this
code from the OS. This code provides the functionality to interpose driver communication to detect failures
and provide isolation and is generated automatically using the code generation tools in FGFT.

Third, static analysis can be used to extract driver specific information and provide stronger reliability

82

guarantees. For example, static analysis can be used to interpret the different types of data structures being
passed around. I use this technique in FGFT to implement base and bounds memory protection that provides
fine-grained memory protection to detect memory errors.

Finally, the runtime techniques complement the inadequacies of static analysis tools. Static analysis
tools cannot reason about certain program properties that are either vendor specific or cannot tolerate false
positives to remain useful. As an example of the former, static analysis cannot detect when an interrupt has
been fired or when a DMA occurs. The reasons is that the driver and device have private protocols to trigger
these actions and it is not possible to detect these actions across drivers with a common analysis. Hence,
Carburizer uses a runtime kernel module to provide fault tolerance against interrupt failures. Static analysis
is also prone to false positives and this can be problematic in some cases such as a bogus invocation of recovery
code when the detected fault is a false positive. For invalid values from hardware, Carburizer checks against
the failure inducing condition before invoking the recovery code to avoid this situation.

To summarize, with Carburizer and FGFT, I find that the hybrid language/runtime approach works
well and provides the best of both worlds. It provides low overhead, low OS complexity, wide applicability
to many drivers and the ability to extract driver and OS behavior in a precise and accurate manner.

6.2 Implications for driver design

I now describe the implications for reliable driver design based on my experience on developing fault toler-
ance mechanisms for device drivers. These implications affect driver design and are complimentary to what
automatic patching tools like Carburizer achieve such as fixing hardware dependance bugs and improving
reporting behavior of drivers. From my experiences, I find that a driver architecture that provides 1) coarse-
grained communication mechanisms, 2) limits driver code to device specific code and 3) provides abstractions
for driver code re-use, improves driver code reliability.

Coarse-grained interface I find that having a coarse grained interaction between the driver and the hard-
ware and the driver and the kernel aids in a more reliable driver design. As an example, USB drivers interact
with the device hardware using a coarse-grained interface that is very similar to how networking works. USB
drivers create a packet with the data payload and send it to the lower layers (the USB bus) to communicate
with the hardware. The drivers from the vendor are not responsible for device specific issues like timeouts
and overflow and the USB bus library provides these guarantees. Since all drivers communicate using this
bus, these checks are necessarily enforced. A limitation of such an interface is that supporting high perfor-
mance devices can be complicated due the lack of a fine-grained communication interface with the device.

Apart from the driver-hardware communication, the driver-kernel communication should also be coarse-
grained. Drivers should request kernel services through standardized APIs instead of directly modifying ker-
nel structures and locks. This avoids accidental overwriting of kernel structures and reduces the possibility
of deadlocks.

Device specific code Driver code standardization can benefit drivers since drivers re-use a common imple-
mentation. Hence, the vendor specific code implementation only implements device specific nuances that the
device supports. This code is more reliable because of two reasons. First, the common code is usually written

83

by OS developers instead of device vendors and it is well-tested because it is used by a variety of devices.
Second, the vendor specific code rarely invokes the kernel and hence avoids any kernel API misuse. Most
device specific code only provide device specific details like device register addresses that is unique to the
device being supported.

In existing Linux drivers, only some of the drivers support such a design and their widespread use
should be encouraged. Currently, device classes such as ATA and IDE and the USB bus type support a de-
sign where vendors only add device specific code. Here, the kernel supports a large common driver and
vendors support device specific routines, if necessary. As an example, the main USB storage driver code
is largely common, but includes call-outs to device-specific code. This code includes device-specific initial-
ization, suspend/resume (not provided by USB-storage and left as an additional feature requirement) and
other routines that require device-specific code. Similarly, a number of other drivers such as ATA, IDE and
ACPI drivers abstract driver functionality when there is little variation across drivers: rather than having a
driver that invokes support library routines, these drivers are themselves a small set of device-specific rou-
tines called from a much larger common driver. This design is termed a “miniport” driver in Windows. Thus,
these drivers benefit from a common implementation of most driver functionality, and only the code differ-
ences are implemented in the device-specific code. These drivers are often quite small and have little code
that is not device specific.

These drivers are able to support such a design due to device interface standardization. For example,
USB storage devices implement a standard interface [106]. Pushing such standardization more aggressively
can improve overall driver organization and reliability. While there are greater standardization efforts for
USB drivers, it is still not complete. Other device classes such as network drivers should also support sim-
ilar standardization to limit drivers to device specific code. Most network interfaces support a ring-buffer
interface to send/receive packets. Most drivers re-implement the code of placing and retrieving packets from
this buffer while sending/receiving network packets. It may be possible to simplify these drivers by provid-
ing standard abstractions of hardware data structures while providing mechanisms to extend driver/device
specific details such as ring buffer structures.

Driver code reduction I finally look at how better abstractions encourage driver code re-use and reduce
the amount of driver code. My study of drivers looks at the question of do we really need seven million
lines of code and I find that 8% of all driver code (or 400,000 LOC) is repetitive and can be improved through
better abstractions or libraries. Better abstractions for code-reuse can reduce the size of the rapidly growing
codebase and reduce incidence of bugs [56].

As described in Chapter 3, I see three methods for achieving this reduction: (i) procedural abstractions
for driver sub-classes, (ii) better multiple chipset support and (iii) table driven programming. First, proce-
dural abstraction means moving shared code in driver sub-classes to a library and to provide parameters
covering the differences in implementation. There is significant code in single drivers or families of drivers
with routines performing similar functions on different code paths. Creating driver-class or sub-class libraries
will significantly reduce this code. Second, existing driver libraries can be enhanced with new abstractions
that cover the similar behavior. There are many families of drivers that replicate code heavily. Abstracting
more code out these families by creating new driver abstractions that support multiple chipsets can simplify
driver code significantly. Finally, functions that differ only by constant values can be replaced by table-driven
code. This may also be applicable to reducing drivers to just device specific code as described in the previous
paragraph. Drivers with larger differences but fundamentally similar structures, such as network drivers that

84

use ring buffers to send and receive packets can use such paradigm to reduce driver code. By providing these
abstractions, I believe there is an opportunity to reduce the amount of driver code, consequently reducing the
incidence of bugs and improving the driver development process by producing concise drivers in the future.

6.3 Experience with the kernel community

I will now describe my efforts to inform the Linux kernel developers about the problem of hardware depen-
dence bugs in Linux and my solution – Carburizer. With Carburizer, I discovered an extremely large number
of hardware dependence bugs in 2009. Furthermore, this count continued to increase when I ran Carburizer
tool in a newer kernel after 18 months. I found over 1200 bugs in Linux 2.6.37.6. I subsequently contacted
the kernel developers through Linux mailing lists informing them about the widespread of nature hardware
dependence bugs in Linux. The feedback was encouraging and I subsequently presented a talk at Linux
Plumbers Conference, 2011 and made the tool available for download. Linux Weekly News also featured an
article on Carburizer in February, 2012 along with a list of bugs identified by Carburizer. I also submitted
patches to the Linux kernel to fix these bugs. I now describe lessons from this experience. This experience is
Linux specific but should apply to other large open-source projects.

I learnt two lessons while interacting with kernel developers. First, the developers are unlikely to use
a tool or review a list of bugs that has a high false positive rate. The developers preferred a tool with no
false positives. This observation is consistent with developers of Coverity [39], who experienced that false
positives in their reports decreased the probability of triaging their future reports. This can be challenging
with static analysis tools which can have high false positive rates. Simplifying analyses to improve accuracy
of the results found can be beneficial but it may reduce the total number of bugs found.

The second lesson on where to submit bug reports, especially a large list of bugs such as that produced
by Carburizer. A large list of programming errors such as memory and pointer misuse or kernel API misuse
is best presented to Linux kernel janitor projects, where many kernel developers are on the active lookout to
fix problems in Linux kernel. More complex bug reports such as driver specific bugs are more likely to get a
response if the reports are presented directly to the maintainers of the specific driver or specific subsystem.
I found most success with Carburizer in getting my bug reports triaged by directly submitting patches to
maintainers (Linux kernel provides a helpful script (get_maintainer.pl) in its source tree to get this list for
each file).

6.4 Summary

In summary, the first line of defense in improving driver reliability is improving driver design through better
architectures and programming paradigms. I find that writing drivers that limit themselves to device specific
code and communicate with the kernel and hardware using coarse-grained tools improve reliability. Next,
from my experience in developing fault isolation mechanisms, I find that hybrid language/runtime approach
allows us to provide reliability solutions at low overhead. Finally, I share my experiences on how to get bug
fixes upstreamed in Linux kernel successfully.

Chapter 7
Future Work

In this section, I discuss future work, describing extensions to Carburizer, driver study and fine-grained fault
tolerance.

7.1 Carburizer

Carburizer assumes that if a driver detects a hardware failure, it correctly responds to that failure. In practice,
I find this is often not the case. In addition, Carburizer does not assist drivers in handling unexpected events;
we have seen code that crashes when the device returns a flag before the driver is prepared. One of the
reasons this can happen is because because the driver does not follow the protocol of the specific device or
device class such as SCSI.

Device protocol violations Device protocol violations occur when drivers incorrectly interact with devices.
Often, drivers are written from hardware specifications with poor/missing documentation. These problems
are difficult to detect since they require a working device in order to verify that device protocols have been
implemented correctly. One possible way to detect these violations is to automatically infer device behavior
from existing driver code and detect its inconsistent use within drivers using static analysis. Carburizer
already detects how drivers interact with devices such as when it performs a sequence of operations and
fails. Detecting inconsistencies in such driver-device interactions can help us detect these problems. However,
fixing these bugs will still require access to the correct device or device class specifications.

7.2 Driver Study

My study on drivers showed different ways in which driver research can be improved/extended and I will
discuss two of those in this section. First, is improving driver code synthesis and second is how to run driver

86

code outside the operating systems for improved reliability.

Improving driver synthesis Recently, driver research has looked how to generate driver code automatically.
Automatic driver code generation improves driver code reliability because the code is auto-generated instead
of hand-written by device vendors who may introduce bugs. In my study of drivers, I look at how do these
existing techniques work in practice and how they can be improved.

I find that most driver classes have substantial amounts of device-specific functionality outside class
definition i.e. standard interfaces. Code supporting /proc and /sys is present in 16.3% of drivers and com-
prises over 5.3% of total driver code. Also, 36% of drivers have load-time parameters to control their behavior
and configure options not available through the class interface. Additionally, ioctl code comprises 6.2% of
driver code, can also cause non-class behavior of drivers. Hence, for 44% of drivers, attempts to synthesize
drivers from common descriptions of the class, like Termite [86], may not work for a substantial number of
drivers. Thus, future research should explicitly consider how to accommodate unique behaviors efficiently.

I also find that 28% of drivers support more than one chipset and these drivers support 83% of the
total devices. Any system that generates unique drivers for every chipset or requires per-chipset manual
specification may lead to a great expansion in driver code and complexity.

Hence, there is an opportunity for future automatic driver code synthesis research to (1) develop mech-
anisms to generate code for non-class behavior and (2) efficiently support multiple chipsets by merging states
in device state machines that perform common tasks.

Removing drivers from OS With the driver study, I measure the benefits and feasibility of removing drivers
from Linux and running elsewhere such as directly onto the device. Removing drivers from the OS improves
its reliability since the unreliable driver code now executes outside the OS. The following trends in virtual-
ized environments indicate that a new device architecture where driver code executes outside the OS can
be beneficial. First, devices other than CPU and memory are increasingly being accessed remotely (such as
Amazon’s EBS [1]). Second, micro-servers (such as single fabric computers) that perform all their I/O over
the network are being used [82]. Third, there is an increase in the processing power of devices making them
capable enough to execute driver code on them.

With the driver study, I find that this architecture is beneficial and also feasible.

First, it is beneficial because it pushes towards driver code standardization and removes vendor code
from the OS. I evaluate existing buses that can be adapted to this architecture and find that USB and Xen
support device standardization. These drivers support multiple devices with a single driver and mediate
communication through this driver. XenBus drivers push standardization further by removing all device-
specific code from the driver and executing it elsewhere. This approach can be extended to run driver code
remotely. Specifically, it may be possible to use XenBus drivers to access a driver running on the device itself
rather than in a separate virtual machine; this could in effect remove many drivers from the kernel and host
processor. Furthermore, the kernel no longer requires device-specific code, as it is relegated to the common
task of channel establishment. Devices with common driver interfaces, such as network adapters, can share
driver libraries. Devices with unique interfaces require separate driver libraries, but the code can executes in
user mode and may have few OS dependencies.

87

Fault Tolerance
Device recovery: Current recovery mechanisms require writing wrappers to track all device state and
full device restart results in long latency.
OS functionality
Fast reboot: Restarting the OS requires probing all bus and device drivers.
NVM operating systems: Providing persistent state of a running system requires ability to checkpoint
a running device.
I/O Virtualization
Device consolidation: Re-assignment of passthrough devices across different VMs needs to wait for

device initialization.
Live migration: Live migration of pass-through devices converts the millisecond latency of migra-

tions to multiple seconds due to device initialization.
Clone VMs: Ability to launch many cloned VMs very quickly is limited by device initialization.

Table 7.1: Other uses for fast device state checkpointing.

Second, I find that this architecture is feasible. Our results demonstrate that most of the communication
is for memory and synchronization calls across all drivers, so the kernel support required is small for most
drivers. With our study we find that a large fraction of driver/kernel interactions are for generic routines
(memory, synchronization, libraries) that do not involve other kernel services. Thus, they could be imple-
mented by a runtime environment local to the driver. For example, a driver executing in a separate virtual
machine or on the device itself can make use of its local OS for these routines, and drivers in user space can
similarly invoke user-space versions of these routines, such as the UML environment in SUD [13].

With these encouraging results from our study, I find that there is an opportunity to re-visit the existing
I/O stack and (1) Design remote I/O communication between device and OS that removes inefficiencies of
current fine-grained access, (2) Improve driver code standardization by removing device specific code from
the kernel, (3) Support access to proprietary device features using higher level communication mechanisms
and (4) Support low latency device access for applications, such as giving a database direct access to a disk.

7.3 FGFT

FGFT demonstrates how to provide fast recovery from driver failures by using novel checkpoint and restore
mechanisms. Fast checkpoint and restore enables new applications and can be used to improve the latency
of existing OS applications. With FGFT, I demonstrate a new application of dynamic fault tolerance at fine
granularity that was not previously possible.

In the future, there is an opportunity to apply fast device checkpoints in other areas. Table 7.1 lists five
possible uses. Within an operating system, checkpoints support fast reboot after upgrading system software
by restoring device state from a checkpoint rather than reinitializing the driver. Similarly, operating sys-
tems using non-volatile memory to survive power failures [5, 71] can restart drivers from a checkpoint rather
than reinitializing the device. In virtualized settings, pass-through and virtualization-aware devices [76] al-
low drivers in guest operating systems to interact with physical hardware. Device state checkpoints enable
virtual-machine checkpoints to a pass-through device [61] and live migration, because the device state from
the source can be extracted and restored on identical hardware at the destination. With virtual devices, the
latency of live migration can be as low as 60ms [23], so a 2 second delay to initialize a pass-through device
adds significant downtime [48]. However, for uses of checkpoint that move state across machines, such as
virtual machine migration, the ability to restore from fully powered off may be necessary as devices may be

88

attached at different I/O memory addresses.

7.4 Summary

To summarize, in this section, I present two broad approaches towards future work. The first approach is
to improve extend and improve existing tools and apply them to new problems such as device protocol
violations and new applications of checkpoint/ restore. The second approach is to re-design how drivers
communicate with the operating system and develop protocols for remote driver invocation.

Chapter 8
Conclusions

As computers evolve and provide greater functionality in our lives, understanding and improving their com-
plexity and reliability becomes important. My dissertation develops tools and mechanisms to improve relia-
bility and improves our understanding of device drivers in modern operating systems.

In this dissertation, I have addressed three problems to improve device access. First, I review a new
failure mode in device drivers and review how drivers behave when devices fail. I investigate how this can
affect OS reliability. I have looked at how to address crashes caused by hardware dependence, how to re-
port a failing device and finally how to recover from transient failures. The resulting system, Carburizer is
a static analysis/runtime framework that addresses these issues. Carburizer’s static analysis is fast, scan-
ning upwards of 3000 drivers in less than 30 minutes while also generating hardened binary drivers. Using
Carburizer, I was able to find 992 hardware dependence bugs in the Linux 2.6.18.8. Additionally, I found
approximately 1100 cases where the driver was missing error reporting information about device failures.
Carburizer hardened driver and runtime imposed almost no performance or CPU overheads.

Next, I took a holistic view of all driver code to understand how modern driver research applies to
Linux drivers and what are the opportunities for future research. Through this study, I have attempted to
break out of the one-driver-at-a-time mold of research, and instead try to see the forest of drivers. I find that
common assumptions about drivers, such as that they belong to a class and perform little processing, are
generally but not always true. Thus, research that relies on these assumptions can chip away at the problem
drivers cause, but may leave behind a long tail of special cases and the resulting infrastructure to support these
drivers preventing the widespread adoption of such solutions. My study has provided a better understanding
of driver behavior, of the applicability of existing research to these drivers, and of the opportunities that exist
for future research such as driver synthesis and remote driver execution.

Finally, I address one of the implications from this study: complex and incomplete driver recovery with
existing fault tolerance systems. I built, Fine-Grained Fault Tolerance (FGFT), a code-generation and runtime
recovery system to provide fast device driver recovery. With FGFT, I demonstrate three important results.
First, I demonstrate a novel mechanism that provides checkpoint/restore support in modern drivers by re-
using existing power management code already present in many drivers. Second, FGFT shifts the burden

90

of fault tolerance from a large monolithic patch to incrementally deployable driver changes reducing soft-
ware maintenance. Third, FGFT demonstrates how to execute driver code as transactions and introduces a
fundamental different way to think about driver isolation.

The great strength of popular operating systems is their ability to function with a huge variety of differ-
ent devices. However, many of the problems with drivers arise because of this diversity, because it reduces
the resources available to test every driver and increases the difficulty of revamping the driver architecture.
My dissertation improves device access while acknowledging this diversity.

Bibliography

[1] Amazon Corporation. Amazon EBS service. http://aws.amazon.com/ebs, 2013.

[2] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and J. Nieh. Cells: a virtual mobile smartphone architecture. In Proceedings
of the Twenty-Third ACM Symposium on Operating Systems Principles, 2011.

[3] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau. Fail-stutter fault tolerance. In Proceedings of the 8th IEEE HOTOS,
May 2001.

[4] S. Arthur. Fault resilient drivers for Longhorn server, May 2004. Microsoft Corporation, WinHec 2004 Presentation
DW04012.

[5] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy. Operating system implications of fast, cheap, non-volatile
memory. In Proceedings of the 13th IEEE HOTOS, 2011.

[6] L. N. Bairavasundaram, G. R. Goodson, S. Pasupathy, and J. Schindler. An Analysis of Latent Sector Errors in
Disk Drives. In Proceedings of the 7th SIGMETRICS, 2007.

[7] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg, C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner.
Thorough static analysis of device drivers. In Proceedings of the 1st ACM Eurosys, 2006.

[8] T. Ball and S. K. Rajamani. The SLAM project: Debugging system software via static analysis. In Proceedings of the
29th POPL, 2002.

[9] J. F. Bartlett. A NonStop kernel. In Proceedings of the 8th ACM SOSP, Dec. 1981.

[10] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object recognition using shape contexts. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 24(4):509–522, 2002.

[11] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler.
A few billion lines of code later: using static analysis to find bugs in the real world. Communications of the ACM,
53(2), 2010.

[12] A. Birgisson, U. E. Mohan Dhawan, V. Ganapathy, and L. Iftode. Enforcing authorization policies using transac-
tional memory introspection. In Proceedings of the 15th ACM CCS, Oct. 2008.

[13] S. Boyd-Wickizer and N. Zeldovich. Tolerating malicious device drivers in linux. In Proceedings of the USENIX
ATC, 2010.

[14] D. Brumley and D. Song. Privtrans: Automatically partitioning programs for privilege separation. In Proceedings
of the 13th USENIX Security Symposium, 2004.

http://aws.amazon.com/ebs

92

[15] S. Butt, V. Ganapathy, M. Swift, and C.-C. Chang. Protecting commodity OS kernels from vulnerable device
drivers. In Proceedings of the 25th ACSAC, 2009.

[16] M. Castro, M. Costa, J.-P. Martin, M. Peinado, P. Akritidis, A. Donnelly, P. Barham, and R. Black. Fast byte-
granularity software fault isolation. In Proceedings of the 22nd ACM SOSP, 2009.

[17] P. Chandrashekaran, C. Conway, J. M. Joy, and S. K. Rajamani. Programming asynchronous layers with CLARITY.
In Proceedings of the 15th ACM FSE, 2007.

[18] V. Chipounov and G. Candea. Reverse engineering of binary device drivers with RevNIC. In Proceedings of the 4th
ACM Eurosys, 2010.

[19] T.-c. Chiueh, G. Venkitachalam, and P. Pradhan. Integrating segmentation and paging protection for safe, efficient
and transparent software extensions. Operating Systems Review, 33, 1999.

[20] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng, and X. Zheng. Secure web applications via automatic
partitioning. In Proceedings of the 21st ACM SOSP, 2007.

[21] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An empirical study of operating system errors. In Proceedings
of the 18th ACM SOSP, 2001.

[22] B. Chun and P. Maniatis. Augmented smartphone applications through clone cloud execution. In Proceedings of
the 12th USENIX HotOS, 2009.

[23] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach, I. Pratt, and A. Warfield. Live migration of virtual
machines. In Proceedings of the 2nd USENIX NSDI, 2005.

[24] J. Corbet. Trusting the hardware too much. http://lwn.net/Articles/479653/. LWN February 2012.

[25] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux Device Drivers, 3rd Edition. O’Reilly Associates, Feb. 2005.

[26] Coverity. Anaylsis of the Linux kernel, 2004. Available at http://www.coverity.com.

[27] W. Cui, M. Peinado, H. J. Wang, and M. E. Locasto. Shieldgen: Automatic data patch generation for unknown
vulnerabilities with informed probing. In Proceedings of the IEEE Symposium on Security and Privacy, 2007.

[28] F. M. David, E. M. Chan, J. C. Carlyle, and R. H. Campbell. CuriOS: Improving reliability through operating
system structure. In Proceedings of the 8th USENIX OSDI, 2008.

[29] Digi International. AnywhereUSB. http://www.digi.com/products/usb/anywhereusb.jsp.

[30] I. Dryden and K. Mardia. Statistical shape analysis, volume 4. Wiley New York, 1998.

[31] D. Engler, B. Chelf, A. Chou, and S. Hallem. Checking system rules using system-specific, programmer-written
compiler extensions. In Proceedings of the 4th USENIX OSDI, 2000.

[32] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M. Williamson. Safe hardware access with the Xen
virtual machine monitor. In Proceedings of the OASIS Workhop, 2004.

[33] M. Gabel, J. Yang, Y. Yu, M. Goldszmidt, and Z. Su. Scalable and systematic detection of buggy inconsistencies in
source code. In Proceedings of the 25th ACM OOPSLA, 2010.

[34] A. Ganapathi, V. Ganapathi, and D. A. Patterson. Windows XP Kernel Crash Analysis. In Proceedings of the 20th
USENIX LISA, 2006.

[35] N. Ganapathy, 2009. Architect, Microsoft Windows Driver Experience team, personal communication.

[36] V. Ganapathy, A. Balakrishnan, M. M. Swift, and S. Jha. Microdrivers: A new architecture for device drivers. In
Proceedings of the 11th IEEE HOTOS, 2007.

[37] V. Ganapathy, M. J. Renzelmann, A. Balakrishnan, M. M. Swift, and S. Jha. The design and implementation of
microdrivers. In Proceedings of the 13th ACM ASPLOS, Mar. 2008.

http://lwn.net/Articles/479653/
http://www.coverity.com
http://www.digi.com/products/usb/anywhereusb.jsp

93

[38] S. Graham. Writing drivers for reliability, robustness and fault tolerant systems. http://www.microsoft.com/
whdc/archive/FTdrv.mspx, Apr. 2004.

[39] P. Guo and D. Engler. Linux Kernel Developer Responses to Static Analysis Bug Reports. In Proceedings of the
USENIX ATC, 2009.

[40] S. R. Hanson and E. J. Radley. Testing device driver hardening, May 2005. US Patent 6,971,048.

[41] A. Hari, M. Jaitly, Y.-J. Chang, and A. Francini. The swiss army smartphone: Cloud-based delivery of usb services.
In Proceedings of the 3rd ACM Mobiheld, 2011.

[42] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum. Failure resilience for device drivers. In Proceedings
of the 2007 IEEE DSN, 2007.

[43] Hewlett Packard Corp. Parallel processing of TCP/IP with ethernet adapter failover. http://h20223.www2.hp.
com/NonStopComputing/downloads/EAFailoverTCP-IP-PL.pdf, 2002.

[44] Intel Corporation and IBM Corporation. Device driver hardening design specification draft release 0.5h. http:
//hardeneddrivers.sourceforge.net/downloads/DDH-Spec-0.5h.pdf, Aug. 2002.

[45] R. Jones. Netperf: A network performance benchmark, version 2.1, 1995. Available at http://www.netperf.org.

[46] A. Kadav, M. Renzelmann, and M. M. Swift. Fine-grained fault tolerance using device checkpoints. In Proceedings
of the 18th ACM ASPLOS, 2013.

[47] A. Kadav, M. J. Renzelmann, and M. M. Swift. Tolerating hardware device failures in software. In Proceedings of
the 22nd ACM SOSP, 2009.

[48] A. Kadav and M. M. Swift. Live migration of direct-access devices. In ACM SIGOPS Operating Systems Review,
’Best papers from VEE and Best papers from WIOV’, Volume 43, Issue 3., July 2009.

[49] A. Kadav and M. M. Swift. Understaning modern device drivers. In Proceedings of the 17th ACM ASPLOS, 2012.

[50] V. Kuznetsov, V. Chipounov, and G. Candea. Testing closed-source binary device drivers with DDT. In Proceedings
of the USENIX ATC, 2010.

[51] H. A. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and E. de Lara. VMM-independent graphics acceleration. In
Proceedings of the 3rd ACM VEE, 2007.

[52] J. R. Larus and R. Rajwar. Transactional Memory. Morgan & Claypool Publishers, 2006.

[53] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Gotz, C. Gray, L. Macpherson, D. Potts, Y. Shen, K. Elphinstone, and
G. Heiser. User-level device drivers: Achieved performance. Jour. Comp. Sci. and Tech., 20(5), 2005.

[54] B. Leslie, P. Chubb, N. Fitzroy-Dale, S. Gotz, C. Gray, L. Macpherson, D. Potts, Y. Shen, K. Elphinstone, and
G. Heiser. User-level device drivers: Achieved performance. Journal Computer Science and Technology, 20(5), Sept.
2005.

[55] M.-L. Li, P. Ramachandran, S. Sahoo, S. Adve, V. Adve, and Y. Zhou. Understanding the propagation of hard
errors to software and implications for resilient system design. In Proceedings of the 13th ACM ASPLOS, 2008.

[56] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A tool for finding copy-paste and related bugs in operating
system code. In Proceedings of the 6th USENIX OSDI, 2004.

[57] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan. Scalable statistical bug isolation. In Proceedings of the
ACM SIGPLAN PLDI, 2005.

[58] Linux Kernel Mailing List. Fixes for uli5261 (tulip driver). http://lkml.org/lkml/2006/8/19/59, Aug. 2006.

[59] Linux Kernel Mailing List. Improve behaviour of spurious irq detect. http://lkml.org/lkml/2007/6/7/211,
June 2007.

[60] LKML. Re:do not misuse coverity please. http://lkml.org/lkml/2005/3/27/131, March 2005. Jean Delware.

http://www.microsoft.com/whdc/archive/FTdrv.mspx
http://www.microsoft.com/whdc/archive/FTdrv.mspx
http://h20223.www2.hp.com/NonStopComputing/downloads/EAFailoverTCP-IP-PL.pdf
http://h20223.www2.hp.com/NonStopComputing/downloads/EAFailoverTCP-IP-PL.pdf
http://hardeneddrivers.sourceforge.net/downloads/DDH-Spec-0.5h.pdf
http://hardeneddrivers.sourceforge.net/downloads/DDH-Spec-0.5h.pdf
http://www.netperf.org
http://www.netperf.org
http://lkml.org/lkml/2006/8/19/59
http://lkml.org/lkml/2007/6/7/211
http://lkml.org/lkml/2005/3/27/131

94

[61] M. Mahalingam and R. Brunner. I/O Virtualization (IOV) For Dummies. labs.vmware.com/download/80/, 2007.
VMworld 2007.

[62] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. Kaashoek. Software fault isolation with api integrity
and multi-principal modules. In Proceedings of the 23rd ACM SOSP, 2011.

[63] A. Menon, S. Schubert, and W. Zwaenepoel. Twindrivers: semi-automatic derivation of fast and safe hypervisor
network drivers from guest os drivers. In Proceedings of the 14th ACM ASPLOS, 2009.

[64] F. Mérillon, L. Réveillère, C. Consel, R. Marlet, and G. Muller. Devil: An IDL for hardware programming. In
Proceedings of the 4th USENIX OSDI, 2000.

[65] Microsoft Corporation. Power management and ACPI - architecture and driver support. msdn.microsoft.com/
en-us/windows/hardware/gg463220.

[66] Microsoft Corporation. Web services on devices. http://msdn.microsoft.com/en-us/library/aa826001%28v=
vs.85%29.aspx.

[67] Microsoft Corporation. Introduction to the WDF user-mode driver framework. http://www.microsoft.com/
whdc/driver/wdf/umdf_intro.mspx, May 2006.

[68] P. Mochel. The Linux power management summit. lwn.net/Articles/181888/, 2006.
[69] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic. SoftBound: highly compatible and complete spatial

memory safety for C. In Proceedings of the ACM SIGPLAN PLDI, 2009.
[70] J. Nakano, P. Montesinos, K. Gharachorloo, and J. Torrellas. ReVive I/O: Efficient handling of i/o in highly-

available rollback-recovery servers. In Proceedings of the 12th IEEE HPCA, 2006.

[71] D. Narayanan and O. Hodson. Whole-system persistence. In Proceedings of the 17th ACM ASPLOS, 2012.
[72] G. C. Necula, S. Mcpeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language and tools for analysis and

transformation of C programs. In Proceedings of the 11th ETAPS CC, 2002.
[73] V. Orgovan and M. Tricker. An introduction to driver quality. Microsoft WinHec Presentation DDT301, 2003.
[74] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller. Documenting and automating collateral evolutions in linux

device drivers. In Proceedings of the 3rd ACM Eurosys, 2008.
[75] V. Paxson. Bro: a system for detecting network intruders in real-time. In Proceedings of the 7th USENIX Security

Symposium, 1998.
[76] PCI-SIG. I/O virtualization. http://www.pcisig.com/specifications/iov/, 2007.
[77] E. Pinheiro, W.-D. Weber, and L. A. Barroso. Failure trends in a large disk drive population. In Proceedings of the

5th FAST, 2007.
[78] D. E. Porter, O. S. Hofmann, C. J. Rossbach, A. Benn, and E. Witchel. Operating systems transactions. In Proceedings

of the 22nd ACM SOSP, 2009.
[79] H. Post and W. Kuchlin. Integrated static analysis for Linux device driver verification. In Proceedings of the 6th

International Conference on Integrated Formal Methods, July 2007.
[80] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, and S. Rixner. Achieving 10 gb/s using safe and transparent network

interface virtualization. In Proceedings of the ACM VEE, 2009.
[81] P. Ramachandran. Detecting and Recovering from In-Core Hardware Faults Through Software Anomaly Treatment. PhD

thesis, University of Illinois, Urbana-Champaign, 2011.
[82] A. Rao. Seamicro technology overview. www.seamicro.com/sites/default/files/SeaMicroTechOverview.pdf,

2010.
[83] M. J. Renzelmann and M. M. Swift. Decaf: Moving device drivers to a modern language. In Proceedings of the

USENIX ATC, 2009.

labs.vmware.com/download/80/
msdn.microsoft.com/en-us/windows/hardware/gg463220
msdn.microsoft.com/en-us/windows/hardware/gg463220
http://msdn.microsoft.com/en-us/library/ aa826001%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/ aa826001%28v=vs.85%29.aspx
http://www.microsoft.com/whdc/driver/wdf/umdf_intro.mspx
http://www.microsoft.com/whdc/driver/wdf/umdf_intro.mspx
lwn.net/Articles/181888/
http://www.pcisig.com/specifications/iov/
www.seamicro.com/sites/default/files/SeaMicroTechOverview.pdf

95

[84] C. J. Rossbach, O. S. Hofmann, D. E. Porter, H. E. Ramadan, A. Bhandari, and E. Witchel. TxLinux: Using and
managing hardware transactional memory in an operating system. In Proceedings of the 21st ACM SOSP, 2007.

[85] L. Ryzhyk, P. Chubb, I. Kuz, and G. Heiser. Dingo: Taming device drivers. In Proceedings of the 4th ACM Eurosys,
2009.

[86] L. Ryzhyk, P. Chubb, I. Kuz, E. Le Sueur, and G. Heiser. Automatic device driver synthesis with Termite. In
Proceedings of the 22nd ACM SOSP, 2009.

[87] L. Ryzhyk, Y. Zhu, and G. Heiser. The case for active device drivers. In Proceedings of 1st ACM APSys, 2010.

[88] R. Sahoo, M. Squillante, A. Sivasubramaniam, and Y. Zhang. Failure data analysis of a large-scale heterogeneous
server environment. In Proceedings of the 34th IEEE DSN, 2004.

[89] A. Schüpbach, A. Baumann, T. Roscoe, and S. Peter. A declarative language approach to device configuration. In
Proceedings of the 16th ACM ASPLOS, 2011.

[90] M. Seltzer, Y. Endo, C. Small, and K. Smith. Dealing with disaster: Surviving misbehaved kernel extensions.
SIGOPS Operating Systems Review, 30:213–228, 1996.

[91] T. Shureih. HOWTO: Linux device driver dos and don’ts. http://janitor.kernelnewbies.org/docs/
driver-howto.html, Mar. 2004.

[92] S. Sidiroglou and A. D. Keromytis. Countering network worms through automatic patch generation. IEEE Security
and Privacy, 3(6):41–49, 2005.

[93] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts. John Wiley and Sons, eighth edition, 2009.

[94] A. Smirnov and Tzi-ckerChiueh. Automatic patch generation for buffer overflow attacks. In Proceedings of the 3rd
Symposium on Information Assurance and Security, 2007.

[95] M. Spear, T. Roeder, O. Hodson, G. Hunt, and S. Levi. Solving the starting problem: Device drivers as self-
describing artifacts. In Proceedings of the 1st ACM Eurosys, 2006.

[96] S. Y. H. Su and R. J. Spillman. An overview of fault-tolerant digital system architecture. In Proceedings of the
National Computer Conference (AFIPS), 1977.

[97] J. Sun, W. Yuan, M. Kallahalla, and N. Islam. HAIL: A language for easy and correct device access. In Proceedings
of the 5th ACM International Conference on Embedded Software, Sept. 2005.

[98] Sun Microsystems. Opensolaris community: Fault management. http://opensolaris.org/os/community/fm/.

[99] Sun Microsystems. Solaris Express Software Developer Collection: Writing Device Drivers, chapter 13: Hardening
Solaris Drivers. Sun Microsystems, 2007.

[100] Sundararaman, Swaminathan, Sriram Subramanian, Abhishek Rajimwale, Andrea C. Arpaci-Dusseau, Remzi H.
Arpaci-Dusseau, and Michael M. Swift. Membrane: Operating system support for restartable file systems. In
Proceedings of the 8th USENIX FAST, 2010.

[101] M. Süßkraut and C. Fetzer. Automatically finding and patching bad error handling. In Proceedings of the 6th EDCC,
2006.

[102] M. Swift, M. Annamalau, B. N. Bershad, and H. M. Levy. Recovering device drivers. ACM Transactions on Computer
Systems, 24(4), Nov. 2006.

[103] M. M. Swift, B. N. Bershad, and H. M. Levy. Improving the reliability of commodity operating systems. ACM
Transactions on Computer Systems, 23(1), Feb. 2005.

[104] L. Tan, E. M. Chan, R. Farivar, N. Mallick, J. C. Carlyle, F. M. David, and R. H. Campbell. iKernel: Isolating buggy
and malicious device drivers using hardware virtualization support. In Proceedings of the 3rd DASC, 2007.

[105] Úlfar Erlingsson, M. Abadi, M. Vrable, M. Budiu, and G. C. Necula. XFI: software guards for system address
spaces. In Proceedings of the 7th USENIX OSDI, 2006.

http://janitor.kernelnewbies.org/docs/driver-howto.html
http://janitor.kernelnewbies.org/docs/driver-howto.html
http://opensolaris.org/os/community/fm/

96

[106] USB Implementors Forum. Universal serial bus mass storage class specification overview. http://www.usb.org/
developers/devclass_docs/usb_msc_overview_1.2.pdf, 2003.

[107] USB Implementors Forum. Universal serial bus 3.0 specification. http://www.usb.org/developers/docs/usb_30_spec_071311.zip,
2011.

[108] H. Volos, A. Tack, N. Goyal, M. Swift, and A. Welc. xCalls: safe I/O in memory transactions. In Proceedings of the
4th ACM Eurosys, 2009.

[109] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient software-based fault isolation. In Proceedings of
the 14th ACM SOSP, Dec. 1993.

[110] D. Walker, L. Mackey, J. Ligatti, G. A. Reis, and D. I. August. Static typing for a faulty lambda calculus. In
Proceedings of the ICFP Conference, 2006.

[111] D. A. Wheeler. Sloccount. http://www.dwheeler.com/sloccount/.

[112] D. Williams, P. Reynolds, K. Walsh, E. G. Sirer, and F. B. Schneider. Device driver safety through a reference
validation mechanism. In Proceedings of the 8th USENIX OSDI, 2008.

[113] E. Witchel, J. Rhee, and K. Asanovic. Mondrix: Memory isolation for Linux using Mondriaan memory protection.
In Proceedings of the 20th ACM SOSP, 2005.

[114] L. Wittie. Laddie: The language for automated device drivers (ver 1). Technical Report 08-2, Bucknell CS-TR,
2008.

[115] L. Wittie, C. Hawblitzel, and D. Pierret. Generating a statically-checkable device driver I/O interface. In Workshop
on Automatic Program Generation for Embedded Systems, Oct. 2007.

[116] Xen.org. Writing xen drivers: Using xenbus and xenstore. http://wiki.xensource.com/xenwiki/XenBus, 2006.

[117] J. Yang. Zero-penalty RAID controller memory leak detection and isolation method and system utilizing sequence
numbers, 2007. Patent application 11715680.

[118] F. Zhou, J. Condit, Z. Anderson, I. Bagrak, R. Ennals, M. Harren, G. Necula, and E. Brewer. SafeDrive: Safe and
recoverable extensions using language-based techniques. In Proceedings of the 7th USENIX OSDI, Nov. 2006.

[119] L. Zhuang, S. Wang, and K. Gao. Fault injection test harness. In Proceedings of the Ottawa Linux Symposium, June
2003.

http://www.usb.org/developers/devclass_docs/ usb_msc_overview_1.2.pdf
http://www.usb.org/developers/devclass_docs/ usb_msc_overview_1.2.pdf
http://www.acm.org/pubs/articles/proceedings/ops/168619/p203-wahbe/p203-wahbe.pdf
http://www.dwheeler.com/sloccount/
http://wiki.xensource.com/xenwiki/XenBus

	Introduction
	Motivation
	Thesis
	Contributions
	Thesis Organization

	Tolerating Hardware Device Failures in Software
	Device Hardware Failures
	Failures Types
	Vendor Recommendations

	Hardening Drivers
	Finding Sensitive Code
	Repairing Sensitive Code
	Summary
	Analysis Results
	Experimental Results

	Reporting Hardware Failures
	Reporting Device Timeouts
	Reporting Incorrect Device Outputs
	Results

	Runtime Fault Tolerance
	Automatic Recovery
	Tolerating Missing Interrupts
	Tolerating Stuck Interrupts
	Results

	Overhead Evaluation
	Summary

	Understanding Modern Device Drivers
	Background
	Driver/Device Taxonomy
	Driver Research Assumptions

	What Do Drivers Do?
	Methodology
	What is the function breakdown of driver code?
	Where is the driver code changing?
	Do drivers belong to classes?
	Do drivers do significant processing?
	How many device chipsets does a single driver support?
	Discussion

	Driver Interactions
	Methodology
	Driver/Kernel Interaction
	Driver/Device Interaction
	Driver/Bus Interaction
	Driver Concurrency

	Driver Redundancy
	Methodology
	Redundancy Results

	Summary

	Fine-Grained Fault Tolerance Using Device Checkpoints
	Design Overview
	Fault Model
	Fine-Grained Isolation
	Checkpoint-based Recovery
	Design Summary

	Fine-Grained Isolation
	Software Fault Isolation
	Failure Detection

	Checkpoint-based recovery
	Device state checkpointing
	Recovery with checkpoints
	Implementation effort

	Evaluation
	Fault Resilience
	Performance
	Recovery Time
	Utility of Fine Granularity
	Device Checkpoint Support
	Developer effort

	Summary

	Related Work
	Related work for Caburizer
	Related work for FGFT

	Lessons
	Hybrid Static/Run-Time Checking
	Implications for driver design
	Experience with the kernel community
	Summary

	Future Work
	Carburizer
	Driver Study
	FGFT
	Summary

	Conclusions

