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Abstract

Peripheral devices extend the functionality of computers and make them more inter-

esting to use. However, their tremendous growth and evolution over the years has led to

significant hardware and software complexity. Hardware complexity makes the OS unre-

liable and slows operations that require re-loading drivers like reboot and failure recovery.

Furthermore, little is known about the more than 5 million lines of driver code. This limits

our ability to improve device access code and understand future research directions.

In this dissertation, I address the challenges arising out of device and OS complex-

ity. First, I present the first research consideration of peripheral device failures. I describe

Carburizer, a code-rewriting tool and associated runtime that handles the problems arising

due to device failures and automatically recovers using restart/replay. I then demonstrate

the broad implications of these recovery techniques in modern drivers by performing a

survey of device drivers. The goal of this study is to understand existing research in the

context of the reality of drivers and to find new opportunities for future driver research.

Finally, I describe how driver recovery can be improved by introducing a novel check-

point/restore mechanism for drivers.

Carburizer identified 992 bugs in Linux drivers where the system can crash if pe-

ripheral devices misbehave. With the aid of shadow drivers for recovery, Carburizer can

automatically repair 840 of these bugs with no programmer involvement. My study on

drivers identified several new implications for driver research and driver design. For ex-

ample, I find that common assumptions about driver research, such as that drivers belong

to a class and perform little processing, are generally but not always true. Hence, existing

driver research may leave a long tail of unsupported devices. Finally, to improve recov-

ery, I introduce fast checkpoint support in device drivers, averaging only 20µs. Using de-

vice checkpoints, I demonstrate that a new functionality, transactional execution of device

drivers is made possible.
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Chapter 1
Introduction

My dissertation addresses the complexity problem in device access in modern operating

systems. I look at three problems arising due to rising hardware and software complexity:

1) Improving the reliability of modern device drivers against peripheral device failures,

2) Surveying the breadth of driver code to gain a deeper understanding of driver code

complexity, and 3) Reducing the device downtime latency caused by complex device ini-

tialization by introducing fast checkpoint-restore in modern drivers. I start by motivating

device access in modern computers.

1.1 Motivation

Computers are increasingly dependent on attached devices for the services they provide.

Users are attaching an ever growing, changing and evolving set of devices to make the

computers more functional and interesting. Furthermore, the introduction of new forms

of I/O, such as touchscreens, accelerometers, and new interfaces, such as thunderbolt,

have further increased the required OS abstractions. These devices are also being accessed

in different environments such as through hypervisors or in mobile environments. Thus,
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not only are number of devices growing but the requirements placed on supporting them

are also growing.

Devices are supported in operating systems through device drivers. Drivers en-

capsulate details about one or more devices, and export a standard device interface. This

allows applications and OS services to communicate with a wide variety of devices with-

out any knowledge of how a specific device works. Supporting new and complex devices

burdens the operating system in many ways. First, there is tremendous growth in num-

ber and type of devices that are supported by a modern OS. For example, Linux supports

almost 3700 drivers in 73 different classes and each class imposes unique device support

requirements on the OS. This requires lots of complicated support code in the OS that hurts

its simplicity. As an example, a 10G ethernet card and a credit card reader, both recent de-

vices, have very different requirements of performance and security from the device stack

supported in the OS.

Second, devices are prone to hardware failures due to design faults, wear-out or

external conditions (such as dirt and heat). By supporting multiple complex devices, the

OS needs to ensure that peripheral device failures does not hurt the reliability of the overall

system.

Third, as devices are getting more sophisticated, with complex firmware and con-

figuration options, the device startup latency time has become significant, taking up to

multiple seconds [48]. This affects OS functions like reboot, upgrade and live migration of

direct attached devices. The reason is that these OS functions reset the device subsystem

and wait for devices to re-initialize, which can be slow.

Finally, with the tremendous growth of devices, the number of drivers have also

increased tremendously. This adds to the software complexity in the OS. Device drivers

constitute 70% of the Linux code base [85], and are likely a greater fraction of the code

written for the Windows kernel, which supports many more devices. For example, if we

look at the newest kernel, Linux 3.8 (March 2013), drivers contribute 6.7 million LOC code;

Other complex systems like memory management or file system code are almost an order
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of magnitude smaller than drivers. Because this is the bulk of the kernel, and it is growing

very rapidly, it is difficult to understand how the existing driver architecture adapts to

these new devices. If we understand driver code better, we can improve device access,

have less driver code, and find more opportunities for research. To address the complexity

problem, I briefly re-visit the existing body of work on driver-kernel reliability research and

identify what solutions are most effective.

Drivers are the dominant cause of OS crashes in desktop PCs [34, 73]. The reason is

that the driver development model consists of hundreds of developers adding thousands

of lines of privileged code in a rather unsafe language directly into the kernel. This is a

recipe for complex system with reliability problems. Consequently, driver research over

the past decade has significantly focused on reliability problems using software/hardware

fault isolation techniques, bug detection tools, using special programming languages or

environments for surviving crashes in modern operating systems due to faulty or mali-

cious device drivers [7, 13, 16, 17, 18, 19, 28, 32, 53, 64, 74, 83, 85, 86, 95, 103, 105, 112].

Amongst the driver reliability solutions developed, there is limited adoption of com-

plete systems that can detect and fix driver problems at runtime because they introduce a

large body of code to the kernel and validate their results on limited number of drivers.

For example, Nooks [102] requires 23K lines of code but only tested on six drivers. Fur-

thermore, Nooks did not demonstrate how its approach applies to other drivers. Solutions

that have had significant impact in improving the driver kernel interface such as Windows

SDV, Coverity, and Cocinelle [8, 11, 74] apply to a lot of drivers. However, they still re-

quire someone to go and fix the bugs and are not complete systems. My plan to address

the complexity problem is to re-use lessons from reliability research and develop complete

solutions that limit changes to OS and apply to large number of drivers.

1.2 Thesis

The goal of my dissertation research is to look at important problems caused by hardware

and software complexity. I specifically look at: (i) With the increase in hardware complex-
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ity, how resilient are modern operating systems against hardware failures? (ii) How can

OS functions like fault tolerance, upgrade, reboot, that require resetting the device sub-

system be made fast without adding large kernel subsystems? and finally (iii) How can

we better understand and reduce the software complexity of drivers and improve device

support? I will discuss these problems in the order I reviewed them in graduate school

and propose the thesis of my dissertation.

Device Failures The device and driver interact through a protocol specified by the hard-

ware. Failure in adherence to this protocol can lead to serious security and reliability is-

sues since drivers operate in a privileged domain in modern operating systems. These

hardware failures manifest due to device complexity, wear-out, manufacturing faults and

external environmental conditions. It is difficult to verify that complex devices do not have

latent problems in them that can manifest as hardware failures [88]. Furthermore, internal

software failures can occur in devices that execute embedded firmware, sometimes up to

millions of lines of code [117]. Wear-out or electrical interference [55] can cause bit flips

and stuck-ats in hardware inputs from the device. Finally, environmental conditions such

as heat, dirt, radiation, interference can cause transient or permanent errors in devices.

Applying the same solutions as those used for driver software bugs may not address reli-

ability due to unreliable hardware. This is because software stress testing cannot simulate

hardware failures and only tests driver behavior by providing different software inputs.

Hence, it is important to assess the nature of hardware unreliability issues that plague

modern drivers and design mechanisms to address these issues.

Understanding Modern Device Drivers In order to improve device access, I looked at

the range of problems that affect device drivers. However, I realized that only limited

information about the breadth of drivers is available. For example, most research projects

consider only a small set of PCI devices, and then generalize to all driver classes. However,

many devices for consumer PCs are connected over USB, and hence these designs may not

apply. There is a second class of research that looks at many drivers using static analysis

tools but is focused towards finding software bugs. These tools do a great job of finding



5

bugs but ignore normal functioning code and driver code properties. Furthermore, some

times bugs do not correctly represent the problems but are mere symptoms of broader

issues [60].

The result is that our research view is limited to small set of drivers or a list of bugs,

and much of driver code has never been looked at. The large, unknown code base makes

it hard to generalize about drivers and also discourages major changes to driver model.

Hence, it is necessary to review the driver code in modern settings such as advancements

in hardware and programming language techniques with a broader lens. Furthermore,

the implications of broad information about drivers used in practice extend beyond the

applicability of existing research. They help guide the fundamental type of research that

we should perform as a community.

Device Checkpoint/Restore Support for device checkpoint and restore has long been

regarded as a useful feature for fault tolerance. However, to date it has not been possible

for device drivers because they share state with their devices that is not available through

memory. As a result, capturing enough state to restore driver functionality following a

failure is difficult.

Past approaches to driver recovery instead rely on restart/replay, which can be slow

since the device needs to be cold booted. They also require writing wrapper code to log

all driver/kernel interactions that increases overhead on high-performance devices such

as solid-state drives and high-speed NICs. Even logging may be insufficient, though, if

the semantics of requests are ambiguous. During my study of drivers, I found that 44%

of drivers contain such semantics and restart based recovery may not work correctly for

these drivers. In addition, existing approaches either require large subsystems that must

be kept up-to-date as the kernel changes, or require substantial rewriting of drivers.

Thus, a better approach is needed. In order to re-initialize devices correctly and

quickly, I argue that drivers should export checkpoint and restore operations. When used

for fault tolerance, checkpoints can reduce the latency of recovery by restarting drivers

more quickly and reduce the cost and complexity of logging. Furthermore, checkpoints
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also solve the problems of replaying vendor-specific semantics since upon failure, the

driver and device can be restored to the checkpointed state.

Based on these problems, I propose the following three-part thesis for improving

the state of art in device access:

First, many drivers  make incorrect  assumptions about  hardware behavior. They use

hardware values in critical control and data paths. Furthermore, these drivers also miss

reporting device failures and do not provide any provisions for recovery. Using static

analyses and runtime watchdog support, problems with driver-hardware abstractions can

be improved with little/no runtime costs.

Second, our exposure to drivers is limited to bugs and our view is largely reliability cen-

tric. A study to evaluate driver code functions, interactions and abstractions can provide

valuable new insights about driver code. The study can help verify research assumptions,

and understand driver code behavior, device/kernel interactions and measure redundant

abstractions in device drivers.

Third, the decade old driver-restart mechanisms for driver recovery are slow. This ham-

pers the availability of many OS functions such as fault tolerance, OS restart and VM Mi-

gration. Re-factoring the existing power management code can provide device checkpoint

functionality which improves the speed of driver recovery. Furthermore, it enables new

applications like providing fault tolerance to specific portions of driver code.

1.3 Contributions

I now briefly describe the three major systems that I have developed that contribute to-

wards this thesis. These systems address the three problems I describe in my thesis.

Tolerating hardware device failures in software I reviewed the hardware abstractions

in device drivers and found that hardware devices can fail, but many drivers assume they

do not. When confronted with real devices that misbehave, these assumptions can lead to
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driver or system failures. Even though major operating system and device vendors rec-

ommend that drivers detect and recover from hardware failures, I find that there are many

drivers that will crash or hang when a device fails. Such bugs cannot easily be detected by

regular stress testing because the failures are induced by the device and not the software

load.

To address the above problem, I developed Carburizer, a code-manipulation tool

and associated runtime that improves system reliability in the presence of faulty devices.

Carburizer analyzes driver source code to find locations where the driver incorrectly trusts

the hardware to behave. Carburizer identified almost 1000 such bugs in Linux drivers with

a false positive rate of less than 8 percent. With the aid of shadow drivers for recovery,

Carburizer can automatically repair 840 of these bugs with no programmer involvement.

To facilitate pro-active management of device failures, Carburizer can also locate existing

driver code that detects device failures and inserts missing failure-reporting code. Finally,

the Carburizer runtime can detect and tolerate interrupt-related bugs, such as stuck or

missing interrupts.

Understanding and improving modern driver code To broaden our insights about the

reality of drivers, I performed the largest-ever study of Linux driver source code [49]. I

developed a set of static analysis tools to analyze 5.4 million lines of driver code across

various axes. Broadly, my study looks at three aspects of driver code (i) what are the char-

acteristics of driver code functionality and how applicable is driver research to all drivers?

(ii) how do drivers interact with the kernel, devices, and buses, and how can we achieve

driver code standardization? (iii) are there similarities between drivers that can be ab-

stracted into libraries to reduce driver size and complexity?

My study produced several interesting results with several important implications

and I will mention the top three. First, majority of the driver code is dedicated to driver

initialization and cleanup (about 36%) and only 23% is dedicated to handling I/O and in-

terrupts. These results indicate that efforts at reducing the complexity of drivers should

not only focus on request handling, but also on better mechanisms for initialization. Sec-
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ond, I found that many assumptions made by driver research do not apply to all drivers.

For example, drivers are categorized into different classes based on their functionality such

as network, disk etc. However, I found that at least 44% of drivers have functionality out-

side this class definition. Hence, existing driver recovery techniques will fail to correctly

recover from failures for 44% of the devices. Finally, from the similarity study, I found 8%

(or about 400 KLoC) of all driver code is substantially similar to code for other drivers and

adds unnecessary complexity to drivers. This code can be removed with new abstractions,

libraries or programming techniques. My study has provided the community with a better

understanding of driver behavior, of the applicability of existing research to these drivers,

and of the opportunities that exist for future research such as driver synthesis and remote

driver execution.

Fine-Grained Fault Tolerance To address the problem of low latency device recovery, I

developed a novel checkpointing mechanism that re-uses existing suspend/resume code

in drivers and described a principled way to re-factor existing drivers to export the checkpoint-

restore interface. I demonstrate its utility by building Fine-Grained Fault Tolerance (FGFT),

a system that provides fine-grained control over the code protected [46]. FGFT shifts the

burden of fault tolerance to faulty code. Instead of introducing a large fault tolerance sub-

system in the OS, FGFT uses static analysis and code generation to provide isolation and

fault detection in existing driver code. It executes driver entry points as a transaction and

uses software-fault isolation to prevent corruption and detect failures. When a call fails,

FGFT discards the software state and restores the device from a checkpoint. Furthermore,

FGFT can be integrated with static analysis tools (such as Carburizer), to provide fault

tolerance for specific entry points statically or during runtime, when specific inputs occur.

Results from FGFT are encouraging: First, taking a checkpoint is fast, averaging only

20µs. Second, checkpoints remove the need for logging and hence remove the problem of

incomplete recovery arising from unique device semantics. Third, the implementation

effort of FGFT is small: I added 38 lines of code to the kernel to trap processor exceptions,

and found that device checkpoint code can be constructed with little effort from power-



9

management code. Furthermore, this code is present in 76% of drivers in common driver

classes. Through fault injection experiments I demonstrate that FGFT is able to tolerate

a range of driver failures. While I applied checkpoints to fault tolerance, there are more

opportunities to use them, such as in OS migration, fast reboot, and persistent operating

systems.

To summarize the overall contributions, my dissertation presents the first research

consideration of the implications of hardware unreliability problems on drivers. It also

introduces the term “hardware dependence bugs”, which represents a new class of bugs

representing instances where drivers make incorrect assumptions about hardware behav-

ior. Next, my dissertation includes the first-ever large scale study of device drivers, to un-

derstand what they are actually doing, how modern research applies to them and what are

the opportunities for future research. Finally, I introduced a novel checkpoint-restore fa-

cility in modern drivers for low latency recovery. My dissertation has resulted in multiple

kernel patches and an article aimed at informing Linux kernel developers about hardware

dependence bugs in Linux Weekly News [24].

1.4 Thesis Organization

The dissertation is organized as follows: Chapter 2 describes the problem of hardware

failures and how drivers can tolerate these failures using Carburizer. Chapter 3 presents

my comprehensive study on drivers and describes its results. Chapter 3 also includes

a brief background on device drivers. Chapter 4 describes how checkpoint/restore can

be introduced in modern drivers and how it improves recovery using FGFT. Chapter 5

presents related work for Carburizer and FGFT. Finally, I describe some lessons and future

work in Chapter 6 and 7 and finally conclude in Chapter 8.



10



Chapter 2
Tolerating Hardware Device Failures

in Software

Reliability remains a paramount problem for operating systems. As computers are fur-

ther embedded within our lives, we demand higher reliability because there are fewer op-

portunities to compensate for their failure. At the same time, computers are increasingly

dependent on attached devices for the services they provide.

Applications invoke devices through device drivers. The device and driver interact

through a protocol specified by the hardware. When the device obeys the specification, a

driver may trust any inputs it receives from the device. These are inputs responses from

the device based on its interaction with the device and not the user data such as packets or

disk blocks. Unfortunately, devices do not always behave according to their specification.

Some failures are caused by wear-out or electrical interference [55]. In addition, internal

software failures can occur in devices that execute embedded firmware, sometimes up to

millions of lines of code [117].

Studies of Windows servers at Microsoft demonstrate the scope of the problem [4].
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In one study of Windows servers, eight percent of systems suffered from a storage or net-

work adapter failure [4]. Many of these failures are transient: hardware vendors repeat-

edly report that the majority of returned devices operate correctly and retrying an opera-

tion often succeeds [3, 6, 77]. In total, 9% of all unplanned reboots of servers at Microsoft

during a separate study were caused by adapter or hardware failures. Most importantly,

when running platforms with the same adapters and software that tolerates hardware faults,

reported device failures rates drop from 8 percent to 3 percent [4]. This evidence suggests

that (1) device failure is a major cause of system crashes, (2) transient device failures are common,

and (3) drivers that tolerate device failures can improve reliability. Without addressing this prob-

lem, the reliability of operating systems is limited by the reliability of devices.

Device hardware failures cause system hangs or crashes when drivers cannot detect

or tolerate the failure. The Linux kernel mailing list contains numerous reports of drivers

waiting forever and reminders from kernel experts to avoid infinite waits [58]. Neverthe-

less, this code persists. For example, the code below from the 3c59x.c network driver in

the Linux 2.6.18.8 kernel will loop forever if the device never returns the right value:

while (ioread16(ioaddr + Wn7_MasterStatus))

& 0x8000)

;

To address this problem, major OS vendors have issued recommendations on how to

harden drivers to device failures [38, 99, 44]. These recommendations include validating

all inputs from a device, ensuring that all code waiting for a device will terminate, and

reporting all hardware failures. Despite these recommendations, we found that a large

number of Linux drivers do not properly tolerate hardware failures. I see two reasons for

this: (1) testing drivers against hardware failures is difficult, and (2) hardening drivers by

hand is challenging. Common testing procedures, such as stress testing, will not detect

failures related to hardware. Instead, fault-injection testing is required [4, 40, 119]. Unlike

other software testing, device drivers require that an instance of the device be present,

which limits the number of machines that can run tests.
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Previous work on driver fault tolerance has concentrated on two major approaches:

static bug finding [7, 8, 31, 79] and run-time fault tolerance [112, 105, 42, 118, 103]. Static

approaches check for bugs in the interface between the driver and the kernel to ensure that

the driver does not violate kernel-programming rules, such as by failing to release a lock.

But, these tools do not verify that the driver validates inputs received from the device.

Systems that tolerate faults at run time, such as SafeDrive [118] and Nooks [103], ei-

ther instrument driver code or execute it in an isolated environment. These systems detect

faults, including hardware-induced faults, dynamically and trigger a recovery mechanism.

However, these systems have had limited deployment, perhaps due to the heavyweight

nature of the solution.

This chapter presents Carburizer,1 a code-manipulation tool and associated runtime

that automatically hardens drivers. A hardened driver is one that can survive the failure of

its device and if possible, return the device to its full function. Carburizer implements three

major hardening recommendations: (1) validate inputs from the device, (2) verify device

responsiveness, and (3) report hardware failures so that an administrator can proactively

manage the failing hardware [4, 38, 44, 99].

Carburizer analyzes driver code to find where it accepts input from the device. If the

driver uses device data without checking its correctness, Carburizer modifies the driver to

insert validation code. If the driver checks device data for correctness, Carburizer inserts

code to report a failure if the data is incorrect. Finally, the Carburizer runtime detects

stuck interrupts and non-responsive devices and causes the driver to poll the device. To

automatically repair bugs, Carburizer also invokes a generic recovery service that can reset

the device. I rely on shadow drivers [102] to provide this recovery service.

Despite the common application of static analysis tools to the Linux kernel [26], Car-

burizer uncovers a large number of problems. Carburizer identified 992 bugs in existing

Linux drivers where a hardware failure may cause the driver to crash or hang. With man-

ual inspection of a random subset, I determined that the false positive rate is 7.4%, for

1Carburizing is a process of hardening steel through heat treatment.
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approximately 919 true bugs found. Discounting for false positives, Carburizer repairs

approximately 845 real bugs by inserting code to detect hardware failures and recover at

runtime. When run with common I/O workloads, drivers modified by Carburizer per-

form similarly to native drivers.

In the remainder of this chapter, I first discuss hardware failures and OS vendor

guidelines for hardening drivers. I then present the three major functions of Carburizer

in Sections 2.2, 2.3 and 2.4. Section 2.5 presents the overhead of our code changes, and I

finish with a summary.

2.1 Device Hardware Failures

In this section, I describe the problem of hardware device failures and vendor recommen-

dations on how to tolerate and manage device failures.

2.1.1 Failures Types

Modern CMOS devices are prone to internal failures and without significant design changes,

this problem is expected to worsen as transistors shrink. Prior studies indicate that these

devices experience transient bit-flip faults, where a single bit changes value; permanent

stuck-at faults, when a bit assumes a fixed value for an extended period; and bridging faults

when an adjacent pair of bits are electrically mated, causing a logical-and or logical-or gate

between the bits [110, 55]. Environmental conditions such as electromagnetic interference

and radiation can cause transient faults. Wear-out and insufficient burn-in may result in

stuck-at and bridging faults in the devices.

In addition, when a device contains embedded firmware, or even an embedded op-

erating system [117], any software-related failure is possible, such as out-of-resource errors

from memory leaks or concurrency bugs.
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Failure manifestations Device drivers observe failures when they access data generated

by the device. For PCI drivers, which perform I/O through memory or I/O ports, the

driver reads incorrect values from the device. For USB drivers, which use a request/re-

sponse protocol, a device failure may cause a response packet to contain incorrect data [55].

Sources at Microsoft report that device hangs and interrupt storms are common manifes-

tations of faulty hardware [35].

Many hardware failures are likely to manifest as corrupt values in device registers.

A single bit-flip internal to a device controller may propagate to other internal registers

before the device driver reads a garbled value exposed through a device register. Similarly,

an internal stuck-at failure may result in a transient corruption in a device register, a stuck

value in a register, a stuck interrupt request line, or unpredictable DMA accesses. Bugs in

device firmware may manifest as incorrect output values or timing failures, when a device

does not respond within the specified time period.

2.1.2 Vendor Recommendations

Major OS vendors provide recommendations to driver writers on how to tolerate device

failures [4, 38, 44, 99]. Table 2.1 summarizes the recommendations of Microsoft, IBM, Intel,

and Sun on how to prevent faulty hardware from causing system failures. The advice can

be condensed to four major actions:

1. Validate. All input from a device should be treated as suspicious and validated to

make sure that values lie within range.

2. Timeout. All interaction with a device should be subject to timeouts to prevent wait-

ing forever when the device is not responsive.

3. Report. All suspect behavior should be reported to an OS service, allowing central-

ized detection and management of hardware failures.

4. Recover. The driver should recover from any device failure, if necessary by restart-

ing the device.
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Validation
Input validation. Check pointers, array indexes, packet lengths, and status data received from hard-
ware [99, 38, 44]. ⋆
Unrepeatable reads. Read data from hardware once. Do not reread as it may be corrupt later [99]
DMA protection. Ensure that the device only writes to valid DMA memory [99, 44]
Data corruption. Use CRCs to detect data corruption if higher layers will not also check [99, 44]

Timing
Infinite polling. Ensure that spinning while waiting on the hardware can time out, and bound all

loops [99, 44, 38]. ⋆
Stuck interrupts. Handle interrupts that cannot be dismissed [40, 99] ⋆
Lost request. Use a watchdog to verify hardware responsiveness [4, 38] ⋆
Excessive delay. Avoid delaying the OS, busy waiting, and holding locks for extended periods [4, 38]
Unexpected events. Handle out-of-sequence events [44, 38]

Reporting
Report hardware failures. Notify the operating system of errors, log all useful information [4, 38, 44,

99] ⋆
Recovery
Handle all failures. Handle error conditions, including generic and hardware-specific errors [4, 38,

99] ⋆
Cleanup properly. Ensure the driver cleans up resources after a fault [99, 44] ⋆
Conceal failure. Hide recoverable faults from applications [38] ⋆
Do not crash. Avoid halting the system [4, 38, 44, 91] ⋆
Test drivers. Test driver using fault injection [119, 40, 44]
Wrap I/O memory access. Use only wrapper functions to perform programmed/memory-mapped

I/O [99, 44, 91]

Table 2.1: Vendor recommendations for hardening drivers against hardware failures. Recommendations
addressed by Carburizer are marked with a ⋆.

The goal of my work is to automatically implement these recommendations. First, I

seek to make drivers tolerate and recover from device failures, so device failures do not

lead to system failures. For this aspect of my work, I focus on transient failures that do not

recur after the device is reset. Second, I seek to make drivers report device failures so that

administrators learn of transient failures and can proactively replace faulty devices.

Carburizer addresses all four aspects of vendor recommendations described above.

Section 2.2 addresses bugs that can be found through static analysis, including infinite

polling and input validation. Section 2.3 addresses reporting hardware failures to a cen-

tralized service. Section 2.4 addresses runtime support for tolerating device failures, in-

cluding recovery, stuck interrupts, and lost requests. The recommendations that Carbur-

izer can apply automatically are marked in Table 2.1. The remaining recommendations

can be addressed with other techniques, such as an IOMMU for DMA memory protection,
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Figure 2.1: The Carburizer architecture. Existing kernel drivers are converted to hardened drivers and execute
with runtime support for failure detection and recovery.

or cannot be applied without semantic information about the device.

2.2 Hardening Drivers

This section describes how Carburizer finds and fixes infinite polling and input validation

bugs from Table 2.1. These are hardware dependence bugs that arise because the software

depends on the hardware’s correctness for its own correctness. The goal of my work is to

(1) find places where driver code uses data originating from a device, (2) verify that the

driver checks the data for validity before performing actions that could lead to a crash or

hang, and if not, (3) automatically insert validity or timing checks into the code. These

checks invoke a generic recovery mechanism, which I describe in Section 2.4. When used

without a recovery service, Carburizer identifies bugs for a programmer to fix.

Figure 2.1 shows the overall architecture of our system. Carburizer takes unmodi-

fied drivers as input and with a set of static analyses produces (1) a list of possible bugs

and (2) a driver with these bugs repaired, i.e. drivers that validate all input coming from

hardware before using it in critical control or data flow paths. The Carburizer runtime de-

tects additional hardware failures at runtime and can restore functionality after a hardware

failure.
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I implement Carburizer with CIL [72]. CIL reads in pre-processed C code and pro-

duces an internal representation of the code suitable for static analysis. Tools built with

CIL can then modify the code and produce a new pre-processed source file as output.

I next describe the analyses for hardening drivers in Carburizer and our strategies

for automatically repairing these bugs. I experiment with device drivers from the Linux

2.6.18.8 kernel.

2.2.1 Finding Sensitive Code

Carburizer locates code that is dependent on inputs from the device. When a driver makes

a control decision, such as a branch or function call, based on data from the device, the

control code is sensitive because it is dependent on the correct functioning of the device. If

code uses a value originating from a device in an address calculation, for example as an

array index, use of the address is dependent on the device. Carburizer finds hardware-

dependent code that is incorrect for some device inputs.

Carburizer’s analyses are performed in two passes. The first pass is common to all

analyses and identifies variables that are tainted, or dependent on input from the device.

Carburizer consults a table of functions known to perform I/O, such as readl for memory-

mapped I/O or inb for port I/O. Initially, Carburizer marks all heap and stack variables

that receive results from these functions as tainted. Carburizer then propagates taint to

variables that are computed from or aliased to the tainted variables. Carburizer considers

the static visibility of variables but does not consider possible calling contexts. For com-

pound variables such as structures and arrays, the analysis is field insensitive and assumes

that the entire structure is tainted if any field contains a value read from the device. I find

that in practice this occurs rarely, and therefore yields a simpler analysis that is almost as

precise as being sensitive to fields.

The output of the first pass is a table containing all variables in all functions indicat-

ing if the variable is tainted. Carburizer also stores a list of tainted functions that return

values calculated from device inputs. The table from the first pass is used by second-pass
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1 static int amd8111e_read_phy(.......)
2 {
3 .
4 reg_val = readl(mmio + PHY_ACCESS);
5 while (reg_val & PHY_CMD_ACTIVE)
6 reg_val = readl( mmio + PHY_ACCESS );
7 .
8 }

Figure 2.2: The AMD 8111e network driver (amd8111e.c) can hang if the readl() call in line 6 always returns
the same value.

analyses described below.

Infinite Polling

Drivers often wait for a device to enter a given state by polling a device register. Com-

monly, the driver sits in a tight loop reading the device register until a bit is set to the

proper value, as shown in Figure 2.2. If the device never sets the proper value, this loop

will cause the system to hang. Driver developers are expected to ensure these loops will

timeout eventually. I find, though, that in many cases device drivers omit the timeout code

and loops terminate only if the device functions correctly.

To identify these unbounded loops, I implement an analysis to detect control paths

that wait forever for a particular input from the device. Carburizer locates all loops where

the terminating conditions are tainted (i.e., dependent on the device). For each loop, Car-

burizer computes the set of conditions that cause the loop to terminate through while

clauses as well as conditional break, return and goto statements. If all the terminating

conditions for a loop are hardware dependent, the loop may iterate infinitely when the

device misbehaves. Figure 2.2 shows a bug detected by our analysis. The code in lines 5-6

can loop infinitely if readl, a function to read a device register, never returns the correct

value. While this is a simple example, our analysis can detect complex cases, such as loops

that contain case statements or that call functions performing I/O.
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1 static void __init attach_pas_card(...) {
2 .
3 if ((pas_model = pas_read(0xFF88)))
4 {
5 char temp[100];
6
7 sprintf(temp,
8 ”%s rev %d”,
9 pas_model_names[(int) pas_model],

10 pas_read(0x2789));
11 .
12 }

Figure 2.3: The Pro Audio Sound driver (pas2_card.c) uses the pas_model variable as an array index in line
9 without any checks.

Checking Array Accesses

Many drivers use inputs from a device to index into an array. When the range of the

variable (e.g., 65536 for a 16-bit short) is larger than the array, an incorrect index can lead

to reading an unmapped address (for large indices) or corrupting adjacent data structures.

Figure 2.3 shows a loop in the Pro Audio sound driver (pas2_card.c) that does not check for

bounds while accessing an array. While many drivers always check array bounds, some

drivers are not as conscientious. Furthermore, a single driver may be inconsistent in its

checks.

I implement an analysis in Carburizer to determine whether tainted variables are

used as array indices in static arrays. If the array is accessed using a tainted variable, Car-

burizer flags the access as a potential hardware dependence bug. The analysis can detect

when values returned by one function are used as array indices in another. In addition,

when an array index is computed from multiple variables, Carburizer checks whether all

the input variables are untainted.

Carburizer also detects dynamic (variable-sized) array dereferencing with tainted

variables. CIL converts all dynamic array accesses into pointer arithmetic and memory

dereferencing, so it requires a separate analysis from static arrays (those declared as ar-

rays with a fixed size). In the second analysis pass, Carburizer detects whether a tainted
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1 static void orc_interrupt(...) {
2 .
3 bScbIdx = ORC_RD(hcsp->HCS_Base,
4 ORC_RQUEUE);
5
6 pScb = (ORC_SCB *) ((ULONG)
7 hcsp->HCS_virScbArray
8 + (ULONG)
9 (sizeof(ORC_SCB) * bScbIdx));

10
11 pScb->SCB_Status = 0x0;
12
13 inia100SCBPost((BYTE *)
14 hcsp, (BYTE *) pScb);
15 .
16 }

Figure 2.4: The pScbIdx variable is used in pointer arithmetic in line 11 without any check in the a100 SCSI
driver (a100u2w.c).

1 void hptiop_iop_request_callback( ... ) {
2 .
3 p = (struct hpt_iop_cmd __iomem *)req;
4 arg = (struct hi_k *)
5 (readl(&req->context) |
6 ((u64) readl(&req->context_hi32)<<32));
7
8 if (readl(&req->result) == IOP_SUCCESS) {
9 arg->result = HPT_IOCTL_OK;

10 }
11 .
12 }

Figure 2.5: The HighPoint RR3xxx SCSI driver (hptiop.c) reads arg from the controller in line 5 and deref-
erences it as a pointer in line 9.

variable is used for pointer arithmetic or as the address of a memory dereference. In both

cases, Carburizer detects a potentially unsafe memory reference. I report a bug where the

pointer arithmetic is performed rather than where a dereference occurs; this is the loca-

tion where a bounds check is required, as the offset may not be available when memory is

actually dereferenced. If the pointer is never used, this may result in a false positive.

Figure 2.4 shows driver code where unsafe data from device is used for pointer

arithmetic. At line 3, bScbIdx is assigned value from the ORC_RD macro, which reads a 32-bit

value from the device. At line 9, this value is used as an offset for pointer pScb. If a single

bit of the incoming data is flipped, the pointer dereference in line 11 could cause memory

corruption or, if the address is unmapped, a system crash.

While rare, drivers may also read a pointer directly from a device. Figure 2.5 shows



22

an example from a SCSI driver where the driver reads a 64-bit pointer in lines 5 and 6 and

dereferences it in line 9. Carburizer also flags this use of pointers as a bug.

Removing False Positives

False positives may arise when the driver has a timeout in a loop or validates input that

our analysis does not detect. From the suspect loops, Carburizer determines whether the

programmer has already implemented a timeout mechanism by looking for the use of a

timeout counter. A timeout counter is a variable that is (1) either incremented or decre-

mented in the loop, (2) not used as an array index or in pointer arithmetic, and (3) used

in a terminating condition for the loop, such as a while clause or in an if before a break,

goto, or return statement. If a loop contains a counter, Carburizer determines that it will

not loop infinitely. I also detect the use of the kernel jiffies clock as a counter.

False positives for unsafe pointer dereferencing and array indexing may occur if

the driver already validates the pointer or index with a comparison to NULL or a shift/-

mask operation on the incoming pointer data from the device. Carburizer does not flag a

bug when these operations occur between the I/O operation and the pointer arithmetic or

pointer dereference.

Carburizer removes false positives that occur when a tainted variable is used multi-

ple times without an intervening I/O operation and when a tainted variable is re-assigned

with an untainted value. I keep track of where in the code a variable becomes tainted, and

only detect a bug if the pointer dereference or array index occurs after the taint.

I find that the false positive techniques have been helpful. Identifying validity checks

and repeated use of a variable reduced the number of detected dynamic-array access bugs

from 650 to 150, and the other techniques further reduced it by almost half. For infinite

polling, these techniques identified half the results as false positives where the driver cor-

rectly broke out of the loop.
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1 static int amd8111e_read_phy(.......)
2 {
3 .

4 unsigned long long delta = (cpu/khz/HZ)*2;
5 unsigned long long _start = 0;
6 unsigned long long _cur = 0;
7 timeout = rdtscll(start) + delta ;

8 reg_val = readl(mmio + PHY_ACCESS);
9 while (reg_val & PHY_CMD_ACTIVE) {

10 reg_val = readl( mmio + PHY_ACCESS );
11

12 if (_cur < timeout) {
13 rdtscll(_cur);
14 } else {
15 __shadow_recover();
16 }

17 .
18 }

Figure 2.6: The code from Figure 2.2 fixed by Carburizer with a timeout counter.

2.2.2 Repairing Sensitive Code

Finding driver bugs alone is valuable, but reliability does not improve until the bug is

fixed. After finding a bug, Carburizer in many cases can generate a fix. Repairing sensitive

code consists of inserting a test to detect whether a failure occurred and code to handle

the failure. To recover, Carburizer inserts code that invokes a generic recovery function

capable of resetting the hardware. While repeating a device read operation may fix the bug,

this is not safe in general because device-register reads can have side effects. As recovery

affects performance, I ensure it will not be invoked unless an unhandled failure occurs and

the driver could otherwise crash or hang.

Carburizer relies on a generic recovery function common to all drivers. However,

some drivers already implement recovery functionality. For example, the E1000 gigabit

Ethernet driver provides a function to shutdown and resume the driver when it detects an

error. For such drivers, it may be helpful to modify Carburizer to generate code invoking

a driver-specific function instead.

Fixing infinite polling When Carburizer identifies a loop where a driver may wait in-

finitely, it generates code to break out of the loop after a fixed delay. I selected maximum
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1 static void __init attach_pas_card(...)
2 {
3 .
4 if ((pas_model = pas_read(0xFF88)))
5 {
6 char temp[100];
7
8 if ((int )pas_model < 0 ||
9 (int )pas_model >= 5) {

10 __shadow_recover();
11 }

12 sprintf(temp,
13 ”%s rev %d”,
14 pas_model_names[(int) pas_model],
15 pas_read(0x2789));
16 .
17 }

Figure 2.7: The code from Figure 2.3 fixed by Carburizer with a bounds check.

delays based on the delays used in other drivers. For loops that do not sleep, I found that

most drivers wait for two timer ticks before timing out; I chose five ticks, a slightly longer

delay, to avoid incorrectly breaking out of loops. For loops that invoke a sleep function

such as msleep, I insert code that breaks out of loops after five seconds, because the delay

does not impact the rest of the system. This is far longer than most devices require and

ensures that if my analysis does raise false positives, the repair will not break the driver.

As shown in Figure 2.6, for tight loops Carburizer generates code to read the processor

timestamp counter before the loop and breaks out of the loop after the specified time de-

lay. When the loop times out, the driver invokes a generic recovery function. This repair

will only be invoked after a previously infinite loop times out, ensuring that there will not

be any falsely detected failures.

Fixing invalid array indices When array bounds are known, Carburizer can insert code

to detect invalid array indices with a simple bounds check before the array is accessed.

Carburizer computes the size of static arrays and inserts bounds checks on array indices

when the index comes from the device. When an array index is used repeatedly, Carburizer

only inserts a bounds check before the first use of the tainted array indice.

For dynamically sized arrays, the bound is not available. Carburizer reports the

bug but does not generate a repair. With programmer annotations indicating where ar-
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1 void hptiop_iop_request_callback( ... ) {
2 .
3 p = (struct hpt_iop_cmd __iomem *)req;
4 arg = (struct hi_k *)
5 (readl(&req->context) |
6 ((u64) readl(&req->context_hi32)<<32));
7
8 if (readl(&req->result) == IOP_SUCCESS) {

9 if (arg == NULL)
10 __shadow_recover();

11 arg->result = HPT_IOCTL_OK;
12 }
13 .
14 }

Figure 2.8: The code from Figure 2.5 after repair. Carburizer inserts a null-pointer check in line 9.

ray bounds are stored [37, 118], Carburizer could also generate code for dynamic bounds

checking.

Figure 2.7 shows the code from Figure 2.3 after repair. In this code, the array size

is declared statically and Carburizer automatically generates the appropriate range check.

This check will only trigger a recovery if the index is outside the array bounds, so it never

falsely detects a failure.

When repairing code that reads a pointer directly from a device, Carburizer does not

know legal values for the pointer. As result, it only ensures that the pointer is non-NULL.

Unlike other fixes, this only prevents a subset of crashes, because legal values of the pointer

are not known. Figure 2.8 shows repaired code where data from device is dereferenced.

Fixing driver panics Carburizer can also fix driver code that intentionally crashes the

system when hardware fails. Many drivers invoke panic when they encounter abnormal

hardware situations. While OS vendors discourage this practice, it is used when driver

developers do not know how to recover and ensures that errors do not propagate and cor-

rupt the system. If a recovery facility is available then crashing the system is not necessary.

Carburizer incorporates a simple analysis to identify calls to panic, BUG, ASSERT and other

system halting functions and replace them with calls to the recovery function.
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2.2.3 Summary

The static analysis performed by Carburizer finds many bugs but is neither sound nor

complete: it may produce false positives, and identify code as needing a fix when it is in

fact correct, and false negatives by missing some bugs. Nonetheless, I find that it identifies

many true bugs.

False positives may occur when the driver already contains a validity check that

Carburizer does not recognize. For example, if the timeout mechanism for a loop is imple-

mented in a separate function, Carburizer will not find it and will falsely mark the loop

as a bug. Carburizer only detects counters implemented as standard integer types. When

drivers use custom data-types, Carburizer does not detect the counter and again falsely

marks the loop as an error. For array indexing, Carburizer does not consider shift oper-

ations as a validity check because, if the array is not a power of two in size, some index

values will cause accesses past the end of the array.

False negatives can occur because our interprocedural analysis only passes taint

through return values. When a tainted variable is passed as an argument, Carburizer does

not detect its use as sensitive code. Carburizer also cannot detect silent failures that occur

when the hardware produces a legal but wrong value, such as in incorrect index that lies

within the bounds of the array.

2.2.4 Analysis Results

I ran our code across all drivers in the Linux 2.6.18.8 kernel distribution. In total, I analyzed

6359 source files across the drivers and sound directories. For major driver classes, Table 2.2

shows the number of bugs found of each type. Despite analyzing over 2.8 million lines of

code, on a 2.4 GHz Core 2 processor the analysis only takes thirty seven minutes to run,

output repaired source files and compile the driver files.

The results show that hardware dependence bugs are widespread, with 992 bugs

found across various driver classes. Of these, Carburizer can automatically repair the 903
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Driver Infinite Polling Static Array Dynamic Array Panic
Class Found Found Found Fixed
net 117 2 21 2
scsi 298 31 22 121
sound 64 1 0 2
video 174 0 22 22
other 381 9 57 32
Total 860 43 89 179

Table 2.2: Instances of hardware dependencies by modern Linux device drivers.(2.6.18.8 kernel)

infinite loop and static array index bugs. Only the 89 dynamic-array dereferences require

programmer involvement.

I estimate the false positive rate by randomly sampling bugs and inspecting the

code. With weighted sampling across all classes of bugs, I compute that Carburizer is able

to detect bugs at a false positive rate of 7.4% ± 4.3% with 95% confidence.For the infinite

loop bugs, I inspected 140 cases and found only 5 false positives. In these cases, the timeout

mechanism was implemented in a function separate from the loop, which Carburizer does

not detect. However, Carburizer’s timeout was more relaxed than the driver’s, and as a result

did not harm the driver. This low false positive rate demonstrates that a fairly simple and

fast analysis can detect infinite loops with high accuracy.

For static arrays, I randomly sampled 15 identified bugs and found 6 true bugs that

could cause a system crash if the hardware experienced a transient failure, such as a single

bit flip in a device register. Most of the remaining false positives occurred because the

array was exactly the size of the index’s range, for example 256 entries for an unsigned

byte index. However, even in the case of false positives, the code added by Carburizer

correctly checked array bounds and does not falsely detect a failure. The only harm done

to the driver is the overhead of an unnecessary bounds check. More advanced analysis

could remove these false positives.

For dynamic arrays and memory dereferencing, I sampled 35 bugs and found 25 real

bugs for a programmer to fix. Most false positives manifested in drivers that use mech-

anisms other than a mask or comparison for verifying an index. For example, the Intel

i810_audio driver uses the modulo operation on a dynamic array offset. The SIS graphic
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driver calls a function to validate all inputs, and Carburizer’s analysis cannot detect val-

idation done in a separate function. Better interprocedural analysis is needed to prevent

these false positives.

Overall, I found that 498 driver modules out of the 1950 analyzed contained bugs.

The bugs followed two distributions. Many drivers had only one or two hardware de-

pendence bugs. The developers of these drivers were typically vigilant about validating

device input but forgot in a few places. A small number of drivers performed very little

validation and had a large number of bugs. For example, Carburizer detected 24 infinite

loops in the telespci ISDN driver and 80 in the ATP 870 SCSI driver.

These bugs demonstrate that language or library constructs can improve the quality

of driver code. For example, constructs to wait for a device condition safely, with internally

implemented timeouts, reduce the problem of hung systems due to devices. Past work on

language support for concurrency in drivers has investigated providing similar language

features to avoid correctness violations [17] . Furthermore, when re-running Carburizer

on a newer kernel (2.6.37.6), we found found 1064 polling, 200 array dereference and 200

panic calls. This indicates that this problems continue to increase unabated. In Chapter

6, I describe my efforts towards getting the attention of Linux kernel community towards

this problem.

2.2.5 Experimental Results

I verify that the Carburizer’s repair transformation works by testing it on three Ethernet

drivers. Testing every driver repair is not practical because it would require obtaining

hundreds of devices. We focus on network drivers because I have only implemented the

recovery mechanism for this driver class. I test whether carburized drivers, those modified

by Carburizer, can detect and recovery from hardware faults.

Of the devices at our disposal, through physical hardware or emulation in a virtual

machine, only two 100Mbps network interface cards use drivers that had bugs according

to our analysis: a DEC DC21x4x card using the de4x5 driver, and a 3Com 3C905 card using
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the 3c59x driver. I also tested the forcedeth driver for NVIDIA MCP55 Pro gigabit devices

because it places high performance demands on the system (see Section 2.5). In the case of

forcedeth, since there are no bugs in the driver, I emulate problematic code by manually

inserting bugs, running Carburizer on the driver, and testing the resulting code.

I inject hardware faults with a simple fault injection tool that modifies the return

values of the read(b,w,l) and in(b,w,l) I/O functions. I modified the forcedeth driver by

inserting code that returns incorrect output for a specific device read operation on a device

register. I then simulated a series of transient faults in the register of interest. I injected

hardware read faults at three locations in the de4x5 driver to induce an infinite-loop in

interrupt context. The loop continued even if the hardware returned 0xffffffff, a code used

to indicate that the hardware is no longer present in the system. I injected a similar set of

faults into the 3c59x driver to create an infinite loop in the interrupt handler and trigger

recovery. I did not test all the bugs in each driver, because a single driver may support

many devices, and some bugs only occur for a specific device. As a result, I could not

force the driver through all buggy code paths with a single device.

In each test, I found that the driver quickly detected the failure with the generated

code and triggered the recovery mechanism. After a short delay while the driver recov-

ered, it returned to normal function without interfering with applications. I stopped in-

jecting faults in the de4x5 and 3c59x drivers after they each recovered four times. The

forcedeth driver successfully recovered from more than ten of these transient faults. These

tests demonstrate that automatic recovery can restart drivers after hardware failures.

2.3 Reporting Hardware Failures

A transient hardware failure, even while recoverable, reduces performance and may por-

tend future failures [77]. As a result, OS and hardware vendors recommend monitoring

hardware failures to allow proactive device repair or replacement. For example, the So-

laris Fault Management Architecture [98] feeds errors reported by device drivers and other

system components into a diagnosis engine. The engine correlates failures from different
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1 static int phy_reset(...) {
2 .
3 while (miicontrol & BMCR_RESET) {
4 msleep(10);
5 miicontrol = mii_rw(...);
6 if (tries++ > 100)
7 return -1;
8 }
9 .

10 }

Figure 2.9: The forcedeth network driver polls the BMCR_RESET device register until it changes state or
until a timeout occurs. The driver reports only a generic error message at a higher level and not the specific
failure where it occurred.

components and can recommend a high-level action, such as disabling or replacing a de-

vice. In reading driver code, I found Linux drivers only report a subset of errors and often

omit the failure details.

When Carburizer repairs a hardware dependence bug, it also inserts error-reporting

code. Thus, a centralized fault management system can track hardware errors and corre-

late hardware failures to other system reliability or performance problems. Currently, I

use printk to write to the system log, as Linux does not have a failure monitoring service.

To support administrative management of hardware failures, Carburizer will also

insert monitoring code into existing drivers where the driver itself detects a failure. Car-

burizer in this case relies on the driver to detect hardware failures, through the timeouts

and sanity checks. Figure 2.9 shows code where the driver detects a failure with a timeout

and returns an error, but does not report any failure. In this case, Carburizer will insert log-

ging code where the error is returned and include standard information, such as the driver

name, location in the code, and error type (timeout or corruption). If the driver already

reports an error, then I assume its report is sufficient and Carburizer does not introduce

additional reporting.

I implement analyses in Carburizer to detect when the driver either detects a failure

of the hardware or returns an error specifically because of a value read from the hardware.

These analyses depend on the bug-finding capabilities from the preceding section to find

sensitive code. In this case, the infinite polling loops that would have been false positives,

because the failure is handled by the driver, becomes the condition to search.
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1 static int phy_reset(...) {
2 .
3 while (miicontrol & BMCR_RESET) {
4 msleep(10);
5 miicontrol = mii_rw(...);
6 if (tries++ > 100) {

7 printk(”...”);

8 return -1;
9 }

10 }
11 .
12 }

Figure 2.10: Carburizer inserts a reporting statement automatically in the case of a timeout, which indicates
the device is not operating according to specification.

2.3.1 Reporting Device Timeouts

Carburizer detects locations where a driver correctly times out of a polling loop. This code

indicates that a device failure has occurred because the device did not output the correct

value within the specified time. This analysis is the same as the false-positive analysis

used for pruning results for infinite loops, except that the false positives are now the code

I seek. Figure 2.9 shows an example of code that loops until either a timeout is reached or

the device produces the necessary value. Carburizer detects whether a logging statement,

which we consider a function taking a string as a parameter, occurs either before breaking

out of the loop or just after breaking out. If so, Carburizer determines that the driver

already reports the failure.

Once loops that timeout are detected, Carburizer identifies the predicate that holds

when the loop breaks due of a timeout. Carburizer identifies any return statements based

on such predicates and places a reporting statement just before the return. The resulting

code is shown in Figure 2.10. If the test is incorporated into while or for loop predicate

then Carburizer inserts code into the loop to report a failure if the expression holds. CIL

converts for loops into while(1) loops with break statements so that code can be inserted

between the variable update and the condition evaluation. Thus, the driver will test the

expression, report a failure, test the expression again, and break out of the loop.
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Driver Device Timeout Incorrect Output
Class found/fixed found/fixed
net 483/321 249/97
scsi 302/249 137/110
sound 359/297 81/53
other 411/268 361/207
Total 1555/1135 828/467

Table 2.3: Instances of device-reporting code inserted by Carburizer. Each entry shows the number of device
failures detected by the driver, followed by the number where the driver did not report failures and Carburizer
inserted reporting code.

2.3.2 Reporting Incorrect Device Outputs

Carburizer analyzes driver code to find driver functions that return errors due to hardware

failures. This covers range tests on array indices and explicit comparisons of status or state

values. Carburizer identifies that a hardware failure has occurred when the driver returns

an error as a result of reading data from a device. Specifically, it identifies code where

three conditions hold: (a) a driver function returns a negative integer constant; (b) the error

return value is only returned based on the evaluation of a conditional expression, and (c),

the expression references variables that were read from the device. I further expand the

analysis to detect sites where an error variable is set, such as when the driver sets the return

value and jumps to common cleanup code. If these conditions hold, Carburizer inserts a

call to the reporting function just before the return statement to signify a hardware failure.

2.3.3 Results

Table 2.3 shows the result of our analysis. In total, Carburizer identified 1555 locations

where drivers detect a timeout. Of these, drivers reported errors only 420 times, and Car-

burizer inserted error-reporting code 1135 times. Carburizer detected 828 locations where

the driver detected a failure with comparisons or range tests. Of these, the driver reported

a failure 361 times and Carburizer inserted an error report 467 times.

I evaluate the effectiveness of Carburizer at introducing error-reporting code by per-

forming the same analysis by hand to see whether it finds all the locations where drivers

detect a hardware failure. For the drivers listed in Table 2.4, I identified every location
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Driver Class Actual errors Reported Errors
bnx2 net 24 17
mptbase scsi 28 17
ens1371 sound 10 9

Table 2.4: Instances of fault-reporting code inserted by Carburizer compared against all errors detected in the
driver. Each entry shows the actual number of errors detected in the driver followed by the number of errors
reported using Carburizer.

where the original driver detects a failure and whether it reports the failure through log-

ging.

I manually examined the three drivers, one from each major class, and counted as an

error any code that clearly indicated the hardware was operating outside of specification.

This code performs any of the following actions on the basis of a value read from the device:

(1) returning a negative value, (2) printing an error message indicating a hardware failure,

or (3) detecting a failed self-test. I did not count errors found in any code removed during

preprocessing, such as ASSERT statements.

Table 2.4 shows the number of failures the driver detects (according to our manual

analysis), whether reported or not, compared with the number of errors reported by Car-

burizer. In these three drivers, Carburizer did not produce any false positives: all of the

errors reported did indicate a device malfunction. However, Carburizer missed several

places where the driver detected a failure. Out of 62 locations where the driver detected a

failure, Carburizer identified 43.

I found three reasons for these false negatives. First, some drivers, such as the bnx2

network driver, wrap several low-level read operations in a single function, and return

the tainted data via an out parameter. Carburizer does not propagate taint through out

parameters. Second, Carburizer’s analysis is not sophisticated enough to track tainted

structure members across procedure boundaries. The mptbase SCSI driver reads data into

a member variable in one procedure and returns an error based on its value in another, and

I do not detect the member as tainted where the failure is returned. Finally, some drivers

detect a hardware failure and print a message but do not subsequently return an error.

Thus, Carburizer does not identify that a hardware failure was detected.



34

To verify the operation of the reporting statements, I injected targeted faults de-

signed to cause the carburized driver to report a failure. I tested four drivers with fault

injection to ensure they reported failures. I injected synthetic faults into the ens1371 sound

driver and the de4x5, 8139cp, and 8139too network drivers using the tool from Section 2.2.

I verified that targeted fault injection triggered every reporting statement that applies to

these hardware devices.

The only false positive I found occurred in the 8139too network driver during during

device initialization. This driver executes a loop that is expected to time out, and Carbur-

izer falsely considers this a hardware fault. The other carburized drivers do not report any

false positives. I injected faults with a fixed probability every time the driver invoked a

port or I/O memory read operation, both during driver initialization and while running

a workload. The drivers did not report any additional errors compared to unmodified

drivers under these conditions, largely because none of the injected faults would lead to a

system crash.

Overall, I found that Carburizer was effective at introducing additional error log-

ging to drivers where logging did not previously exist. While it does not detect every

hardware failure, Carburizer increases the number of failures logged and can therefore im-

prove an administrator’s ability to detect when hardware is failing, as compared to driver

failures caused by software.

2.4 Runtime Fault Tolerance

The Carburizer runtime provides two key services. First, it provides an automatic recovery

service to restore drivers and devices to a functioning state when a failure occurs. Second,

it detects classes of failures that cannot be addressed by static analysis and modification of

driver code, such as tolerating stuck interrupts.
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2.4.1 Automatic Recovery

Static analysis tools have proved useful as bug finding tools. But, programmers must still

write code to repair the bugs that are found. Carburizer circumvents this limitation by

relying on automatic recovery to restore drivers and devices to a functioning state when a

failure is detected. The driver may invoke a recovery function at any time, which will reset

the driver to a known-good state. For stuck-at hardware failures, resetting the device can

often correct the problem. I rely on the same mechanism to recover from transient failures,

although a full reset may not be required in every case.

I leverage shadow drivers [102] to provide automatic recovery because they conceal

failures from applications and the OS. A shadow driver is a kernel agent that monitors and

stores the state of a driver by intercepting function calls between the driver and the kernel.

During normal operation, the shadow driver taps all function calls between the driver and

the kernel. In this passive mode, the shadow driver records operations that change the state

of the driver, such as configuration operations and requests currently being processed by

the driver.

Shadow drivers are class drivers, in that they are customized to the driver interface

but not to its implementation. Thus, a separate shadow driver is needed to recover from

failures in each unique class, such as network, sound, or SCSI. I have only implemented

recovery for network drivers so far, although other work shows that they work effectively

for sound, storage [102] and video drivers [51] .

When the driver invokes the recovery function, the shadow driver transitions into

active mode, where it performs two functions. First, it proxies for the device driver, fielding

requests from the kernel until the driver recovers. This process ensures that the kernel and

application software is unaware that the device failed. Second, shadow drivers unload

and release the state of the driver and then restart the driver, causing it to reinitialize the

device. When starting this driver, the shadow driver uses its log to configure the driver to

its state prior to recovery, including resubmitting pending requests. Once this is complete,

the shadow driver transitions back to passive mode, and the driver is available for use.
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The shadow driver recovery model works when resetting the device clears a device

failure. For devices that fail permanently or require a full power cycle to recover, shadow

drivers will detect that the failure is not transient when recovery fails and can notify a

management agent.

I obtained the shadow driver implementation used for virtual machine migration [48]

and ported the recovery functions for network device drivers to the 2.6.18.8 kernel. How-

ever, I did not port the entire Nooks driver isolation subsystem [103]. Nooks prevents

memory corruption and detects failures through hardware traps, which are unnecessary

for tolerating hardware failures. Nooks’ isolation also causes a performance drop from

switching protection domains, which Carburizer avoids. The remaining code consists of

wrappers around the kernel/driver interface, code to log driver requests, and code to

restart and restore driver state after a failure. In addition, I export the __shadow_recover

function from the kernel, which a driver may call to initiate recovery after a hardware

failure.

2.4.2 Tolerating Missing Interrupts

In addition to providing a recovery service, the Carburizer runtime also detects failures

that cannot be detected through static modifications of driver code. Devices may fail by

generating too many interrupts or by not generating any. The first case causes a system

hang, because no useful work can occur while the interrupt handler is running, while the

second case can result in an inoperable device.

To address the scenario in which the device stops generating interrupts, Carburizer

monitors the driver and invokes the interrupt handler automatically if necessary. With

monitoring, an otherwise operative device need not generate interrupts to provide service.

Unlike other hardware errors, Carburizer does not force the driver to recover in this case

because I cannot detect precisely whether an interrupt is missing. Instead, the Carburizer

runtime pro-actively calls the driver’s interrupt handler to process any pending requests

The Carburizer runtime increments a counter each time a driver’s interrupt handler
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is called. Periodically, a low priority kernel thread checks this counter. If the counter value

has changed, Carburizer does nothing since the device appears to be working normally.

If, however, the interrupt handler has not been executed, the device may not be delivering

interrupts.

The Carburizer runtime detects whether there has been recent driver activity that

should have caused an interrupt by testing whether driver code has been executed. Rather

than recording every driver invocation, Carburizer polls the reference bits on the driver’s

code pages. If any of the code pages have been referenced, Carburizer assumes that a

request may have been made and that the interrupt handler should be called soon.

Because every driver is different, Carburizer implements a dynamic approach to

increase or decrease the polling interval exponentially, depending on whether previous

calls were productive or not. By default, Carburizer checks the referenced bits every 16ms.

I chose this value because it provides a relatively good response time in the event of a single

missing interrupt. If Carburizer’s call to the interrupt handler returns IRQ_NONE, indicating

the interrupt was spurious, then Carburizer doubles the polling interval, up to a maximum

of one second. Conversely, if the interrupt handler returns IRQ_HANDLED, indicating that

there was work for the driver, then Carburizer decreases the polling interval to a minimum

of 4ms. Thus, Carburizer calls the interrupt handler repeatedly only if it detects that the

driver is doing useful work during the handler.

Relying on the handler return value to detect whether the handler was productive

works for devices that support shared interrupts. Spurious interrupt handler invocations

can occur with shared interrupts because the kernel cannot detect which of the devices

sharing the interrupt line needs service. However, some drivers report IRQ_HANDLED even if

the device does not require service, leading Carburizer to falsely detect that it has missed

an interrupt.

Carburizer’s polling mechanism adds some overhead when the kernel invokes a

driver but does not cause the device to generate an interrupt. For network drivers, this

occurs when the kernel invokes an ethtool management function. The Carburizer runtime
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will call the interrupt handler even though it is not necessary for correct operation. The

driver treats this call to its interrupt handler as spurious. Because Carburizer decreases the

polling interval in these cases, there is little unnecessary polling even when many requests

are made of a driver that do not generate interrupts.

Some Linux network drivers, through the napi interface, already support polling. In

addition, many network drivers implement a watchdog function to detect when the device

stops working. For these drivers, it may be sufficient to direct the kernel to poll rather than

relying on a separate mechanism. However, this approach only works for network drivers,

while the Carburizer runtime approach works across all driver classes.

2.4.3 Tolerating Stuck Interrupts

The Carburizer runtime detects stuck interrupts and recovers by converting the device

from interrupts to polling by periodically calling the driver’s exported interrupt function.

A stuck interrupt occurs when the device does not lower the interrupt request line even

when directed to do so by the driver. The Carburizer runtime detects this failure when

a driver’s interrupt handler has been called many times without intervening progress of

other system functions, such as the regular timer interrupt. The Linux kernel can detect

unhandled interrupts [59], but it recovers by disabling the device rather than enabling it

to make progress.

Similar to missing interrupts, the Carburizer runtime does not trigger full recov-

ery here (although that is possible), but instead disables the interrupt request line with

disable_IRQ. It then relies on the polling mechanism previously described to periodically

call the driver’s interrupt handler.

2.4.4 Results

I experiment with stuck and missing interrupts using fault injection on the E1000 gigabit

Ethernet driver, the ens1371 sound driver, and a collection of interdependent storage driv-

ers: ide-core, ide-generic, and ide-disk. On all three devices, I simulate missing interrupts
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by disabling the device’s interrupt request line. I simulate stuck interrupts with the E1000

by inserting a command to generate an interrupt from inside the interrupt handler. For

E1000, I compare throughput and CPU utilization between an unmodified driver, a driver

undergoing monitoring for stuck/disabled interrupts, and a driver whose interrupt line

has been disabled.

In the case of E1000, I found that the Carburizer runtime was able to detect both fail-

ures promptly, and that the driver continued running in polling mode. Because interrupts

occur only once every 4ms in the steady state, receive throughput drops from 750 Mb/s to

130 Mb/s. With more frequent polling, the throughput would be higher. Similarly, Car-

burizer detected both failures for the IDE driver. The IDE disk operated correctly in polling

mode but throughput decreased by 50%. The ens1371 driver in polling mode played back

sound with a little distortion, but otherwise operated normally. These tests demonstrate

that Carburizer’s stuck and missing interrupt detection mechanism works and can keep

devices functioning in the presence of a failure.

2.5 Overhead Evaluation

The primary cost of using Carburizer is the time spent running the tool and fixing bugs

that cannot be automatically repaired. However, the code transformations introduced by

Carburizer, shadow driver recovery, and interrupt monitoring introduce a small runtime

cost. In this section I measure the overhead of running carburized drivers.

I measure the performance overhead on gigabit Ethernet drivers, as they are the

most performance-intensive of our devices: a driver may receive more than 75,000 packets

to deliver per second. Thus, any overhead of Carburizer’s mechanisms will show up more

clearly than on lower-bandwidth devices. Past work on Nooks and shadow storage drivers

showed a greater difference in performance than for the network, but the CPU utilization

differences were far greater for network drivers [102].

I measure performance with netperf [45] between two Sun Ultra 20 workstation with
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NVIDIA MCP55 Pro gigabit NIC (forcedeth)
System Throughput CPU Utilization

Linux 2.6.18.8 Kernel 940 Mb/s 31%
Carburizer Kernel 935 Mb/s 36%

(with shadow driver)
Intel Pro/1000 gigabit NIC (E1000)

System Throughput CPU Utilization
Native Kernel 721 Mb/s 16%

Carburizer Kernel 720 Mb/s 16%
(with shadow driver)

Table 2.5: TCP streaming send performance with netperf for regular and carburized drivers with automatic
recovery mechanism for the E1000 and forcedeth drivers.

Intel Pro/1000 gigabit NIC (E1000)
System Throughput CPU %

Native Kernel - TCP 750 Mb/s 19%
Carburizer Monitored - TCP 751 Mb/s 19%

Native Kernel - UDP-RR 7328 Tx/s 6%
Carburizer Monitored - UDP-RR 7310 Tx/s 6%

Table 2.6: TCP streaming and UDP request-response receive performance comparison of the E1000 between
the native Linux kernel and a kernel with the Carburizer runtime monitoring the driver’s interrupts.

2.2Ghz AMD Opteron processors and 1GB of RAM connected via a crossover cable. I

configure netperf to run enough experiments to report results accurate to 2.5% with 99%

confidence.

Table 4.3 shows the throughput and CPU utilization for sending TCP data with a

native Linux kernel and one with the Carburizer runtime with shadow driver recovery

enabled and a carburized network driver. The network throughput with Carburizer is

within one-half percent of native performance, and CPU utilization increases only five

percentage points for forcedeth and not at all for the E1000 driver. These results demon-

strate that supporting the generic recovery service, even for high-throughput devices, has

very little runtime cost.

Table 2.6 shows performance overhead of interrupt monitoring but with no shadow

driver recovery. The table shows the TCP receive throughput and CPU utilization for the

E1000 driver on the native Linux kernel, and on a kernel with Carburizer interrupt moni-

toring enabled. The TCP receive and transmit socket buffers were left at their default sizes

of 87,380 and 655,360 bytes, respectively. The table also shows UDP request-response per-

formance with 1-byte packets, a test designed to highlight driver latency. While these re-
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sults are for receiving packets, I also compared performance with TCP and UDP-RR trans-

mit benchmarks and found similar results: the performance of the native kernel and the

kernel with monitoring are identical.

These two sets of experiments demonstrate that the cost of tolerating hardware fail-

ures in software, either through explicit invocation of a generic recovery service or through

run-time interrupt monitoring, is low. Given this low overhead, Carburizer is a practical

approach to tolerate even infrequent hardware failures.

2.6 Summary

System reliability is limited by the reliability of devices. Evidence suggests that device fail-

ures cause a measurable fraction of system failures, and that most hardware failures are

transient and can be tolerated in software. Carburizer improves reliability by automatically

hardening drivers against device failures without new programming languages, program-

ming models, operating systems, or execution environments. Carburizer finds and repairs

hardware dependence bugs in drivers, where the driver will hang or crash if the hardware

fails. In addition, Carburizer inserts logging code so that system administrators can proac-

tively repair or replace hardware that fails.

In an analysis of the Linux kernel, Carburizer identified over 992 hardware depen-

dence bugs with fewer than 8% false postives. Discounting for false positives, Carburizer

could automatically repair approximately 845 real bugs by inserting code to detect when

a failure occurs and invoke a recovery service. When re-running these results on a newer

Linux kernel (2.6.37.6), we found about 1264 instances of hardware dependence bugs in-

dicating that this problem continues to persist. Repairs made to false positives have no

correctness impact. In performance tests, hardening drivers had almost no visible perfor-

mance overhead.

There are still more opportunities to improve device drivers. Carburizer assumes

that if a driver detects a hardware failure, it correctly responds to that failure. In practice,
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I find this is often not the case. In addition, Carburizer does not assist drivers in handling

unexpected events; I have seen code that crashes when the device returns a flag before the

driver is prepared. Thus, there are yet more opportunities to improve driver quality.



Chapter 3
Understanding Modern Device Drivers

Modern computer systems are communicating with an increasing number of devices, each

of which requires a driver. For example, a modern desktop PC may have tens of devices,

including keyboard, mouse, display, storage, and USB controllers. Device drivers consti-

tute 70% of the Linux code base [85], and likely are a greater fraction of the code written for

the Windows kernel, which supports many more devices. Several studies have shown that

drivers are the dominant cause of OS crashes in desktop PCs [34, 73]. As a result, there has

been a recent surge of interest in techniques to tolerate faults in drivers [32, 103, 102, 118],

to improve the quality of driver code [50]; and in creating new driver architectures that

improve reliability and security [13, 36, 53, 62, 63, 83, 112].

However, most research on device drivers focuses on a small subset of devices, typ-

ically a network card, sound card, and storage device, all using the PCI bus. These are but

a small subset of all drivers, and results from these devices may not generalize to the full

set of drivers. For example, many devices for consumer PCs are connected over USB. Sim-

ilarly, the devices studied are fairly mature and have standardized interfaces, but many

other devices may have significant functionality differences.

Thus, it is important to study all drivers to review how the driver research solutions
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being developed are applicable to all classes of drivers. In addition, a better understanding

of driver code can lead to new abstractions and interfaces that can reduce driver complexity

and improve reliability.

This chapter presents a comprehensive study of all the drivers in the Linux kernel

in order to broadly characterize their code. I focus on (i) what driver code does, including

where driver development work is concentrated, (ii) the interaction of driver code with de-

vices, buses, and the kernel, and (iii) new opportunities for abstracting driver functionality

into common libraries or subsystems. I use two static analysis tools to analyze driver code.

To understand properties of driver code, I developed DrMiner, which performs data-flow

analyses to detect properties of drivers at the granularity of functions. I also developed

the DrComp tool, which uses geometric shape analysis [10] to detect similar code across

drivers. DrComp maps code to points in coordinate space based on the structure of indi-

vidual driver functions, and similar functions are at nearby coordinates.

The contributions of this chapter are as follows:

• First, I analyze what driver code does in order to verify common assumptions about

driver code made by driver research. I show that while these assumptions hold for

most drivers, there are a significant number of drivers that violate these assump-

tions. I also find that several rapidly growing driver classes are not being addressed

by driver research.

• Second, I study driver interactions with the kernel and devices, to find how existing

driver architecture can adapt to a world of multicore processors, devices with high-

power processors and virtualized I/O. I find that drivers vary widely by class, and

that USB drivers are more efficient in supporting multiple chipsets than PCI drivers.

Furthermore, I find that XenBus drivers may provide a path to executing drivers

outside the kernel and potentially on the device itself.

• Third, I study driver code contents to find opportunities to reduce or simplify driver

code. I develop new analysis tools for detecting similar code structures and their

types that detect over 8% of Linux driver code is very similar to other driver code,

and offer insights on how this code can be reduced.
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In the remainder of this chapter, I first discuss device driver background and de-

velop a taxonomy of drivers. I then present the three broad classes of results on driver

behavior in Sections 3.2 and 3.3. In Section 3.4 I present results showing the extent of

repeated code in drivers. Section 3.5 discusses my findings.

3.1 Background

A device driver is a software component that provides an interface between the OS and

a hardware device. The driver configures and manages the device, and converts requests

from the kernel into requests to the hardware. Drivers rely on three interfaces: (i) the

interface between the driver and the kernel, for communicating requests and accessing OS

services; (ii) the interface between the driver and the device, for executing operations; and

(iii) the interface between the driver and the bus, for managing communication with the

device.

3.1.1 Driver/Device Taxonomy

The core operating system kernel interacts with device drivers through a set of interfaces

that abstract the fundamental nature of the device. In Linux, the three categories of drivers

are character drivers, which are byte-stream oriented; block drivers, which support random-

access to blocks; and network drivers, which support streams of packets. Below these top-

level interfaces, support libraries provide common interfaces for many other families of

devices, such as keyboards and mice within character drivers.

In order to understand the kinds of drivers Linux supports, I begin by taxonomizing

drivers according to their interfaces. I consider a single driver as a module of code that

can be compiled independently of other code. Hence, a single driver can span multiple

files. We consider all device drivers, bus drivers and virtual drivers that constitute the

driver directories (/sound and /drivers) in the Linux 2.6.37.6 kernel, dated April, 2011. I

perform our analyses on all drivers that compile on the x86 platform, using the kernel
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Figure 3.1: The Linux driver taxonomy in terms of basic driver classes. The size (in percentage of lines of
code) is mentioned for 5 biggest classes. Not all driver classes are mentioned.

build option to compile all drivers. Overall, I consider 3,217 distinct drivers. While there

are a significant number of Linux drivers that are distributed separately from the kernel, I

do not consider them for this work.

I detect the class of a driver not by the location of its code, but by the interfaces

it registers: e.g., register_netdev indicates a driver is a network device. I further classify

the classes into sub-categories to understand the range of actual device types supported

by them through manual classification, using the device operations they register, the de-

vice behavior and their location. While Linux organizes related drivers in directories, this

taxonomy is not the same as the Linux directory organization: network drivers are split
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Improvement type System Driver classes tested Drivers
tested

New func-
tionality

Shadow driver  migra-
tion [48]

net 1

RevNIC [18] net 4
Reliability (H/W

Protection)
CuriOS [28] serial port, NOR flash 2
Nooks [?] net, sound 6
Palladium [19] custom packet filter 1
Xen [32] net, sound 2

Reliability (Isolation)

BGI [16] net, sound, serial, ramdisk, libs 16
Shadow Drivers [?] net, sound, IDE 13
XFI [105] ram disk, dummy 2

Specification

Devil [64] scsi, video 2
Dingo [85] net 2
Laddie [114] net, UART, rtc 3
Nexus [112] net, sound, USB-mouse, USB-storage 4
Termite [86] net, mmc 2

Static analysis tools

Carburizer [47] All/net All/3
Cocinelle [74] Various All
SDV [7] basic  ports, storage, USB,  1394-

interface,
126

mouse, keyboard, PCI battery

Type safety
Decaf Drivers [83] net, sound, USB controller, mouse 5
Safedrive [118] net, USB, sound, video 6
Singularity [95] Disk 1

User-level device
drivers

Microdrivers [36] net, sound, USB controller 4
SUD [13] net, wireless, sound, USB controllers,

USB
6/1

User-level drivers [53] net, disk (ata) 2

Table 3.1: Research projects on drivers, the improvement type, and the number and class of drivers used
to support the claim end to end. Few projects test all driver interfaces thoroughly. Static analysis tools
that do not require driver modifications are available to check many more drivers. Also, some solutions, like
Carburizer [47], and SUD [13] support the performance claims on fewer drivers.

under drivers/net, drivers/atm and other directories. However, block drivers are split by

their interfaces under drivers/scsi, drivers/ide and other directories

Figure 3.1 shows the hierarchy of drivers in Linux according to their interfaces, start-

ing from basic driver types i.e. char, block and net. I identify 72 unique classes of drivers.

The majority (52%) of driver code is in character drivers, spread across 41 classes. Network

drivers account 25% of driver code, but have only 6 classes. In contrast to the rich diver-

sity of Figure 3.1, Table 3.1 lists the driver types used in research. Most driver research

(static-analysis tools excepted) neglects the heavy tail of character devices. For example,

video and GPU drivers contribute significantly towards driver code (almost 9%) due to

complex devices with instruction sets that change each generation, but these devices are
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Driver interactions
Class membership: Drivers belong to common set of classes, and the class completely determines their
behavior.
Procedure calls: Drivers always communicate with the kernel through procedure calls.
Driver state: The state of the device is completely captured by the driver.
Device state: Drivers may assume that devices are in the correct state.

Driver architecture
I/O: Driver code functionality is only dedicated to converting requests from the kernel to the device.
Chipsets: Drivers typically support one or a few device chipsets.
CPU Bound: Drivers do little processing and mostly act as a library for binding different interfaces

together.
Event-driven: Drivers execute only in response to kernel and device requests, and to not have their

own threads.

Table 3.2: Common assumptions made in device driver research.

largely ignored by driver research due to their complexity.

I also looked at low-level buses, which provide connectivity to devices and discover

the devices attached to a system. The majority of devices are either PCI (36% of all de-

vice identifiers) or USB (35%), while other buses support far fewer: I2C represents 4% of

devices, PCMCIA is 3% and HID is 2.5% (mostly USB devices). The remaining devices

were supported by less popular or legacy buses such as ISA or platform devices. I also

found that 8% of devices perform low-level I/O without using a bus, interconnect, or sup-

port virtual devices. Higher-level protocols such as SCSI (8.5%) and IDE (2%) use one of

these underlying low-level buses such as PCI and USB. While PCI drivers still constitute

the greatest fraction of drivers, the number of devices supported by USB is similar to PCI.

Hence, driver research should validate their performance and reliability claims on USB

devices as well.

3.1.2 Driver Research Assumptions

Most research makes some simplifying assumptions about the problem being solved, and

driver research is no different. For example, Shadow Drivers [102] assume that all drivers

are members of a class and there are no unique interfaces to a driver. Similarly, the Termite

driver-synthesis system assumes that drivers are state machines and perform no compu-

tations [86]. Table 3.2 lists the assumptions made by recent research into device drivers.
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I separate these assumptions into two categories: (i) interactions refers to assump-

tions about how drivers interact with the kernel, and (ii) architecture refers assumptions

about the role of the driver: is it a conduit for data, or does it provide more substan-

tial processing or services? Interaction assumptions relate to how the kernel and driver

interact. For example, systems that interpose on driver/device communication, such as

Nooks [103], typically assume that communication occurs over procedure calls and not

shared memory. Nooks’ isolation mechanism will not work otherwise. Similarly, Shadow

Drivers assume that the complete state of the device is available in the driver by capturing

kernel/driver interactions [102]. However, network cards that do TCP-offload may have

significant protocol state that is only available in the device, and cannot be captured by

monitoring the kernel/driver interface.

Several recent projects assume that drivers support a single chipset, such as efforts

at synthesizing drivers from a formal specification [86]. However, many drivers support

more than one chipset. Hence, synthesizing the replacement for a single driver may require

many more drivers. Similarly, enforcing safety properties for specific devices [112] may be

cumbersome if many chipsets must be supported for each driver. Other efforts at reverse

engineering drivers [18] similarly may be complicated by the support of many chipsets

with different hardware interfaces. Furthermore, these synthesis and verification systems

assume that devices always behave correctly, and their drivers may fail unpredictably with

faulty hardware.

Another assumption made by driver research is that drivers are largely a conduit for

communicating data and for signaling the device, and that they perform little processing.

Neither RevNIC [18]) nor Termite [86] support data processing with the driver, because it

is too complex to model as a simple state machine.

While these assumptions all hold true for many drivers, this research seeks to quan-

tify their real generality. If these assumptions are true for all drivers, then these research

ideas have broad applicability. If not, then new research is needed to address the outliers.
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3.2 What Do Drivers Do?

Device drivers are commonly assumed to primarily perform I/O. A standard undergrad-

uate OS textbook states:

“A device driver can be thought of a translator. Its input consists of high-level com-

mands such as “retrieve block 123.” Its output consists of low-level, hardware-specific

instructions that are used by the hardware controller, which interfaces the I/O device

to the rest of the system.”

Operating Systems Concepts [93]

However, this passage describes the functions of only the small portion of driver code that

which actually performs I/O. Past work revealed that the bulk of driver code is dedicated

to initialization and configuration for a sample of network, SCSI and sound drivers [36].

I seek to develop a comprehensive understanding of what driver code does: what

are the tasks drivers perform, what are the interfaces they use, and how much code does

this all take. The goal of this study is to verify the driver assumptions described in the

previous section, and to identify major driver functions that could benefit from additional

research.

3.2.1 Methodology

To study the driver code, I developed the DrMiner static analysis tool using CIL [72] to de-

tect code properties in individual drivers. DrMiner takes as input unmodified drivers and

a list of driver data-structure types and driver entry points. As drivers only execute when

invoked from the kernel, these entry points allow us to determine the purpose of particular

driver functions. For example, I find the different devices and chipsets supported by an-

alyzing the device_id structures registered (e.g., pci_device_id, acpi_device_id etc.) with

the kernel. I also identify the driver entry points from the driver structure registered (e.g.,

pci_driver, pnp_device) and the device operations structure registered (e.g., net_device).
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DrMiner analyzes the function pointers registered by the driver to determine the function-

ality of each driver. I then construct a control-flow graph of the driver that allows us to

determine all the functions reachable through each entry point, including through function

pointers.

I use a tagging approach to labeling driver code: DrMiner tags a function with the

label of each entry point from which it is reachable. Thus, a function called only during

initialization will be labeled initialization only, while code common to initialization and

shutdown will receive both labels. In addition, DrMiner identifies specific code features,

such as loops indicating computation.

I run these analyses over the entire Linux driver source and store the output in a

SQL database. The database stores information about each driver as well as each func-

tion in the driver. The information about the driver consists of name, path, size, class,

number of chipsets, module parameters, and interfaces registered with the kernel. The

information about each driver function consists of function name, size, labels, resources

allocated (memory, locks etc.), and how it interacts with the kernel and the device. From

the database, determining the amount of code dedicated to any function is a simple query.

In our results, I present data for about 25 classes with the most code.

3.2.2 What is the function breakdown of driver code?

Drivers vary widely in how much code they use for different purposes; a simple driver

for a single chipset may devote most of its code to processing I/O requests and have a

simple initialization routine. In contrast, a complex driver supporting dozens of chipsets

may have more code devoted to initialization and error handling than to request handling.

Figure 3.2 shows the breakdown of driver code across driver classes. The figure

shows the fraction of driver code invoked during driver initialization, cleanup, ioctl pro-

cessing, configuration, power management, error handling, /proc and /sys handling, and

most importantly, core I/O request handling (e.g., sending packet for network devices, or

playing audio for sound card) and interrupt handling across different driver classes.
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Figure 3.3: The change in driver code in terms of LOC across different driver classes between the Linux 2.6.0
and Linux 2.6.39 kernel.

The largest contributors to driver code are initialization and cleanup, comprising

almost 36% of driver code on average, error handling (5%), configuration (15%), power

management (7.4%) and ioctl handling (6.2%). On average, only 23.3% of the code in a

driver is dedicated to request handling and interrupts.

Implications: These results indicate that efforts at reducing the complexity of drivers

should not only focus on request handling, which accounts for only one fourth of the

total code, but on better mechanisms for initialization and configuration. For example,

as devices become increasingly virtualization aware, quick ways to initialize or reset are

critical for important virtualization features such as re-assignment of devices and live mi-

gration [48]. Drivers contain significant configuration code (15%), specifically in network

(31%) and video (27%) drivers. As devices continue to become more complex, driver and

OS research should look at efficient and organized ways of managing device configura-

tion [89].
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3.2.3 Where is the driver code changing?

Over time, the focus of driver development shifts as new device classes become popu-

lar. I compared the breakdown of driver code between the 2.6.0 and 2.6.39 for new source

lines of code added annually to different driver classes. I obtain the source lines of code

across different classes in 9 intermediate revisions (every December since 2.6.0) using sloc-

count [111].

Figure 3.3 shows the growth in driver across successive years from the 2.6.0 baseline

for 8 major driver classes. Overall, driver code has increased by 185% over the last eight

years. We identify three specific trends in this growth. First, there is additional code for

new hardware. This code includes wimax, GPU, media, input devices and virtualization

drivers. Second, there is increasing support for certain class of devices, including network

(driven by wireless), media, GPU and SCSI. From 2.6.13 to 2.6.18, the devices supported

by a vendor (QLogic) increased significantly. Since, they were very large multi-file SCSI

drivers, the drivers where coalesced to a single driver, reducing the size of SCSI drivers

in the driver tree. In Section 3.4, I investigate whether there are opportunities to reduce

driver code in the existing code base. Third, there is minor code refactoring. For example,

periodically, driver code is moved away from the driver or bus library code into the re-

spective classes where they belong. For example, drivers from the i2c bus directory were

moved to misc directory.

Implications: While Ethernet and sound, the common driver classes for research, are

important, research should look further into other rapidly changing drivers, such as media,

GPU and wireless drivers.

3.2.4 Do drivers belong to classes?

Many driver research projects assume that drivers belong to a class. For example, Shadow

Drivers [102] must be coded with the semantics of all calls into the driver so it can replay

them during recovery. However, many drivers support proprietary extensions to the class
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interface. In Linux drivers, these manifest as private ioctl options, /proc or /sys entries,

and as load-time parameters. If a driver has one of these features, it may have additional

behaviors not captured by the class.

I use DrMiner to identify drivers that have behavior outside the class by looking for

load-time parameters and code to register /proc or /sys entries. I do not identify unique

ioctl options. Overall, I find that most driver classes have substantial amounts of device-

specific functionality. Code supporting /proc and /sys is present in 16.3% of drivers. Also,

36% of drivers have load-time parameters to control their behavior and configure options

not available through the class interface. Overall, 44% of drivers use atleast one of the

two non-class features. Additionally, ioctl code comprises 6.2% of driver code. This code

includes class defined ioctls and private ioctls and the latter contributes towards non-class

behavior in driver code.

As an example of how these class extensions are used, the e1000 gigabit network

driver has 15 load-time parameters that allow control over interrupt processing and trans-

mit/receive ring sizing, and interrupt throttling rate. This feature is not part of any stan-

dard network device interface and is instead specific to this device. Similarly, the i915

DRM GPU driver supports load parameters for down-clocking the GPU, altering graphic

responsibilities from X.org to the kernel, and power saving. These parameters change the

code path of the driver during initialization as well as during regular driver operations.

While the introduction of these parameters does not affect the isolation properties of the

reliability solutions, as the interfaces for setting and retrieving these options are standard,

it limits the ability to restart and restore the driver to a previous state since the semantics

of these options are not standardized.

Implications: While most driver functionality falls into the class behavior, many drivers

have significant extensions that do not. Attempts to recover driver state based solely on the

class interface [102] or to synthesize drivers from common descriptions of the class [18, 86]

may not work for a substantial number of drivers. Thus, future research should explicitly

consider how to accommodate unique behaviors efficiently.
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drivers/ide/ide-cd.c:
static int cdrom_read_tocentry(...) {
// Read table of contents data
for (i = 0; i <= ntracks; i++) {
if (drive->atapi_flags &

IDE_AFLAG_TOCADDR_AS_BCD) {
if (drive->atapi_flags &

IDE_AFLAG_TOCTRACKS_AS_BCD)
toc->ent[i].track =
bcd2bin(toc->ent[i].track);

msf_from_bcd(&toc->ent[i].addr.msf);}
toc->ent[i].addr.lba =
msf_to_lba(toc->ent[i].addr.msf.minute,

toc->ent[i].addr.msf.second,
toc->ent[i].addr.msf.frame);

}
}

Figure 3.4: The IDE CD-ROM driver processes table-of-contents entries into a native format.

3.2.5 Do drivers do significant processing?

As devices become more powerful and feature processors of their own, it is often assumed

that drivers perform little processing and simply shuttle data between the OS and the de-

vice. However, if drivers require substantial CPU processing, for example to compute

parity for RAID, checksums for networking, or display data for video drivers, then pro-

cessing power must be reserved. Furthermore, in a virtualized setting, heavy I/O from

one guest VM could substantially reduce CPU availability for other guest VMs.

DrMiner detects processing in drivers by looking for loops that (i) do no I/O, (ii)

do not interact with the kernel, and (iii) are on core data paths, such as sending/receiv-

ing packets or reading/writing data. This ensures that polling loops, common in many

drivers, are not identified as performing processing.

I find that 15% of drivers have at least one function that performs processing, and

that processing occurs in 1% of all driver functions. An even higher fraction (28%) of sound

and network drivers do processing. Wireless drivers, such as ATH, perform processing to

interpolate power levels of the device under different frequencies and other conditions.

Many network drivers provide the option of computing checksums on the outgoing/in-
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Figure 3.5: The average number of chipsets supported by drivers in each class.

coming packets. Finally, even CD-ROM drivers, which largely read data off the device,

do computation to analyze the table of content information for CD-ROMs, as shown in

Figure 3.4.

Implications: A substantial fraction of drivers do some form of data processing. Thus,

efforts to generate driver code automatically must include mechanisms for data process-

ing, not just converting requests from the OS into requests to the device. Furthermore,

virtualized systems should account for the CPU time spent processing data when this pro-

cessing is performed on behalf of a guest VM. These results also point to new opportunities

for driver and device design: given the low cost of embedded processors, can all the com-

putation be offloaded to the device, and is there a performance or power benefit to doing

so?
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3.2.6 How many device chipsets does a single driver support?

Several driver research projects require or generate code for a specific device chipset. For

example, Nexus requires a safety specification that is unique to each device interface [112].

If a driver supports only a single device, this requirement may not impose much burden.

However, if a driver supports many devices, each with a different interface or behavior,

then many specifications are needed to fully protect a driver.

I measure the number of chipsets or hardware packagings supported by each Linux

driver by counting the number of PCI, USB or other bus device IDs (i.e., i2c, ieee1394) that

the driver recognizes. These structures are used across buses to identify (and match) differ-

ent devices or packagings that are supported by the driver. Figure 3.5 shows the average

number of chipsets supported by each driver in each driver class. While most drivers sup-

port only a few different devices, serial drivers support almost 36 chipsets on average, and

network drivers average 5. The Radeon DRM driver supports over 400 chipsets, although

many of these may indicate different packagings of the same internal chipset. Generic

USB drivers such as usb-storage and usb-audio support over 200 chipsets each, and the

usb-serial driver supports more than 500 chipsets. While not every chipset requires differ-

ent treatment by the driver, many do. For example, the 3c59x 100-megabit Ethernet driver

supports 37 chipsets, 17 sets of features that vary between chipsets, and two complete im-

plementations of the core send/receive functionality. Overall, I find that 28% of drivers

support more than one chipset and these drivers support 83% of the total devices.

In order to measure the effects of number of chipsets on driver code size, I measured

the least-square correlation coefficient between the number of chipsets support by a driver

and the amount of code in the driver and found them to be weakly correlated (0.25), in-

dicating that drivers supporting more chipsets were on average larger than those that did

not. However, this does not completely explain the amount of initialization code, as the

correlation between the number of chipsets and the percentage of initialization code was

0.07, indicating that the additional chipsets increased the amount of code throughout the

driver.
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static int __devinit cy_pci_probe(...)
{
if (device_id == PCI_DEVICE_ID_CYCLOM_Y_Lo) {

...
if (pci_resource_flags(pdev,2)&IORESOURCE_IO){

..
if (device_id == PCI_DEVICE_ID_CYCLOM_Y_Lo ||

device_id == PCI_DEVICE_ID_CYCLOM_Y_Hi) {
..

}else if (device_id==PCI_DEVICE_ID_CYCLOM_Z_Hi)
....
if (device_id == PCI_DEVICE_ID_CYCLOM_Y_Lo ||

device_id == PCI_DEVICE_ID_CYCLOM_Y_Hi) {
switch (plx_ver) {
case PLX_9050:
...
default: /* Old boards, use PLX_9060 */
...

}

Figure 3.6: The cyclades character drivers supports eight chipsets that behaves differently at each phase of
execution. This makes driver code space efficient but extremely complex to understand.

Implications: These results indicate that Linux drivers support multiple chipsets per

driver and are relatively efficient, supporting 14,070 devices with 3,217 device and bus

drivers, for an average of approximately 400 lines of code per device. Any system that gen-

erates unique drivers for every chipset or requires per-chipset manual specification may

lead to a great expansion in driver code and complexity. Furthermore, there is substantial

complexity in supporting multiple chipsets, as seen in Figure 3.6, so better programming

methodologies, such as object-oriented programming [83] and automatic interface gener-

ation, similar to Devil [64], should be investigated.

3.2.7 Discussion

The results in this section indicate that while common assumptions about drivers are gen-

erally true, given the wide diversity of drivers, one cannot assume they always hold.

Specifically, many drivers contain substantial amounts of code that make some of the ex-

isting research such as automatic generation of drivers difficult, due to code unique to that

driver and not part of the class, code that processes data, and code for many chip sets.
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3.3 Driver Interactions

The preceding section focused on the function of driver code, and here I turn to the inter-

actions of driver code: how do drivers use the kernel, and how do drivers communicate

with devices? I see three reasons to study these interactions. First, extra processing power

on devices or extra cores on the host CPU provide an opportunity to redesign the driver

architecture for improved reliability and performance. For example, it may be possible to

move many driver functions out of the kernel and onto the device itself. Or, in virtualized

systems, driver functionality may execute on a different core in a different virtual machine.

Second, much of the difficulty in moving drivers between operating systems comes from

the driver/kernel interface, so investigating what drivers request of the kernel can aid in

designing more portable drivers. Third, the cost of isolation and reliability are propor-

tional to the size of the interface and the frequency of interactions, so understanding the

interface can lead to more efficient fault-tolerance mechanisms.

I examine the patterns of interaction between the driver, the kernel and the device,

with a focus on (i) which kernel resources drivers consume, (ii) how and when drivers

interact with devices, (iii) the differences in driver structure across different I/O buses,

and (iv) the threading/synchronization model used by driver code.

3.3.1 Methodology

I apply the DrMiner tool from Section 3.2 to perform this analysis. However, rather than

propagating labels down the call graph from entry points to leaf functions, here I start at

the bottom with kernel and device interactions. Using a list of known kernel functions,

bus functions, and I/O functions, I label driver functions according to the services or I/O

they invoke. Additionally, I compute the number of invocations of bus, device and kernel

invocations for each function in a driver. These call counts are also propagated to deter-

mine how many such static calls could be invoked when a particular driver entry point is

invoked.
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Figure 3.7: The average kernel library, memory, synchronization, kernel device library, and kernel services
library calls per driver (bottom to top in figure) for all entry points.
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3.3.2 Driver/Kernel Interaction

Drivers vary widely in how they use kernel resources, such as memory, locks, and timers.

Here, I investigate how drivers use these resources. I classify all kernel functions into one

of five categories:

1. Kernel library (e.g., generic support routines such as reporting functions,1 timers,

string manipulation, checksums, standard data structures)

2. Memory management (e.g., allocation)

3. Synchronization (e.g., locks)

4. Device library (e.g., subsystem libraries supporting a class of device and other I/O

related functions)

5. Kernel services (e.g., access to other subsystems including files, memory, schedul-

ing)

The first three are generic library routines that have little interaction with other kernel

services, and could be re-implemented in other execution contexts. The fourth category,

device library, provides I/O routines supporting the driver but does not rely other kernel

services, and is very OS dependent. The final category provides access to other kernel

subsystems, and is also OS dependent.

Figure 3.7 shows, for each class of drivers, the total number of function calls made by

drivers in every class. The results demonstrate several interesting features of drivers. First,

the majority of kernel invocations are for kernel library routines, memory management and

synchronization. These functions are primarily local to a driver, in that they do not require

interaction with other kernel services. Thus, a driver executing in a separate execution

context, such as in user mode or a separate virtual machine, need not call into the kernel

for these services. There are very few calls into kernel services, as drivers rarely interact

with the rest of the kernel.

1I leave out printk to avoid skewing the numbers from calls to it.
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The number of calls into device-library code varies widely across different classes

and illustrates the abstraction level of the devices: those with richer library support, such

as network and SCSI drivers, have a substantial number of calls into device libraries, while

drivers with less library support, such as GPU drivers, primarily invoke more generic ker-

nel routines.

Finally, a number of drivers make very little use of kernel services, such as ATA,

IDE, ACPI, and UWB drivers. This approach demonstrates another method for abstract-

ing driver functionality when there is little variation across drivers: rather than having a

driver that invokes support library routines, these drivers are themselves a small set of

device-specific routines called from a much larger common driver. This design is termed

a “miniport” driver in Windows. Thus, these drivers benefit from a common implemen-

tation of most driver functionality, and only the code differences are implemented in the

device-specific code. These drivers are often quite small and have little code that is not

device specific.

These results demonstrate a variety of interaction styles between drivers and the

kernel: drivers with little supporting infrastructure demonstrate frequent interactions with

the kernel for access to kernel services but few calls to device support code. Drivers with

a high level of abstraction demonstrate few calls to the kernel over all. Drivers with a

support library demonstrate frequent calls to kernel generic routines as well as calls to

device support routines.

Implications: Drivers with few calls into device libraries may have low levels of abstrac-

tion, and thus are candidates for extracting common functionality. Similarly, drivers with

many kernel interactions and device library interaction may benefit from converting to a

layered “miniport” architecture, where more driver functionality is extracted into a com-

mon library.

Furthermore, a large fraction of driver/kernel interactions are for generic routines

(memory, synchronization, libraries) that do not involve other kernel services. Thus, they

could be implemented by a runtime environment local to the driver. For example, a driver
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Figure 3.8: The device interaction pattern representing port I/O, memory mapped I/O, bus resources (bottom
to top) invoked via all driver entry points.

executing in a separate virtual machine or on the device itself can make use of its local OS

for these routines, and drivers in user space can similarly invoke user-space versions of

these routines, such as the UML environment in SUD [13].

3.3.3 Driver/Device Interaction

I next look at interaction between the driver and the device. I analyzed all functions in all

drivers, and if a function does I/O itself, or calls a function that results in an I/O, I label it as

perform I/O. I categorize driver/device interactions around the type of interaction: access to

memory-mapped I/O (MMIO) regions or x86 I/O ports (port IO) are labeled mmio/portio,

DMA is DMA access, either initiated by the driver or enabled by the driver creating a DMA

mapping for a memory region, and calls to a bus, such as USB or PCI (bus). I could not
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Kernel Interactions Device Interactions
BUS mem sync dev lib. kern lib. kern services port/mmio dma bus avg devices/driver

PCI 15.6 57.8 13.3 43.2 9.1 125.1 7.0 21.6 7.5
USB 9.6 25.5 5.6 9.9 3.0 0.0 2.22 13.8 13.2
Xen 10.3 8.0 7.0 6.0 2.75 0.0 0.0 34.0 1/All

Table 3.3: Comparison of modern buses on drivers across all classes. Xen and USB drivers invoke the bus for
the driver while PCI drivers invoke the device directly.

determine statically when a device initiates DMA, although I do count calls to map a page

for future DMA (e.g., pci_map_single) as a DMA action. My analysis can detect memory

mapped I/O through accessor routines such as read/writeX family, ioread/iowrite family

of routines and port I/O using the in/outX family. DrMiner cannot identify direct deref-

erences of pointers into memory-mapped address ranges. However, direct dereference of

I/O addresses is strongly discouraged and most non-conforming drivers have been con-

verted to use accessor routines instead. I also note that all I/O routines on x86 eventually

map down to either port or MMIO. Here, though, I focus on the I/O abstractions used by

the driver.

Figure 3.8 shows, for each class of device, the number of device interactions in the

entire driver. The results demonstrate that driver classes vary widely in their use of dif-

ferent I/O mechanisms. IDE and ATA drivers, both block devices, show very different

patterns of interaction: IDE drivers do very little port or MMIO, because they rely on the

PCI configuration space for accessing device registers. Hence, they show a greater pro-

portion of bus operations. Additionally, virtual device classes such as md (RAID), do

page-level writes by calling the block subsystem through routines like submit_bio rather

than by accessing a device directly.

Second, these results demonstrate that the cost of isolating drivers can vary widely

based on their interaction style. Direct interactions, such as through ports or MMIO, can

use hardware protection, such as virtual memory. Thus, an isolated driver can be allowed

to access the device directly. In contrast, calls to set up DMA or use bus routines rely

on software isolation, and need to cross protection domains. Thus, drivers using higher-

level buses, like USB, can be less efficient to isolate, as they can incur a protection-domain

transition to access the device. However, as I show in the next section, access devices
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through a bus can often result in far fewer operations.

Implications: The number and type of device interactions vary widely across devices.

Thus, the cost of isolating drivers, or verifying that their I/O requests are correct (as in

Nexus [112]) can vary widely across drivers. Thus, any system that interposes or protects

the driver/device interaction must consider the variety of interaction styles. Similarly,

symbolic execution frameworks for drivers [50] must generate appropriate symbolic data

for each interaction style.

3.3.4 Driver/Bus Interaction

The plurality of drivers in Linux are for devices that attach to some kind of PCI bus (e.g.,

PCIe or PCI-X). However, several other buses are in common use: the USB bus for remov-

able devices and XenBus for virtual devices [116]. Architecturally, USB and Xen drivers

appear to have advantages, as they interact with devices over a message-passing inter-

face. With USB 3.0 supporting speeds up to 5 Gbps [107] and Xen supporting 10 Gbps

networks [80], it is possible that more devices will be accessed via USB or XenBus.

In this section, I study the structural properties of drivers for different buses to iden-

tify specific differences between the buses. I also look for indications that drivers for a bus

may have better architectural characteristics, such as efficiency or support for isolation. I

focus on two questions: (i) does the bus support a variety of devices efficiently, (ii) will it

support new software architectures that move driver functionality out of the kernel onto a

device or into a separate virtual machine? Higher efficiency of a bus interface results from

supporting greater number of devices with standardized code. Greater isolation results

from having less device/driver specific code in the kernel. If a bus only executes stan-

dardized code in the kernel, then it would be easier to isolate drivers away from kernel,

and execute them inside a separate virtual machine or on the device itself such as on an

embedded processor.

Table 3.3 compares complexity metrics across all device classes for PCI, USB, and
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XenBus. First, I look at the efficiency of supporting multiple devices by comparing the

number of chipsets supporting by a driver. This indicates the complexity of supporting a

new device, and the level of abstraction of drivers. A driver that supports many chipsets

from different vendors indicates a standardized interface with a high level of common

functionality. In contrast, drivers that support a single chipset indicate less efficiency, as

each device requires a separate driver.

The efficiency of drivers varied widely across the three buses. PCI drivers support

7.5 chipsets per driver, almost always from the same vendor. In contrast, USB drivers

average 13.2, often from many vendors. A large part of the difference is the effort at stan-

dardization of USB protocols, which does not exist for many PCI devices. For example,

USB storage devices implement a standard interface [106]. Thus, the main USB storage

driver code is largely common, but includes call-outs to device-specific code. This code in-

cludes device-specific initialization, suspend/resume (not provided by USB-storage and

left as an additional feature requirement) and other routines that require device-specific

code. While there are greater standardization efforts for USB drivers, it is still not com-

plete

Unlike PCI and USB drivers, XenBus drivers do not access devices directly, but com-

municate with a back-end driver executing in a separate virtual machine that uses normal

Linux kernel interfaces to talk to any driver in the class. Thus, a single XenBus driver log-

ically supports all drivers in the class. in a separate domain so we report them as a single

chipset. However, device-specific behavior, described above in Section 3.2.4, is not avail-

able over XenBus; these features must be accessed from the domain hosting the real driver.

XenBus forms an interesting basis for comparison because it provides the minimum func-

tionality to support a class of devices, with none of the details specific to the device. Thus,

it represents a “best-case” driver.

I investigate the ability of a bus to support new driver architectures through its in-

teraction with the kernel and device. A driver with few kernel interactions may run more

2USB drivers invoke DMA via the bus.
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easily in other execution environments, such as on the device itself. Similarly, a driver with

few device or bus interactions may support accessing devices over other communication

channels, such as network attached devices [66]. I find that PCI drivers interact heavily

with the kernel unless kernel resources are provided by an additional higher-level virtual

bus (e.g., ATA). In contrast, Xen drivers have little kernel interaction, averaging only 34 call

sites compared to 139 for PCI drivers. A large portion of the difference is that Xen drivers

need little initialization or error handling, so they primarily consist of core I/O request

handling.

The driver/device interactions also vary widely across buses: due to the fine granu-

larity offered by PCI (individual bytes of memory), PCI drivers average more device inter-

actions (154) than USB or XenBus devices (14-34). Thus, USB drivers are more economical

in their interactions, as they batch many operations into a single request packet. XenBus

drivers are even more economical, as they need fewer bus requests during initialization

and as many operations as USB for I/O requests. Thus, USB and XenBus drivers may ef-

ficiently support architectures that access drivers over a network, because access is less

frequent and coarse grained.

Implications: These results demonstrate that the flexibility and performance of PCI de-

vices comes with a cost: increased driver complexity, and less interface standardization.

Thus, for devices that can live within the performance limitations of USB or in a virtual-

ized environment for XenBus, these buses offer real architectural advantages to the drivers.

With USB, significant standardization enables less unique code per device, and coarse-

grained access allows efficient remote access to devices [2, 29, 41].

XenBus drivers push standardization further by removing all device-specific code

from the driver and executing it elsewhere. For example, it may be possible to use XenBus

drivers to access a driver running on the device itself rather than in a separate virtual

machine; this could in effect remove many drivers from the kernel and host processor.

The mechanism for supporting non-standard functionality also differs across these

buses: for PCI, a vendor may write a new driver for the device to expose its unique fea-
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tures. For USB, a vendor can add functionality to the existing common drivers just for the

features. For XenBus, the features must be accessed from the domain executing the driver

and are not available to a guest OS.

3.3.5 Driver Concurrency

Another key requirement of drivers in all modern operating systems is the need to multi-

plex access to the device. For example, a disk controller driver must allow multiple appli-

cations to read and write data at the same time, even if these applications are not otherwise

related. This requirement can complicate driver design, as it increases the need for syn-

chronization among multiple independent threads. I investigate how drivers multiplex

access across long-latency operations: do they tend towards threaded code, saving state

on the stack and blocking for events, or toward event-driven code, registering callbacks

either as completion routines for USB drivers or interrupt handlers and timers for PCI de-

vices. If drivers are moved outside the kernel, the driver and kernel will communicate with

each other using a communication channel and supporting event-driven concurrency may

be more natural.

I determine that a driver entry point requires a threaded programming style if it

makes blocking calls into the kernel, or busy-waits for a device response using msleep()

which enables blocking. All other entry points are considered “event friendly”, in that they

do not suspend the calling thread. I did not detect specific routines that use event-based

synchronization, as they often rely on the device to generate the callback via an interrupt

rather than explicitly registering with the kernel for a callback .

The results, shown in Figure 3.9 in the bars labeled event friendly and threaded, show

that the split of threaded and event-friendly code varies widely across driver classes. Over-

all, drivers extensively use both methods of synchronization for different purposes. Drivers

use threaded primitives to synchronize driver and device operations while initializing the

driver, and updating driver global data structures, while event-friendly code is used for

core I/O requests. Interestingly, network drivers and block drivers, which are not invoked
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Figure 3.9: The percentage of driver entry points under coverage of threaded and event friendly synchroniza-
tion primitives.

directly by user-level code, have a similar split of code to sound drivers, which are invoked

directly from application threads. This arises because of the function of most driver code,

as reported in Section 3.2.2: initialization and configuration. This code executes on threads,

often blocking for long-latency initialization operations such as device self-test.

Implications: Threaded code is difficult to run outside the kernel, where the invoking

thread is not available. For example, Microdrivers [37] executes all driver code in an event-

like fashion, restricting invocation to a single request at a time. Converting drivers from

threads to use event-based synchronization internally would simplify such code. Further-

more, events are a more natural fit when executing driver code either in separate virtual

machine or on a device itself, as they naturally map to a stream of requests arising over a

communication channel [87].



71

DrComp signature: 1.798865
static int hpt374_fn1_cable_detect(....)
{
struct pci_dev *pdev = to_pci_dev(...);

unsigned int mcrbase = 0x50
+ 4 * ap->port_no;

u16 mcr3;
u8 ata66;

/*Do the extra channel work */
pci_read_config_word(pdev,

mcrbase+2,&mcr3);
/*Set bit 15 of 0x52 to enable ..*/
pci_write_config_word(pdev,

mcrbase + 2,..);
pci_read_config_byte(pdev,

0x5A,&ata66);
/*Reset TCBLID/FCBLID to output */
pci_write_config_word(pdev,

mcrbase+2,mcr3);
if (ata66 & (2 >> ap->port_no))

return ATA_CBL_PATA40;
else

return ATA_CBL_PATA80;
}

DrComp signature: 1.8
static int hpt37x_cable_detect(...)
{
struct pci_dev *pdev = to_pci_dev(...);

u8 scr2, ata66;

pci_read_config_byte(pdev,
0x5B, &scr2);

pci_write_config_byte(pdev,
0x5B,...);

udelay(10); /* debounce */

/* Cable register now active */
pci_read_config_byte(pdev,

0x5A,&ata66);
/* Restore state */
pci_write_config_byte(pdev,

0x5B,scr2);
if (ata66 & (2 >> ap->port_no))

return ATA_CBL_PATA40;
else

return ATA_CBL_PATA80;
}

Figure 3.10: Similar code between two different HPT ATA controller drivers essentially performing the same
action. These are among the least-similar functions that DrComp is able to detect these functions as related.
The boxes show differentiating statements in the two functions that account for the close signature values.

3.4 Driver Redundancy

Given that all the drivers for a class perform essentially the same task, one may ask why

so much code is needed. In some cases, such as IDE devices, related devices share most of

the code with a small amount of per-device code. Most device classes, though, replicate

functionality for every driver. The problem of writing repeated/redundant code is well

documented. It causes maintainability issues in software development [33], and is also a

significant cause of bugs in the Linux kernel [21, 74, 56]. Providing the right abstractions

also helps in code standardization and integrating kernel services such as power manage-

ment in a correct fashion across all drivers. Without a global view of drivers, it can be

difficult to tell whether there are opportunities to share common code.

To address this question, I developed a scalable, code similarity tool for discovering

similar code patterns across related drivers and applied it to Linux drivers. The goal of

this work is to find driver functions with substantially similar code, indicating that the

common code could be abstracted and removed from all drivers to reduce driver code size

and complexity.
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DrComp signature:1.594751
static int nv_pre_reset(......)
{

..struct pci_bits nv_enable_bits[] = {
{ 0x50, 1, 0x02, 0x02 },
{ 0x50, 1, 0x01, 0x01 }

};

struct ata_port *ap = link->ap;
struct pci_dev *pdev = to_pci_dev(...);
if (!pci_test_config_bits
(pdev,&nv_enable_bits[ap->port_no]))
return -ENOENT;
return ata_sff_prereset(..);
}

DrComp signature:1.594751
static int amd_pre_reset(...)
{

..struct pci_bits amd_enable_bits[] = {
{ 0x40, 1, 0x02, 0x02 },
{ 0x40, 1, 0x01, 0x01 }

};

struct ata_port *ap = link->ap;
struct pci_dev *pdev = to_pci_dev(...);
if (!pci_test_config_bits
(pdev,&amd_enable_bits[ap->port_no]))
return -ENOENT;
return ata_sff_prereset(..);
}

Figure 3.11: The above figure shows identical code that consumes different register values. Such code is
present in drivers where multiple chipsets are supported as well as across drivers of different devices. The
functions are copies except for the constants as shown in the boxes.

3.4.1 Methodology

I developed a new code-similarity tool to handle the number of Linux drivers to find sim-

ilarities rather than exact copies. I needed to parse through the entire driver source tree

consisting of 5 million lines of code, with close to a million lines of code in large classes

like network drivers. Most existing clone-detection tools develop a stream of tokens or

tree/graphs and perform an n x n comparison of all code snippets to detect clones, which

given the size of the driver classes, is not possible. In addition, I needed a similarity detector

for finding code that that is closely related but not identical. With more control over how

similar regions are detected using information from the semantics of drivers, I are able to

detect more useful similar code. For example, while parsing function calls, I treat calls to

the device and kernel differently, improving the accuracy of our similarity-detection tool.

Our similarity tool, DrComp, is based on shape analysis3 [30]. This is a method to de-

termine whether clusters of points have a similar shape and variants of these technique are

often used to cluster data, to determine nature of data distribution, and to detect identical

shapes in computer vision [10].

DrComp generates a set of multidimensional coordinates for every function in every

driver. It then detects as similar two functions whose coordinate sets (shape) are similar.

DrComp processes a driver function and adds a point to the function’s shape for every

3I perform geometric shape analysis, not the program analysis technique of the same name.
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statement or action in statement for loop, kernel interaction, conditionals, device interac-

tion, variable assignment, break and return statements. The coordinates of the point are

the offset into the function (line number) and the statement type. To improve accuracy, it

is important that the generated shape of the code emphasizes the important characteristics

of the function. Hence, I also reinforce the shape of the function by weighting statements

that are important yet sparse, such as a function returns and calls to kernel functions. The

shape of each driver function is a cloud of points on plane representing the structure of

the program. While I consider only two dimensions of the code, the statement type and

edit distance to generate the points, our tool can easily be extended to include additional

dimensions based on code features (such as nesting depth) or driver features (such as in-

terrupt frequency).

To eliminate complex comparison of two driver functions, I further reduce the shape

of a driver down to a single signature value. I compute the signature as a function of Eu-

clidean distance between all the points in the code cluster obtained above. The output of

DrComp is a signature for every function in every driver. Thus, two functions with iden-

tical code will have identical signatures. Furthermore, code that is similar, in that it has a

similar structure of loops and I/O operations, will have similar signatures.

Figure 3.10 shows an example of some of the least similar related code in drivers I

found. These two functions have signatures within 0.05% of each other. DrComp only

looks for the code structure from statement types (also distinguishing kernel and device

invocations) and edit distance, so functions may use different arguments (register values),

compare against different values or loop on different conditions, and still be grouped as

similar code.

3.4.2 Redundancy Results

DrComp detected that 8% of all driver code is very similar to other driver code. The results

of our similarity study are shown in Table 3.4. For classes with many similarities, I show the

number of fragment clusters (sets of similar code), as well as the total number of functions
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Driver
class

Driver
subclass

Similar
code
fragments

Fragment
clusters

Fragment
size
(Avg.
LOC)

Redundancy results and action items to remove re-
dundant code

acpi 64 32 15.1
Procedural abstraction for centralized access to kernel
resources and passing get/set configuration informa-
tion as arguments for large function pairs.

gpu 234 108 16.9
Procedural abstractions for device access. Code repli-
cated across drivers, like in DMA buffer code for sav-
age, radeon, rage drivers, can be removed by support-
ing more devices per driver.

isdn 277 118 21.0
Procedural abstraction for kernel wrappers. Driver
abstraction/common library for ISDN cards in hisax
directories.

char input 125 48 17.23
Procedural abstraction for kernel wrappers. Driver
abstraction/common  driver  for  all  touchscreen
drivers. Procedural  abstraction  in  Aiptek  tablet
driver.

media 1116 445 16.5
Class  libraries  for  all  Micron image sensor drivers.
Procedural abstraction in saa 7164 A/V decoder driver
and ALI 5602 webcam driver.

video 201 88 20

Class  libraries  for  ARK2000PV,  S3Trio, VIA
VT8623drivers in init/cleanup, power management
and frame buffer operations. Procedural abstraction
in  VESA VGA drivers  for  all  driver  information
functions.

sound 1149 459 15.1

Single driver for ICE1712 and ICE1724 ALSA drivers.
Procedural abstraction for invoking sound libraries,
instead of repeated code with different flags. Proce-
dural abstraction for AC97 driver and ALSA driver for
RME HDSPM audio interface.

ata 68 29 13.3

Common power management library for  ALI 15x3,
CMD640  PCI,  Highpoint  ATA controllers, Ninja32,
CIL 680, ARTOP 867X,  HPT3x3, NS87415  PATA
drivers and SIS ATA driver. Table driven program-
ming for device access in these drivers.

block ide 18 9 15.3 Procedural abstraction for the few wrappers around
power management routines.

scsi 789 332 25.6
Shared  library  for  kernel/scsi  wrappers  for  Qlogic
HBA drivers; pmc sierra and marvell mvsas drivers.
Large redundant wrappers in mp2sas firmware, Bro-
cade FC port access code.

net Ethernet/
wireless 1906 807 25.1

Shared library for wireless drivers for talking to de-
vice/kernel and wireless routines. Lot of NICs share
code for most routines like configuration, resource al-
location and can be moved to a single driver with sup-
port for multiple chipsets. A driver sub-class library
for all or vendor specific Ethernet drivers.

infiniband 138 60 15.0 Procedural abstraction for Intel nes driver.

Table 3.4: The total number of similar code fragments and fragment clusters across driver classes and action
items that can be taken to reduce them.
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that are similar to another function. For the results in above table, I show results within

individual driver classes and not across classes, as they are less likely to benefit from a

shared abstraction.

Overall, I identified similarities within a single driver, across a subset of drivers in a

class, and in some cases across most drivers in a class. Within a single driver, I found that

the most common form of repeated code was wrappers around device I/O, driver library

or kernel functions. These wrappers either convert data into the appropriate format or

perform an associated support operation that is required before calling the routines but

differ from one another because they lie on a different code path. These wrappers could be

removed if the kernel interface supported the same data types as the device or if drivers

provided appropriate abstractions to avoid such repeated code.

I also find swaths of similar functions across entire classes of drivers. The major dif-

ference between drivers for different chipsets of the same device are often constant values,

such as device registers or flag values. For example, ATA disk drivers abstract most of the

code into a core library, libata, and each driver implements a small set of a device-specific

functionality. Commonly, these functions are short and perform one or two memory-

mapped I/O reads or writes, but with different values for every driver. Figure 3.11 shows

two functions from different ATA drivers with substantially similar code. This practice

generates large bodies of very similar drivers with small differences. Further abstraction

could additionally simplify these drivers, for example, replacing these routines with tables

encoding the different constants. Similarly, a hardware specification language [64] may be

able to abstract the differences between related devices into a machine-generated library.

Finally, I note similarities across subsets of drivers in a class. For example, another

common class of similarities is wrappers around kernel functions and driver libraries for

that class: the release method for frame buffers is virtually identical across many of the

drivers, in that it checks a reference count and restores the VGA graphics mode. There are

a few small differences, but refactoring this interface to pull common functionality into a

library could again simplify these drivers.
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Implications: Overall, these results demonstrate that there are many opportunities for

reducing the volume of driver code by abstracting similar code into libraries or new ab-

stractions. I visually inspected all function clusters to determine how a programmer could

leverage the similarity by having a single version of the code. I see three methods for

achieving this reduction: (i) procedural abstractions for driver sub-classes, (ii) better mul-

tiple chipset support and (iii) table driven programming.

The most useful approach is procedural abstraction, which means to move the shared

code to a library and provide parameters covering the differences in implementation. There

is significant code in single drivers or families of drivers with routines performing simi-

lar functions on different code paths. Creating driver-class or sub-class libraries will sig-

nificantly reduce this code. Second, existing driver libraries can be enhanced with new

abstractions that cover the similar behavior. There are many families of drivers that repli-

cate code heavily, as pointed out in Table 3.4. Abstracting more code out these families by

creating new driver abstractions that support multiple chipsets can simplify driver code

significantly. Finally, functions that differ only by constant values can be replaced by table-

driven code. This may also be applicable to drivers with larger differences but fundamen-

tally similar structures, such as network drivers that use ring buffers to send and receive

packets. By providing these abstractions, I believe there is an opportunity to reduce the

amount of driver code, consequently reducing the incidence of bugs and improving the

driver development process by producing concise drivers in the future.

3.5 Summary

The purpose of this study is to investigate the complete set of drivers in Linux, to avoid

generalizing from the small set of drivers commonly used for research, and to form new

generalizations.

Overall, I find several results that are significant to future research on drivers. First, a

substantial number of assumptions about drivers, such as class behavior, lack of computa-

tion, are true for many drivers but by no means all drivers. For example, instead of request
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handling, the bulk of driver code is dedicated to initialization/cleanup and configuration,

together accounting for 51% of driver code. A substantial fraction (44%) of drivers have

behavior outside the class definition, and 15% perform significant computations over data.

Thus, relying on a generic frontend network driver, as in Xen virtualization, conceals the

unique features of different devices. Similarly, synthesizing driver code may be difficult,

as this processing code may not be possible to synthesize. Tools for automatic synthesis of

driver code should also consider driver support for multiple chipset as I find that Linux

supports over 14,000 devices with just 3,217 bus and device drivers.

Second, our study of driver/device/kernel interactions showed wide variation in

how drivers interact with devices and the kernel. At one end, miniport drivers contain

almost exclusively device-specific code that talks to the device, leaving kernel interactions

to a shared library. At the other end, some drivers make extensive calls to the kernel and

very few into shared device libraries. This latter category may be a good candidate for

investigation, as there may be shared functionality that can be removed. Overall, these

results also show that the cost of isolating drivers may not be constant across all driver

classes.

Third, our investigation of driver/device interaction showed that USB and XenBus

drivers provide more efficient device access than PCI drivers, in that a smaller amount of

driver code supports access to many more devices, and that coarse-grained access may

support moving more driver functionality out of the kernel, even on the device itself. Fur-

thermore, many drivers require very little access to hardware and instead interact almost

exclusively with the bus. As a result, such drivers can effectively be run without privi-

leges, as they need no special hardware access. I find that USB and Xenbus provide the

opportunity to utilize the extra cycles on devices by executing drivers on them and can

effectively be used to remove drivers from the kernel leaving only standardized bus code

in the kernel.

Finally, I find strong evidence that there are substantial opportunities to reduce the

amount of driver code. The similarity analysis shows that there are many instances of

similar code patterns that could be replaced with better library abstractions, or in some
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cases with tables. Furthermore, the driver function breakdown in Section 3.2 shows that

huge amounts of code are devoted to initialization; this code often detects the feature set

of different chipsets. Again, this code is ripe for improvement through better abstractions,

such as object-oriented programing technique and inheritance [83].

While this study was performed for Linux only, I believe many similar patterns, al-

though for different classes of devices, will show in other operating systems. It may also

be interesting to compare the differences in driver code across operating systems, which

may demonstrate subtle differences in efficiency or complexity. My study is orthogonal to

most studies on bug detection. However, correlating bugs with different driver architec-

tures can provide insight on the reliability of these architectures in real life.



Chapter 4
Fine-Grained Fault Tolerance Using

Device Checkpoints

In most commodity operating systems, third-party driver code executes in privileged mode.

Faulty device drivers cause many reliability issues in these systems [21, 85]. Hence, there

has been significant research to tolerate driver failures using programming-language and

hardware-protection techniques [13, 16, 32, 37, 53, 62, 112]. These systems execute the entire

driver as a single isolated component. However, much of this work focuses on detecting

failures and isolating drivers from the rest of the system. Few of these systems address

how to restore driver functionality beyond simply reloading the driver, which may leave

applications non-functioning.

Most driver-reliability systems do not try to restore device state and instead com-

pletely restart failed drivers [103, 118, 42], effectively resetting device state to a known-

good configuration. The state-of-the-art mechanism for restoring driver functionality, shadow

drivers [102], logs state-changing operations at the driver/kernel interface. Following a

failure, shadow drivers restart the driver and replay the log in order to restore internal

driver and device state. This resets the driver and device to a state functionally equivalent
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to its pre-failure state. This approach, complete driver isolation and logging for recovery,

poses four problems:

1. Too hard: Shadow drivers must be written for every class of driver and must be

updated when the interface changes. This adds a large body of code to the kernel

requiring constant maintenance, which is a high barrier to adoption. Other systems

require substantially rewriting drivers, which is also a barrier.

2. Not enough: Shadow drivers must encode the semantics of the kernel/driver inter-

face. However, many drivers have proprietary commands that cannot be captured

by a shadow driver common to an entire class, leading to incomplete recovery. Re-

cent work showed that up to 44% of drivers have non-class behavior [49].

3. Too expensive: Shadow drivers must interpose on and log all invocations of a driver.

Continuous monitoring imposes a performance cost, particularly on high-performance

devices such as SSDs and NICs even when the critical I/O path is bug-free.

4. Too slow: Restarting a driver, the first step of log replay, can be slow (multiple sec-

onds) due to complex initialization code and therefore may not be useful in latency-

sensitive environments.

A key source of these problems is that prior systems seek completeness: applying

to all driver code at all times. While this reduces the per-driver cost, it pushes up both

development and runtime costs.

I developed a new driver fault tolerance mechanism to address these shortcomings

called Fine-grained Fault Tolerance (FGFT). Rather than isolating and recovering from the

failure of an entire driver, FGFT executes a driver entry point as a transaction and uses

software fault isolation to prevent corruption and detect failures. On entry to a driver, a

stub copies parameters to the driver code. Only if the driver executes correctly are the

results copied back. If the call faults, FGFT destroys the copy to roll back driver state and

fails the call.

In order to restore device state modified by a driver before faulting, we developed a

novel device state checkpointing mechanism that can capture the device state. The stub cap-



81

tures a checkpoint before invoking the driver, and restores the checkpoint on failure. This

mechanism leverages existing power-management code present in most drivers, which

greatly reduces the development cost of adopting FGFT.

FGFT shifts the cost of driver fault tolerance to the faulty code. While shadow

drivers and whole-driver isolation require up-front code for any instance of a class of

drivers, FGFT instead requires small changes to the driver itself to support isolation and

implement checkpointing. Where past isolation mechanisms interpose on all driver code

and reduce its performance uniformly, FGFT only imposes a cost on entry points selected

for isolation. Thus, the cost of executing a single call with fault tolerance may be higher

with FGFT than other systems, but when applied only to code off the critical path it has

much lower overhead because the critical code is left unchanged. Thus, one possible use

for FGFT is to apply it selectively to vulnerable code suspected or known to have bugs.

The contributions of this chapter are:

• I describe Fine-Grained Fault Tolerance, a system consisting of a static analysis and

code generation tool that provides isolation by executing each driver request on a

minimal copy of required driver state. Our system can be used to isolate specific

requests and I show from a study of published bugs that fine-grained isolation is

practical since bugs only affect 14% of all entry points in buggy drivers.

• I demonstrate a novel mechanism to create device checkpoints on a running system.

In a study of six drivers, I show that taking a checkpoint is fast, averaging only 20

µs.

• I show how to use checkpoints and transactional execution of driver code to provide

fast recovery and remove the permanent overhead of monitoring all requests.

• I show that the implementation effort of FGFT is small: I added 38 lines of code

to the kernel to trap processor exceptions, and found that device checkpoint code

can be constructed with little effort from power-management code present in 76%

of drivers in common driver classes.

I begin with an overview of the FGFT design.
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4.1 Design Overview

FGFT is a system to tolerate faults in drivers using a pay-as-you-go model based on check-

points for recovery. This system protects code from faults at the granularity of a single

thread executing a single entry point. FGFT recovers from any failures that occur during

the function. This can greatly reduce the cost of isolating and tolerating faults because far

less code is affected.

I list four goals of providing fine-grained fault tolerance:

1. Class independent. Isolation and recovery should be independent of the driver-kernel

interface and should be able to recover driver actions from proprietary commands.

2. Low infrastructure. Little new code should be added to the kernel in support of FGFT.

3. Pay-as-you-go. FGFT should not have a fixed minimum overhead of isolation or

monitoring driver behavior. Furthermore, programmer effort should only be re-

quired when fault tolerance is desired.

4. Fast recovery. FGFT should restore driver functions quickly after a failure without

resetting other threads concurrently executing in the driver.

The first goal enables FGFT to apply to a broad range of drivers, and the second reduces the

adoption cost for an operating system. Pay-as-you-go ensures that for high-performance

drivers, tolerating faults in code off the critical path has little cost. Fast recovery enables

its use in latency-sensitive environments.

The two major components of FGFT are an isolation mechanism to prevent a faulty

driver from corrupting the OS and to detect failures, and a recovery mechanism to restore

the driver to a functioning state after a failure. I begin a discussion of our fault model to

motivate our design choices.

4.1.1 Fault Model

A driver entry point is a driver function invoked by the kernel or applications to access

specific driver functionality. Each driver registers a set of functions as entry points, such
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as to initialize the device or transmit a packet. Driver entry points can be invoked by ap-

plications multiple times in arbitrary order. Hence, drivers should not make assumptions

about the order or past history of these invocations. FGFT provides fault tolerance at the

granularity of a single entry point into a driver. In contrast, past systems treat the entire

driver as a component with internal state.

As the driver executes, the FGFT isolation mechanism enforces fine-grained mem-

ory safety. It ensures that the driver entry point is only allowed to access data passed to

the driver and its stack; access to anything else will be treated as a fault. FGFT detects

faults in driver entry points in three ways. First, FGFT detects memory failures (such as

null pointer dereferences) and reading/writing unintended kernel and driver structures.

Second, FGFT uses marshaling to copy data in and out of the driver. Type errors and

malformed structures that cause the marshaling to fail will be detected, although errors

with compatible types (such as treating an array of bytes as an array of longs), will not be.

FGFT on its own does not provide any semantic checks to enforce driver invariants. Hence,

driver faults must be detected within the entry point where they occur. Otherwise, fail-

ures that that are triggered when one entry point improperly sets a flag that another read

and faults cannot be tolerated. Third, FGFT catches processor exceptions such as NULL

pointer exception, general protection fault, alignment fault, divide error (divide by zero),

missing segments, and stack faults. It triggers recovery if an exception arises within an

isolated driver entry point.

I design for an open-source environment, and therefore trust the compiler to pro-

duce code that correctly accesses the stack. I also assume that the driver is unable to hang

or damage the device, although it may misconfigure the device.

A key benefit of FGFT is that by operating on specific entry points it can be selective

about what code should be hardened against faults. I call the entry points to be isolated

suspect. The suspect code can execute in isolation while the remainder of the driver exe-

cutes in the kernel at full speed. Hence, FGFT is useful when specific driver code is known

to have problems, such as just-patched code or code with known but un-patched vulner-

abilities. I identify at least three cases where a fine-grained model is useful:
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1. Untested code: Device drivers often contain untested code such as chipset-specific

code or recovery code that can be invoked safely using FGFT.

2. Statically found bugs: Often static analysis tools identify hard to find/trigger driver

bugs with substantial false positive rates. FGFT can be integrated with existing

static analysis tools until a fix is issued, which often takes considerable time. This

approach limits the overhead to just the buggy code, just when it contains known

bugs.

3. Runtime monitoring tools: Runtime monitoring tools flag incoming requests based

on their parameters, such as a specific ioctl command code, or are enabled at run

time through module parameters [57] or security tools [75]. FGFT can dynamically

decide whether to execute code in isolation or unsafely at full speed.

In our evaluation I analyze a list of bugs and find that they only affect 14% of all

driver entry points. Hence, limiting the cost of fault tolerance to affected entry points can

be useful. I now describe the two major components of FGFT: isolation and recovery.

4.1.2 Fine-Grained Isolation

FGFT provides isolation by forcing suspect code to operate on a copy of driver and kernel

data. This ensures that anything the entry point does will not be seen by other threads

or the kernel until it successfully completes, and allows quick recovery after a failure by

deleting the copy. Thus, FGFT creates a clean copy of data needed for a driver entry point

on every invocation, which consists of all data referenced by the entry point: parameters,

global driver variables, and global kernel variables.

I use entry points as the granularity of isolation because it closely matches internal

driver structure: they provide a natural boundary for returning errors after a fault, and

drivers already synchronize concurrent invocation of entry points. If two driver threads

cannot run concurrently in the driver, then driver synchronization ensures that one of them

blocks until the other successfully completes. Thus, FGFT reuses existing synchronization

mechanisms to ensure that when suspect code runs, no other threads are active in the
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driver. This ensures that any changes to device state will not be seen until the entry point

completes successfully or it fails and recovery completes.

FGFT provides entry-point isolation with a copy-in/out model of driver and ker-

nel state when suspicious entry-points are invoked. FGFT uses static analysis and code-

generation to generate another kernel module that contains suspect entry points instru-

mented for memory safety. FGFT also generates communication code containing mar-

shaling routines to copy driver and kernel state necessary for executing these entry points

in isolation. Since the static analysis to marshal the data structures required by the isolated

copy can be imprecise, FGFT requires a programmer to annotate ambiguous data types in

the driver code. In order to provide even finer control over when to provide fault tolerance,

FGFT automatically inserts taps, which are predicates that can decide at runtime whether

to invoke the normal or fault-tolerant version of an entry point.

FGFT detects faults through run-time memory safety checks that detect access to un-

reachable addresses – memory not passed as a parameter or allocated by the entry point.

Since, FGFT generates the code for copy-in/out, it is able to provide fine-grained memory

safety (base and bound validation [69]). Furthermore, for failure detection, FGFT inter-

poses on kernel trap handlers and detects if the faults originate from the suspicious entry-

points and accordingly triggers recovery.

4.1.3 Checkpoint-based Recovery

FGFT relies on checkpoints prior to a driver entry point for recovery. Unlike log-based

recovery, which requires knowing how to replay requests, checkpoints can restore state

independent of how a function modifies driver state. For example, a checkpoint of a device

prior to an ioctl call allows its state to be recovered no matter what the call does.

Log-based recovery is also slow enough that the technique may not be useful in

latency-sensitive environments. The primary delay comes from probing the device all over

again, which cold boots the device and performs the initialization steps as shown in Fig-

ure 4.1. For example, during initialization a network driver probes for the device, verifies
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Figure 4.1: Modern devices perform many operations during initialization such as setting up kernel and
device structures based on chipset and device features, checksumming device ROM data, various device tests
followed by driver initialization and configuration.

EEPROM contents, tests the device, and registers the device with the kernel.

The checkpoint of the driver’s state in memory is captured automatically through

the copy-in/out model of invocation. Suspect code always executes on a copy of the driver

state, so the original data is unmodified and need not be restored. The major challenge,

though, is the device state, which may be modified unpredictably by the driver. I therefore

require that drivers provide a facility for capturing and restoring device state. Prior to

invoking suspect code, FGFT can take a checkpoint, and following a failure, it can restore

the checkpoint.

An appealing approach is to treat devices like memory and copy memory-mapped

I/O regions. However, reading registers may have side effects such as clearing counters.

In addition, some devices overlay two logical registers, one for read and one for write, at

the same address. Instead, I take inspiration from code already present in many drivers that

must perform nearly the same task as checkpoint/restore: power management.
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The functionality provided by power management, to suspend a device before en-

tering a low power mode and restoring it when transitioning to high power mode is similar

to what is required to support device checkpoints. I reuse the suspend/resume code by

separating code that supports saving state to memory from the code that actually suspends

the device. Similarly, I identify code required for restoring this state. In Section 4.3, I de-

scribe in detail how power management code can be re-factored to support checkpoint/re-

store in device drivers and how existing driver synchronization can be used to arbitrate

device access.

4.1.4 Design Summary

FGFT improves the state of art in driver recovery and meets its goals. FGFT provides class-

independent driver recovery with checkpoints as opposed to restarting the driver. Hence,

FGFT discards failed requests and retains proprietary driver state such as ioctls that were

issued before the failure.

FGFT requires very little kernel code, as the code for isolation is generated automat-

ically and the recovery code requires only small modifications to existing driver code. The

annotation cost for isolation and recovery is only required when a driver needs fault toler-

ance. Only when a suspicious request executes does FGFT execute it in isolation, thus lim-

iting isolation overhead to these requests. Compared to FGFT, Nooks [103] and SUD [13]

require a new kernel subsystem and writing and maintaining wrappers around the driver-

kernel interface.

There is also no recovery overhead of monitoring correctly executing requests at all

times since driver recovery is based on checkpoints. Finally, FGFT provides fast recovery

since it does not restart the driver and re-execute the complicated device probe routines.

The device state is restored from a checkpoint, so recovery is an order of magnitude faster

as I demonstrate in the evaluation in Section 4.4.
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4.2 Fine-Grained Isolation

Isolation ensures that the driver and kernel state changes made by a request are not prop-

agated if the request fails. I need the following properties from an isolation mechanism:

1. Transactional execution: I need to execute the driver entry points in a transactional

fashion to keep a clean copy of all data modified by the driver.

2. Memory safety and fault detection: I need to ensure a driver cannot corrupt the kernel

or other threads in the driver and provide mechanisms that detect when a driver

has failed.

3. Synchronization: Threads executing in the driver need to synchronize with other

threads to ensure they do not corrupt shared state in the kernel, driver, or device.

To achieve these goals, I rely on well-understood compile-time software fault isola-

tion (SFI) [109]. As a driver entry point operates on data shared with the rest of the driver,

the SFI mechanism must allow access to such data but prevent its corruption. FGFT there-

fore executes isolated code on a minimal copy of the driver and kernel, which is a copy of

data referenced from an entry point but not entire structures. For example, when a network

driver issues an ioctl to update its transmit ring parameters, FGFT uses points-to analysis

and pre-determines the fields an entry point can access, such as netdev→priv→tx_ring

and netdev→priv→rx_ring, and will only generate marshaling code to copy in/out only

these fields to reduce the generated code and the unnecessary copying of unused fields. If

the entry point does not fail, FGFT merges the copy back into the real driver and kernel

structures. On a failure, the copy is discarded. In effect, FGFT executes the suspect entry

point as a transaction using lazy version management [52].

However, not all data can be copied. Structures shared with the device, such as

network transmit and receive rings, cannot be copied because the device will not share

the copied structure. Instead, FGFT grants suspect code direct read and/or write access

to these structures and relies on device-state checkpointing to restore these structures fol-

lowing a failure. Furthermore, driver code used for recovery cannot be isolated and must

be trusted.
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Figure 4.2: FGFT replicates driver entry points into a normal driver and an SFI driver module. A runtime
support module provides communication and recovery support.

I implemented FGFT for the Linux 2.6.29 kernel. Figure 4.2 shows the components

of FGFT. I describe how FGFT provides isolation, communicates with isolated code, and

detects failures.

4.2.1 Software Fault Isolation

As FGFT targets open-source Linux device drivers, I implement SFI using a source-code

rewriting tool called FGFT Isolator written using CIL [72]. It generates isolation code into

the driver and produces communication code, described below, for communicating with

the isolated code.

Isolator generates an additional driver module called the SFI module that contains

a copy of all suspect entry points and all driver functions transitively called from those

functions, instrumented for SFI. In addition, Isolator generates a new version of the driver

that invokes the SFI module entry points. At the top of the existing entry points, Isolator

inserts a test to see whether to execute normally or in isolation, and if so invokes the SFI

module.

The decision to invoke a given entry point in isolation can be made in one of three

ways. First, a developer can use the attribute __attribute__((isolate)) to manually

specify which functions to isolate. This causes the function to always execute with isola-



90

tion. Second, FGFT can automatically use any static analysis tool to identify buggy code

and which entry points are affected. These entry points are then always executed with iso-

lation. Finally, the decision can be made at run time. A fault management system, such as

the Solaris Fault management Daemon [98], can call into the SFI module and specify which

functions to execute with isolation. Furthermore, it can register a function pointer at run

time that takes the same arguments as the suspicious function and returns a decision of

whether to isolate or not.

In addition to producing the SFI driver code, Isolator produces communication code

that invokes the SFI driver and copies in the minimal driver and kernel state needed by the

suspect entry points, copies out any changes made by the SFI driver, and initiates recovery

following a detected failure. Isolator manages resource allocation, synchronization and

I/O across the two copies. Isolator only detects memory failures. For other failures, such

as arithmetic exceptions, I trap processor exceptions and check if they originate from SFI

module.

Isolator uses CIL’s memory tracking module [72] to instrument all memory refer-

ences in the driver. It inserts a call to our memcheck function that verifies the target of a load-

/store is valid. If not, it detects a failure and invokes the recovery mechanism. The memcheck

routine consults a range table to verify memory references and provide fine-grained mem-

ory protection by only allowing access to driver and kernel data as identified at compile

time. This table contains the addresses and lengths of copied data structures and buffers

shared with the device. The range table is created on every invocation of a suspect entry

point and flushed on return.

I do not add all local variables to the range table because I trust the compiler to

generate correct code for moving variables between registers and the stack. However, if the

driver ever takes the address of a local variable, or creates an array as a local variable, then

Isolator adds a call in the instrumented SFI driver to add the variable’s address and length

to the range table and remove it from the range table when the variable goes out of scope.

Similarly, I trust the compiler to produce valid control transfers and do not instrument

branch or call instructions.
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Communication Code for Entry Points

FGFT Isolator generates stub code to invoke suspect entry points that copies data into and

out of the driver. Similar to RPC stubs, these stubs create a copy of the parameters passed

to the suspect code, but also copy any driver or kernel global variables it uses. When the

suspect entry point completes, stub code copies modified data structures and return values

back to the regular driver and kernel in the current thread. An alternative approach would

be to rely on transactional-memory techniques to dynamically create a copy of data as it is

referenced, which may have lower copying costs but higher run-time costs [12].

Isolator automatically identifies the minimal data needed for an entry point through

static analysis. This data includes the structure fields from parameters referenced by the

entry point or functions it calls plus fields of global variables referenced. As they copy data,

stubs update the range table with the address and length of each object. For objects that

cannot be copied (such as those shared with the device), stubs fill in the existing address of

the field, its length, and whether the entry point needs read, write, or read/write access.

If suspect code invokes the kernel, Isolator generates stubs for kernel functions that

copy parameters to the kernel and copies kernel return values back to suspect code. The SFI

driver may pass in fields from its parameters to the kernel as arguments. To avoid creating

a new copy of these fields, as would be done by RPC, FGFT maintains an object tracker

that maps the address of kernel and regular driver objects to the address of objects in the

SFI driver. Stub code consults the object tracker when calling into the kernel to determine

whether arguments refer to a new or existing object. If an object exists, stubs copy the

argument back to the existing object and otherwise temporarily allocate a new object. To

support recovery, stubs may generate a compensation entry in a kernel undo log. This log

records operations that must be reversed on failure, such as freeing memory allocations.

The stub code must know the layout of data structures and whether data is shared

with the driver in order to correctly copy data. As driver code often contains ambiguous

data structures such as void * pointers or list pointers (e.g., struct list_head), I rely on

programmer-provided annotations to disambiguate such code [118]. These annotations
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also declare which structure fields or parameters are shared with the device and should

not be copied. In Section 4.4, I evaluate the difficulty of providing annotations.

Some driver functions trigger synchronous callbacks. For example, the pci_register_driver

function causes a callback on the same thread to the driver’s probe function. FGFT treats

the callback as a nested transaction: it causes another isolated call operating on a second

copy of the data.

Resource Access from SFI module

Some resources cannot be copied into the driver because they attach additional semantics

or behavior to memory.

I/O memory. Driver entry points may communicate with the device by writing to I/O

memory. Stubs grant the SFI driver read/write access to memory-mapped I/O regions and

memory shared with the device via dma_alloc_coherent. Isolator identifies these regions

with annotations and creates stubs that grant drivers direct read/write access.

Locks. Drivers synchronize with other threads using driver spin locks and mutexes. Hence,

SFI grants read access to driver locks and calls the locking API to acquire/release the locks.

The stub code for kernel locking routines add a compensation entry to the kernel undo log

to release the lock after a failure. To ensure that changes made by suspect code are not seen

by the rest of the kernel, the lock stubs defer releasing driver locks until after the entry point

returns to the kernel. Apart from driver locks, drivers may acquire kernel-defined locks

indirectly through kernel calls. FGFT does not expand the scope of these locks and releases

them upon failure through compensation entries in the kernel undo log. Drivers can also

directly manipulate kernel data structures while holding kernel-defined locks. FGFT will

not recover correctly for such entry points. However, this is increasingly rare in Linux and

there is an effort to ensure that kernel data structures are not directly exposed to drivers.

The above mechanism protects shared structures across driver threads. However,
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the suspicious thread can also block waiting for data to arrive on shared structures that

have been copied over from other driver threads. Fortunately, resynchronization across

driver threads is uncommon. Using static analysis, I measure how often driver threads

wait for other threads using the Linux’s completion family of functions or by polling in a

loop.

Overall, I find driver resynchronization occurs in 2.7% of drivers and 1.4% of all en-

try points. Most re-synchronizations occur during communication with the device: drivers

wait for a device operation to finish and a callback sets the completion structure. In most

cases, only the completion structure responsible for device notifications needs to be anno-

tated. However, complex drivers that communicate with devices using a layered interface,

such as SCSI or WIFI, may wait for lower layers to communicate with device and update

the appropriate drivers structures with the result of the operation. In such cases, annota-

tions are required for completion structures and shared device structures for the driver to

work correctly. Finally, driver threads also sleep inside loops waiting for other threads to

finish by polling reference counts or driver structures. If these threads modify state across

threads, then FGFT will not recover correctly for this fraction of drivers/entrypoints.

Memory allocation. Stubs for allocators invoke the kernel allocator, add the returned

memory region to the range table and generate a compensation entry to free the memory

on failure. The newly allocated memory is not copied into the driver because its contents

do not need to be preserved. For kernel callbacks that implicitly allocate memory an ap-

propriate compensation entry is generated.

4.2.2 Failure Detection

In addition to protecting the kernel and regular driver code from corruption, isolation

provides the primary means to detect failures. FGFT’s SFI mechanism implements spa-

tial memory safety [69]: every memory reference must be within an object made accessible

during the copy process. Thus, references outside the range table indicate a failure.
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Stubs can detect additional failures when copying data back to the kernel. For ex-

ample, if the driver writes an invalid address into a data structure, the copying code will

dereference that address and generate an exception. I also modified the Linux kernel ex-

ception handlers to detect unexpected traps from the SFI driver as failures. If one occurs,

the trap handler sets the instruction pointer to the recovery routine. This is the only change

to the Linux kernel, and required 38 lines of code.

The detection mechanisms may miss several categories of failures. First, if the driver

violates its own data structure invariants, stubs may not detect the problem. Recent work

on identifying and verifying data structure invariants could detect these faults [15]. For

example, if a suspect entry point sets a flag indicating that a field is valid but does not

set the field, then corruption will leak out of the SFI driver. Second, the driver does not

provide strong type safety, so the driver may assign a structure field to the wrong type of

data. While this may be detected when the stub copies data, it is not guaranteed. Finally,

FGFT does not enforce kernel restrictions on the range of scalar values, such as valid packet

lengths.

4.3 Checkpoint-based recovery

FGFT is built around checkpoint-based recovery. While checkpointing and restoring mem-

ory state is simple using techniques such as transactional memory or copy-on-write, it

has not previously been possible to capture the state of a device. Without this, restoring

memory state will lead to a driver that is inconsistent with respect to its device, believing

incorrectly that it has performed an action or is operating in a different mode. I first de-

scribe device state checkpointing, which is the basis of FGFT’s recovery mechanism. I then

describe how FGFT uses device checkpoints to recover in case of a failure.

4.3.1 Device state checkpointing

To be useful, a device checkpoint mechanism should fulfill the following goals:
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(a) (b) (c)

int rtl8139_suspend ( ... )

/* save PCI config state */
pci_save_state (pdev);

/* disable device */
if (!netif_running (dev))

return 0;
netif_device_detach (dev);

spin_lock_irqsave
(&tp->lock, flags);

/* Disable interrupts,
stop Tx/Rx. */

RTL_W16 (IntrMask, 0);
RTL_W8 (ChipCmd, 0);

/* Copy out device state. */
dev->stats.rx_missed_errors +=

RTL_R32 (RxMissed);
RTL_W32 (RxMissed, 0);
spin_unlock_irqrestore

(&tp->lock, flags);

/* Suspend device */
pci_set_power_state (pdev, PCI_D3hot);

int rtl8139_checkpoint ( ... )

spin_lock_irqsave
(&tp->lock, flags);

/* save PCI config state */
pci_save_state (pdev);

/* Copy out device state. */
dev->stats.rx_missed_errors +=

RTL_R32 (RxMissed);

spin_unlock_irqrestore
(&tp->lock, flags);

int rtl8139_restore (...)

spin_lock_irqsave
(&tp->lock, flags);

/* disable device */
netif_device_detach (dev);

/* restore bus state */
pci_restore_state (pdev);

/* restart device */
if (!netif_running (dev))

return 0;
rtl8139_init_ring (dev);
rtl8139_hw_start (dev);

RTL_W32 (RxMissed, 0);

/* re-enable device */
netif_device_attach (dev);
spin_unlock_irqrestore

(&tp->lock, flags);

Figure 1: The above figures show the original suspend routine and refactored checkpoint and restore routines in rtl8139
driver. Driver checkpoint a consistent snapshot, while the heavy work of stopping and starting the device is moved to
restore.Drivers may also save non-standard registers during suspend which should be done during checkpoint.

4. Addresses of memory bu↵ers shared with the driver,
such as the DMA ring bu↵ers use by network
drivers to send or receive packets.

We note that a checkpoint may not actually contain the
full state of the device. Rather, it must contain enough
information that functionality can later be restored with-
out a↵ecting applications. Thus, device state that can
be recreated or recomputed need not be saved. Further-
more, the checkpoint only contains the device state. To
be restored properly, it requires a consistent copy of the
driver state taken at the same. Thus, it must be paired
with mechanisms such as transactional memory or copy-
on-write to save the driver’s state.
The configuration state is the easiest to save. Most

buses provide a method to save configuration infor-
mation. For example, PCI drivers in Linux use
pci save state, save includes a set of standard registers
and the base address registers (BARs). The remaining
state, though, must be handled separately by each driver.
The driver explicitly saves register contents and coun-

ters in an internal driver structure. The di↵erence be-
tween registers and counters arises during recovery, de-
scribed below, because counter values cannot be written
back to the device.
Memory bu↵ers shared with the device can be recre-

ated. As a result, most device drivers do not include the
address of these bu↵ers in a checkpoint. Instead, they
free bu↵ers during suspend and re-allocates them during
resume.

Figure 2(a) diagrams the tasks performed by suspend
and resume, and shows how that code is shu✏ed to cre-
ate checkpoint and restore functionality. Of the suspend
code, checkpointing reuses all the functionality except
detaching the device with the kernel and suspending the
device. As an example, Figure 2(b) shows the code to
checkpoint the 8139too driver.
It may be necessary to checkpoint a driver while it is

in use. Existing suspend routines assume the device is
quiescent when the device state is saved. Checkpoint,
though, may be called at any time. Thus, it must be syn-
chronized with other threads using the driver. However,
because device state checkpointing must be coordinated
with other mechanisms for capturing driver state, we do
put synchronization code in checkpoint. Instead, we re-
quire that the caller of checkpoint synchronize with other
threads. In Section 4 we show how this can be done with
existing driver locks.
3.3 Restore
The restore operation can be constructed from a mix of
suspend and resume code. Normally the resume function
is invoked when the device just returned to full power
needs to be re-configured. In the case of a checkpoint,
though, the device is already running at full power. Thus,
resume invokes the bottom half of the suspend routine to
disable the device before restoring state.
The restore operation proceeds in four steps:

4

Device suspend
Save configuration state

Save device registers

Disable device

Copy s/w device state

Suspend device

Device resume

Restore config state

Restore device registers

Restore s/w state & reset

Attach device

Device ready

Device checkpoint

Save configuration state

Save device registers

Lock device 

Unlock device

Device restore

Restore config state

Restore device registers

Lock device 

Unlock device

Copy s/w device state

Disable device

Re-start/enable device

Figure 4.3: Our device state checkpointing mechanism refactors code from existing suspend-resume routines
to create checkpoint and restore for drivers as shown in Figure (a). The checkpoint routine only stores a
consistent device snapshot to memory while the restore loads the saved state and re-initializes the device.
Figures (b) and (c) show checkpoint and restore routines in the rtl8139 driver.

1. Lightweight. There should be no continuous monitoring or long-latency operations.

2. Broad. The mechanism must work with a wide range of devices/drivers, including

those with unique behavior.

3. Consistent. Drivers are often invoked on multiple threads, and checkpoints must be

a consistent view of device state.

I identified the suspend/resume code already present in many drivers as having

much of the functionality needed to implement checkpoint and restore. I next describe how

power management for drivers works, and then describe how to reuse the functionality

for driver recovery with checkpoints.

Suspend/Resume Background

Modern operating systems can dynamically reduce their power consumption to provide

a hot standby mode, also called suspend to RAM, which disables processors and devices but

leaves state in memory. One major component of reducing power is to disable devices.

Thus, operating systems direct devices to switch to a low-power state when the system

goes into standby mode. The behavior of devices is specified by the ACPI specification for

the platform and by buses, such as PCI and USB.
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In order to transition quickly between standby and full-power mode, drivers imple-

ment a power-management interface to save device state before entering standby mode,

and to restore device state when leaving standby mode [25, 65]. These operations must

be quick to allow fast transitions. The system-wide suspend-to-RAM mechanism saves

the memory state of the driver, and the driver is responsible for saving and restoring any

volatile device state. Drivers implement a power management interface with methods to

save and restore state. For example, Linux PCI devices implement these two methods:

int (*suspend) (struct pci_dev *dev,

pm_message_t state);

int (*resume) (struct pci_dev *dev);

When saving device state to memory, the driver may invoke the bus to save bus

configuration data, as well as explicitly save the contents of select device registers that are

not captured by the configuration state. The driver then instructs the device to suspend

itself. Simple devices that have no state simply disable the device.

Upon resume, drivers wake the device, optionally perform a soft reset, restore their

saved state. Since the latency of a system to respond post-resume is critical, the initial-

ization is lightweight compared to restarting the driver, as it assumes the device has not

changed. Similar to suspend, simple devices may just re-enable the device without restor-

ing state.

For a system to support standby mode, all drivers must support power manage-

ment. While not all drivers do (Linux is notorious for incomplete support [68]), it is widely

implemented by Windows and MacOS drivers, and support in Linux drivers is improving.

The functionality provided by driver power management is very similar to what is

needed for device state checkpointing. First, it provides the ability to save device state to

memory in a way that allows applications to continue functioning. Second, even though

the device may continue to receive power, the soft reset that occurs when re-enabling a

device ensures that any previous state is replaced by the restored state. Finally, power

management is implemented by most commonly used drivers. However, it is not directly
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usable for checkpointing: power management routines lack the ability to continue execut-

ing after suspending a device because the device has been disabled.

Checkpoint

Device state checkpointing is constructed from a subset of the device suspend support

already present in drivers. A device may have many distinct forms of state, each of which

require a different mechanism for checkpoint:

1. Device configuration information published through the bus configuration space.

2. Device registers with configuration data specific to the device.

3. Counters and statistics exported by the device and aggregated by the driver.

4. Addresses of memory buffers shared with the driver, such as the DMA ring buffers

used by network drivers to send or receive packets.

I note that a checkpoint may not actually contain the full state of the device. Rather, it

must contain enough information that functionality can later be restored without affecting

applications. Thus, device state that can be recreated or recomputed need not be saved.

Furthermore, the checkpoint only contains the device state. To be restored properly, it

requires a consistent copy of the driver state taken at the same time. Thus, it must be paired

with mechanisms such as transactional memory or copy-on-write to save the driver’s state.

The configuration state is the easiest to save. Most buses provide a method to save

configuration information. For example, PCI drivers in Linux use pci_save_state, that

saves a set of standard registers and the base address registers (BARs) to memory. Each

driver, though, must handle the remaining state, separately.

The driver explicitly saves register contents and counters in an internal driver struc-

ture. The difference between registers and counters arises during recovery, described be-

low, because counter values cannot be written back to the device.

Memory buffers shared with the device can be recreated. As a result, most device

drivers do not include the address of these buffers in a checkpoint. Instead, they free
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buffers during suspend and re-allocate them during resume.

Figure 4.3(a) diagrams the tasks performed by suspend and resume, and shows how

that code is shuffled to create checkpoint and restore functionality. Of the suspend code,

checkpointing reuses all the functionality except detaching the device with the kernel and

suspending the device. As an example, Figure 4.3(b) shows the code to checkpoint the

8139too driver.

It may be necessary to checkpoint a driver while it is in use. Existing suspend rou-

tines assume the device is quiescent when the device state is saved. Checkpoint, though,

may be called at any time. Thus, it must be synchronized with other threads using the

driver. Because device state checkpointing must be coordinated with other mechanisms

for capturing driver state, we do not put our own synchronization code in the checkpoint

routine but re-use existing device locks in the driver. Device locks protect against conflict-

ing configuration operations, or operations like resetting the device when I/O operations

are in progress. This ensures that we do not corrupt device state assumed by another

thread in progress when we reset device state in case of a failure.

Restore

The restore operation can be constructed from a mix of suspend and resume code. Nor-

mally the resume function is invoked when the device returns to full power and needs to

be reconfigured. In the case of a checkpoint, though, the device is already running at full

power. Thus, resume invokes the bottom half of the suspend routine to disable the device

before restoring state.

The restore operation proceeds in four steps:

1. Disable the device to put it in a quiescent, known state.

2. Restore bus configuration state.

3. Re-enable the device.

4. Restore device-specific state.
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Figure 4.3(c) shows the code to restore state for a simple network driver. Of the

four categories of driver state, only configuration state and saved device registers can be

reloaded. Counters, which cannot be written back to the device, are restored by adjusting

the driver’s version of the counter. Typically, the driver will read the device counter and

update a copy in memory, and reset the device’s counter. To restore the device’s counter

state, the driver only resets the device’s counter; the in-memory copy of the counter must

be saved as part of the driver’s memory state.

To restore shared buffers, the driver releases existing shared buffers after disabling

the device. As part of re-enabling the device, it recreates shared buffers and notifies the

device of their new addresses. While this slows restore, it makes checkpoint very efficient

because only irretrievable state is saved.

Unlike suspend-resume, it may be useful to use device state checkpointing from

interrupt contexts where sleeping is not allowed. As a result, checkpoint and restore code

must convert sleeps to busy waits (udelay in Linux) and use memory allocation flags safe

for interrupt context (GFP_ATOMIC in Linux).

Compared to full-driver restart, resume improves performance because it does not

re-invoke device probe, often the lengthiest part of starting a device normally. Further-

more, drivers for newer buses such as USB and IEEE1394 do not restart the device because

the bus handles this operation. This further reduces restore times. For PCI devices, a

further optimization is to avoid changing the power mode of the device. However, we

observed that many drivers do not require actually powering down the device before per-

forming restore. For these drivers, restore can be sped up by skipping these unnecessary

power mode changes.

Discussion

Device state checkpointing provides several benefits compared with a logging approach

to capturing driver/device state. First, it can be invoked at any time and has no cost until

invoked. Thus, it has no overhead for infrequent uses. Second, it handles state unique



100

to a device, such as configuration options. Correct standby operation demands that de-

vices remain correctly configured across standby, and hence drivers must already save

and restore any required state. However, device state checkpointing relies on power man-

agement code, which may not be present in all devices. It also requires a programmer to

implement checkpoint/restore for every driver. We evaluate these concerns in Section 4.4.

Limitations. There is a risk in utilizing a mechanism for an unintended purpose: the

driver continues running following a checkpoint and may thus further modify the device

state. In contrast, devices are normally idle between suspend and resume. Thus, it is

possible that the state saved is insufficient to fully restore the device to correct operation.

However, the power management specifications require drivers to fully capture device

state in software since devices can transition to an even lower power state where the de-

vice is powered off. In such cases, drivers must be able to be restore their original state,

following a full reset. Thus, suspend must store enough information to restore from any

state.

FGFT does not work with devices with persistent internal state, such as disks and

other storage devices, since restore will only restore the transient device state and not the

persistent state, such as the contents of files. As a result, use of checkpoints must be coordi-

nated with higher-level recovery mechanisms, such as Membrane [100], to keep persistent

data consistent.

4.3.2 Recovery with checkpoints

I now describe how FGFT uses isolation and device checkpoints to perform recovery from

failures. When a failure is detected, communication stubs call a recovery routine that is

responsible for restoring correct driver operation.

Failure anticipation. To prepare for an eventual recovery, generated stubs create a device

checkpoint before invoking a suspect entry point. They invoke the checkpoint routine. In

addition, stubs for kernel functions log compensation entries to undo their effects in the
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Figure 4.4: FGFT behavior during successful and failed entry point executions.

kernel undo log. Driver state is not explicitly checkpointed; instead, suspect code operates

on a copy of driver state as described in Section 4.2. In addition, the stub saves its processor

register state, allowing a jump right into the stub if the driver fails.

Recovery steps. In case a failure is detected by SFI or processor exceptions originating

from a suspect module, the recovery routine restores driver operation through a sequence

of steps as shown in Figure 4.4:

1. Unwind thread. If not already in the stub, the instruction pointer is set to the address

of the recovery code in the entry point’s stub, which reloads the saved registers.

Nested calls to drivers are logically handled as separate transactions, so there is no

need to unwind the thread to the outermost entry point.

2. Restore device state checkpoint. The stub recovery code calls the driver’s restore rou-

tine to restore the device state.

3. Free call state. All temporary structures created for the suspect entry point call such

as the range table, object tracker, and copies of kernel/driver structures are re-

leased.

4. Release locks. Any locks acquired before or during the call to the SFI driver are re-

leased, allowing other threads to execute.

If a driver entry point fails, the stub returns an appropriate error indicator, such as

a NULL pointer or an error code, and relies on higher-level code to handle the failure. As

only the single entry point fails, this failure has little impact on applications. All applica-
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tion state relating to the device, such as open handles, remain valid. Furthermore, other

threads in the driver continue to run as soon as the recovery process completes and releases

all acquired locks.

Compared to other driver isolation systems, the recovery process is much simpler

because only one thread is affected, so other threads are not unwound. In addition, the

driver state is left unmodified, so it is not saved and restored. Finally, device state is re-

stored quickly from a checkpoint rather than by replaying a log. Hence, we see that check-

pointing device state results in quicker and simpler recovery semantics for driver recovery.

4.3.3 Implementation effort

A key goal for FGFT is to reduce the implementation effort to isolate a driver. FGFT con-

sists of minimal modifications to the kernel exception handlers (38 lines of code), a kernel

module containing the object tracker, range table, and recovery support, and the Isolator

tool in OCaml. The module is 1,200 lines of C code, and Isolator is 9700 lines of OCaml that

implement: SFI isolation (400 lines), stub generation (7,800 lines), and static analysis of ref-

erences to parameter fields (1,500 lines). In comparison, Nooks adds 23,000 lines of kernel

code (85x more than FGFT) to isolate and reload device drivers and shadow drivers add

another 1,100 lines of code for recovery. FGFT also does not require any wrappers around

the driver interface. Nooks required 14,000 lines of manually written wrappers, which

are hard to maintain as the kernel interface changes. FGFT’s isolator tool automatically

generates similar code for stubs.

4.4 Evaluation

I implemented device state checkpoint and fine-grained fault tolerance for the Linux 2.6.29

kernel for six drivers across three buses. The evaluation examines the following aspects of

FGFT:



103

1. Fault Resilience. What failures can fine-grained fault tolerance handle? I evaluate

FGFT using a series of fault injection experiments and report our results.

2. Performance. What is the performance loss of fine-grained fault tolerance on steady-

state operation? I report the performance cost for applying FGFT on support and

core I/O routines.

3. Recovery Time. What is the downtime caused by a driver failure? I compare the time

taken by FGFT to restore the device and cleanup the failed driver thread state with

the time taken to unload and reload a driver.

4. Usefulness of FGFT. Is selectively isolating entry points useful? I evaluate whether

suspect entry points can be identified in drivers and whether they reduce the amount

of code isolated.

5. Device Checkpoint Support. Is re-using existing power management functionality rea-

sonable? I examine the frequency of power management support in existing drivers

that facilitates device checkpoints.

6. Developer Effort. What is the overhead to the developer to enforce isolation in the

system? I measure the effort needed to annotate a driver for isolation and to add

checkpointing code.

Unless otherwise specified, I compare FGFT against unmodified drivers running on an

unmodified 2.6.29 Linux kernel.

4.4.1 Fault Resilience

I first evaluate how well FGFT can handle driver bugs using a combination of dynamic

and static fault injection over six drivers. These tests evaluate both the ability of fine-

grained fault tolerance to isolate and recover driver state as well as the ability of device

state checkpointing to restore device functionality. Table 4.1 describes the types of faults

inserted in the SFI module. Static fault injection modifies the driver source code to emulate

programming bugs, while dynamic fault injection modifies driver data while running to

emulate run time errors. I perform a sequence of trials that test each fault site separately.
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Fault Type Description of fault
Corrupt pointers Dynamic: Corrupt  all  pointers  refer-

enced in a function to random values.
Corrupt stack Dynamic: corrupt  execution  stack  by

copying large chunks of data over stack
variable addresses.

Corrupt  expres-
sions

Static: corrupt  arithmetic  instructions
by adding invalid operations (like di-
vide by zero).

Skip assignment Static: remove assignment operations in
a function.

Skip parameters Dynamic: zero incoming parameters in
a function.

Table 4.1: Faults injected to test failure resilience represent runtime and programming errors. Dynamic
faults are invoked using ioctls, and static faults are inserted with an additional compiler pass.

Driver Injected
Faults

Benign
Faults

Native
crashes

FGFT
crashes

8139too 43 0 43 NONE
e1000 47 0 47 NONE
ens1371 36 0 36 NONE
pegasus 34 1 33 NONE
psmouse 22 1 21 NONE
r8169 46 0 46 NONE
Total 258 2 256 NONE

Table 4.2: Fault injection table with number of unique faults injected per driver. FGFT is able to correctly
restore the driver and device state in each case.

During each experiment, I run applications that use the driver to detect whether

a driver failure causes the application to fail. For network, I use ssh, and netperf, and

for sound I use aplay and arecord from the ALSA suite. I tested the mouse by scrolling

the device manually as I performed the fault injection experiments. After each injection

experiment, I determine if there is an OS/driver crash or the application malfunctions. We

re-invoke the failed entry point without the fault to ensure that it continues to work, and

that resources such as locks have been released.

I injected a total of 258 unique faults in the native and FGFT drivers. Table 4.2 shows

the number of faults injected for every driver and the outcome. For the native driver, all

but two faults crashed the driver or resulted in kernel panics. The two benign faults were

missing assignments.

In contrast, when I injected faults into driver entry points protected by FGFT, the

driver and the OS remain available for every single fault. Furthermore, in every case,

applications continue to execute correctly following the fault. For example, the sound
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application aplay skips for a few milliseconds during driver recovery but continued to

play normally. The shell notes this disruption with the message “ALSA buffer underrun.”

I also verify that internal driver and device state is correctly recovered using the

ethtool interface for network drivers. We find that when failures happen while changing

configuration settings, re-reading settings after a crash always returns correct values.

Finally, I verify that changes to drivers made using non-class interfaces, such as

the proc and sys file systems, before injecting failures and present following recovery. In

contrast, shadow drivers cannot replay these actions since they cannot capture non-class

driver interactions.

4.4.2 Performance

The primary cost of using FGFT is the time spent copying data in and out of the SFI module

and creating device checkpoints. I measure performance with a gigabit Ethernet driver, as

it may send or receive receive more than 75,000 packets per second. Thus, the overhead of

FGFT will show up more clearly than on low-bandwidth devices. I evaluate the runtime

costs of using FGFT and regular versions of drivers in four configurations:

1. Native: Unmodified e1000 driver.

2. FGFT static: Statically isolate 75% of code (all off I/O-path).

3. FGFT dyn-1/2: Dynamically isolate every other packet in I/O path.

4. FGFT dyn-all: Dynamically isolate every packet in I/O path.

The dynamic experiment measures the additional cost of choosing at runtime whether to

invoke the regular or SFI version of a function. Finally, the dyn-all test represents the worst

case of invoking the SFI module on the I/O path for a high-bandwidth device.

Our test machine consists of a 2.5 GHz Intel Core 2 Quad system configured with 4

GB DDR2 DRAM and an Intel 82541PI gigabit NIC running FGFT. I measure performance

with netperf [45] by connecting our test machine to another machine with 1.2 GHz Intel

Celeron processor and a Belkin NIC with a crossover cable. Table 4.3 reports the average
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One thread
System Throughput CPU

Native 843.6 Mb/s 2.5%
FGFT static 843.6 Mb/s 2.5%
FGFT dyn-1/2 811.5 Mb/s 2.9%
FGFT dyn-all 784.4 Mb/s 3.4%

Multiple threads
Threads System Throughput CPU

10 Native 847.7 Mb/s 3.0%
FGFT dyn-all 791.4 Mb/s 4.2%

100 Native 941.7 Mb/s 4.2%
FGFT dyn-all 860.2 Mb/s 10.8%

Table 4.3: TCP streaming send performance with netperf for regular and FGFT drivers with checkpoint based
recovery.

of 5 runs.

In the static test where code off the I/O-path code is isolated, performance and CPU

utilization are unaffected. These results demonstrate that FGFT achieves the goal of only

imposing a cost on isolated code.

For the dyn-1/2 test that isolates at runtime, entry points on the I/O path (the packet

send routine) for every other packet, bandwidth dropped 4% and CPU utilization increased

0.5%. Thus, selectively applying isolation, even on critical I/O paths, has a small impact.

The performance drops further when I isolate critical path code on every request

since I copy shared driver and kernel data across modules for each packet being transmit-

ted. I find a 7.5% performance drop and 1% higher CPU utilization. FGFT is designed to

limit isolation costs to specific requests and hence pays a cost of isolation because it needs

to setup isolation (create copies) as each packet requests isolation. Overall, these results

show that FGFT can be applied at no cost to high bandwidth devices off the I/O path and

at marginal cost on the I/O path.

Device Locking: I run netperf using multiple threads to measure the overhead from

device locks introduced at isolated entry points. I find that bandwidth drops an additional

2.6% and 4.6% with 10 and 100 threads respectively, as compared to FGFT running in a sin-

gle thread. I also test the ens1371 sound driver and find that playing multiple overlapping

sound files does not result in any lags or distortions. These results show that FGFT intro-

duces low overhead with high bandwidth devices running multiple threads.
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Driver Class Bus Restart
recovery

FGFT
recovery Speedup

8139too net PCI 0.31s 70µs 4400
e1000 net PCI 1.80s 295ms 6
r8169 net PCI 0.12s 40µs 3000
pegasus net USB 0.15s 5ms 30
ens1371 sound PCI 1.03s 115ms 9
psmouse input serio 0.68s 410ms 1.65

Table 4.4: FGFT and restart based recovery times. Restart-based recovery requires additional time to replay
logs running over the lifetime of the driver. FGFT does not affect other threads in the driver.

Driver Class Bus Checkpoint
times

Restore
times

8139too net PCI 33µs 62µs
e1000 net PCI 32µs 280ms
r8169 net PCI 26µs 30µs
pegasus net USB 0µs 4ms
ens1371 sound PCI 33µs 111ms
psmouse input serio 0µs 390ms

Table 4.5: Latency for device state checkpoint/restore.

4.4.3 Recovery Time

A major benefit of checkpoint-based recovery is the speed of restoring service. Table 4.4

lists the time taken by the driver to recover using FGFT and by unloading and reloading

the driver. I measure recovery times by recording the time from detection of failure to

completion of the restore routine. Overall, FGFT is between 1.6 and 4,400 times faster than

restart recovery, and between 145ms and 1.5s faster. The drivers with the largest speedup

have complicated probe routines that are avoided by restoring from a checkpoint. Hence,

FGFT provides low-latency recovery and frequently offers an order-of-magnitude lower

recovery latencies.

Checkpoint/restore latency. I examine the device checkpoint latencies to understand the

source of our recovery performance in the previous section. Table 4.5 shows the latency of a

checkpoint or restore for the same six drivers. Checkpointing is very fast, taking only 20µs

on average and 33µs at worst. Thus, it is fast enough to be called frequently, such as before

the invocation of most driver entry points. Restore times are longer, with a range from 30µs

for the r8169 network driver to 390ms for psmouse. USB drivers store less state because

the USB bus controller stores configuration information instead of the driver. Thus, during

a normal resume, the bus restores configuration state before calling the driver to resume.
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The psmouse driver represents a legacy device and does not support suspend/resume.

Instead, I re-use existing driver code to reset the mouse.

4.4.4 Utility of Fine Granularity

I evaluate whether selectively isolating specific entry points is useful by looking for evi-

dence that driver bugs are confined to one or a few entry points. If the functions with bugs

are reachable through a large number of entry points, then full driver isolation is more use-

ful than per-entry point isolation. For example, if a bug occurs in a low level read routine,

then the bug will affect a large number of entry points.

In order to have a large data set, I use a published list of hardware dependence

bugs [47] that represent one of the larger number of unfixed bugs in the drivers [24]. I

were able to map these bugs in 210 drivers (541 total bugs) to our kernel under analysis.

For each driver, I calculate the number of entry points and the fraction of code in the driver

that must be isolated.

I find that the bugs are reachable through 643 entry points, for an average of 3 per

driver. As a comparison, these drivers have a total of 4,460 entry points (21 per driver),

so only 14% of entry points must be isolated. The code reachable from these entry points

comprises only 18% of the code in these drivers. These results indicate that at least some

classes of driver bugs are confined to a single entry point, and therefore FGFT can reduce

the cost of fault tolerance as compared to isolating the entire driver.

4.4.5 Device Checkpoint Support

Device state checkpointing relies on existing power-management code. I measure how

broadly it applies to Linux drivers by counting the number of drivers with power-management

support. While modern ACPI-compliant systems require that all devices support power

management, many legacy drivers do not.

I perform a simple static analysis over all network, sound, and storage drivers us-
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Class Bus Drivers
reviewed Drivers with PM

net PCI 104 68 65%
net USB 32 27 84%
net PCMCIA 4 4 100%
sound PCI 72 63 88%
sound USB 3 1 33%
sound PCMCIA 2 2 100%
ATA PCI 61 45 74%
SCSI USB 1 1 100%
SCSI PCMCIA 5 5 100%
Total - 284 216 76%

Table 4.6: Drivers with and without power management as measured with static analysis tools. USB drivers
(audio and storage) support hundreds of devices with a common driver, and support suspend/resume.

Driver Driver LoC
Isolation annotations

Driver An-
notations

Kernel An-
notations

8139too 1,904 15
20e1000 13,973 32

r8169 2,993 10
pegasus 1,541 26 12
ens1371 2,110 23 66
psmouse 2,448 11 19

Table 4.7: Annotations required by FGFT isolation mechanisms for correct marshaling. Kernel annotations
are common to a class, and driver annotations are specific to a single driver.

ing the PCI, USB, and PCMCIA bus in Linux 2.6.37.6. The analysis scans driver entry

points and identifies power management callbacks. Table 4.6 shows the number of drivers

scanned by class and bus and the number that support power management. Overall, we

found that 76% of the drivers support power management. Of the drivers that do not sup-

port power management, most were either very old, from before Linux supported power

management, or worked with very simple devices. Only two modern devices, both Intel

10gb Ethernet cards, did not provide suspend/resume. Thus, I find that nearly all modern

devices support power management and can therefore support device state checkpointing.

4.4.6 Developer effort

The primary development cost in using FGFT is adding annotations, which describe how

to copy data between the kernel and the SFI module. Table 4.7 shows the number of an-

notations needed to apply FGFT to every function in each of the tested drivers. I separate

annotations into driver annotations, which are made to the driver code, and kernel-header an-
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Driver Recovery additions
LOC

Moved
LOC

Added
8139too 26 4
e1000 32 10
r8169 17 5

pegasus 22 4
ens1371 16 6
psmouse 19 6

Table 4.8: Developer effort for checkpoint/restore driver callbacks.

notations, which are a one-time effort common to all drivers in the class. These annotations

are the incremental cost of making a driver fault tolerant, and the implementation effort

of Isolator and the kernel code described in Section 4.3 are the up-front cost.

Overall, drivers averaged 20 annotations, with more annotations for drivers with

more complex data structures. Most driver classes required 20 or fewer kernel-header

annotations except for sound drivers, which have a more complex interface and required

66 annotations. Thus, the effort to annotate a driver is only modest, as annotations touch

only a small fraction of driver code. In comparison, SafeDrive [118] changed 260 lines

of code in the e1000 driver for isolation and another 270 lines for recovery. Nooks [103]

required 23,000 lines of code to isolate and reload drivers. Thus, these small annotations

to drivers may be much simpler than adding a large new subsystem to the kernel.

Checkpointing implementation. I evaluated the ease of implementing device state check-

pointing by adding support to the six drivers listed in Table 4.8. For each driver I show

the amount of code I copied from suspend/resume to create checkpoint/restore as well

as the number of new lines added. On average, I moved 22 lines of code and added six

lines. The new code adds support for checkpoint/restore in interrupt contexts and avoids

nested locks when the routines are invoked with a lock held. Even though device state

checkpointing requires adding new code, the effort is mostly moving existing code. In

comparison, implementing a shadow driver requires (i) building a model of driver behav-

ior and (ii) writing a wrapper for every function in the driver/kernel interface to log state

changes.
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4.5 Summary

The performance and development costs of existing driver fault-tolerance mechanisms

have restricted their adoption. In this chapter, I presented fine-grained fault tolerance,

a pay-as-you-go model for tolerating driver failures that can be dynamically invoked for

specific requests. Fine-grained fault tolerance is made possible due to device checkpoints.

This functionality is often considered to require a significant re-engineering of device drivers.

However, I demonstrate that checkpoint functionality is already provided by existing sus-

pend/resume code. While I only applied checkpoints to fault tolerance, there are more

opportunities to use device checkpoint/restore, such as OS migration, fast reboot, and

persistent operating systems that should be explored.
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Chapter 5
Related Work

To the best of my knowledge, Carburizer is the first research consideration of hardware

failures in device drivers. FGFT is the first system to focus on the problem of device startup

latency and only the second system to improve recovery in device drivers. Section 5.1

discusses past work comparisons with Carburizer. Section 5.2 compares past work with

FGFT.

5.1 Related work for Caburizer

Carburizer draws inspiration from past projects on driver reliability, bug finding, auto-

matic patch generation, device interface specification, and recovery.

Driver reliability Past work on driver reliability has focused on preventing driver bugs

from crashing the system. Much of this work can apply to hardware failures, as they man-

ifest as a bug causing the driver to access invalid memory or consume too much CPU. In

contrast to Carburizer, these tools are all heavyweight: they require new operating systems

(Singularity [95], Minix [42], Nexus [112]), new driver models (Windows UMDF [67], Linux
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user-mode drivers [54]), runtime instrumentation of large amounts of code (XFI [105] and

SafeDrive [118]), adoption of a hypervisor (Xen [32] and iKernel [104]), or a new subsystem

in the kernel (Nooks [103]). Carburizer instead fixes specific bugs, which reduces the code

needed in the kernel to just recovery and not fault detection or isolation. Thus, Carbur-

izer may be easier to integrate into existing kernel development processes. Furthermore,

Carburizer detects hardware failures before they cause corruption, while driver reliability

systems using memory detection may not detect it until much later, after the corruption

propagates through the system.

Bug finding Tools for finding bugs in OS code through static analysis [7, 8, 31] have fo-

cused on enforcing kernel-programming rules, such as proper memory allocation, locking

and error handling. However, these tools enforce kernel API protocols, but do not address

the hardware protocol. Furthermore, these tools only find bugs but do not automatically

fix them.

Hardware dependence errors are commonly found through synthetic fault injec-

tion [4, 40, 99, 119]. This approach requires a machine with the device installed, while

Carburizer operates only on source code. Furthermore, fault injection is time consuming,

as it requires injection of many possible faults into each I/O operation made by a driver.

Automatic patch generation Carburizer is complementary to prior work on repairing

broken error handling code found through fault injection [101]. Error handling repair is

an alternate means of recovering when a hardware failure occurs by re-using existing error

handling code instead of invoking a generic recovery function. Other work on automat-

ically patching bugs has focused on security exploits [27, 92, 94]. These systems also ad-

dress how to generate repair code automatically, but focus on bugs used for attacks, such

as buffer overruns, and not the infinite loop problems caused by devices.

Hardware Interface specification Several projects, such as Devil [64], Dingo [85], HAIL [97],

Nexus [112], Laddie [115] and others, have focused on reducing faults on the driver/device
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interface by specifying the hardware interface through a domain specific language. These

languages improve driver reliability by ensuring that the driver follows the correct pro-

tocol for the device. However, these systems all assume that the hardware is perfect and

never misbehaves. Without runtime checking they cannot verify that the device produces

correct output.

Recovery Carburizer relies on shadow drivers [102] for recovery. However, since our im-

plementation of shadow drivers does not integrate any isolation mechanism, the overhead

of recovery support is very low. Other systems that recover from driver failure, including

SafeDrive [118], and Minix [42], rely on similar mechanisms to restore the kernel to a con-

sistent state and release resources acquired by the driver could be used as well. CuriOS

provides transparent recovery and further ensures that client session state can be recov-

ered [28]. However, CuriOS is a new operating system and requires specially written code

to take advantage of its recovery system, while Carburizer works with existing driver code

in existing operating systems.

To achieve high reliability in the presence of hardware failures, fault tolerant systems

often use multiple instances of a hardware device and switch to a new device when one

fails [9, 43, 96]. These systems provide an alternate recovery mechanism to shadow drivers.

However, this approach still relies on drivers to detect failures, and Carburizer improves

that ability.

5.2 Related work for FGFT

FGFT draws inspiration from past projects on driver reliability, program partitioning and

software fault isolation systems.

Device driver recovery. Prior driver-recovery systems, including Nooks [103], Shadow

drivers [102], SafeDrive [118] and Minix 3 [42] all unload and restart a failed driver. In con-

trast, FGFT takes a checkpoint prior to invoking the driver, and then rolls back to the most
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recent checkpoint, which is much faster. CuriOS provides transparent recovery and fur-

ther ensures that client session state can be recovered [28]. However, CuriOS is a new oper-

ating system and requires specially written code to take advantage of its recovery system,

while FGFT works with existing driver code in existing operating systems. ReViveI/O [70],

and similar systems [81] provide whole-system checkpoint/restore by buffering I/O and

only letting it reach the device after the next memory checkpoint. However, this approach

does not work with polling, where I/O operations cannot be buffered and applied later.

Driver isolation systems. Driver isolation systems rely on hardware protection (Nooks [103]

and Xen [32]) or strong in-situ detection mechanisms (BGI [16], LXFI [62], Mondrix [113]

and XFI [105]) to detect failures in driver execution. However, in latter systems if the fail-

ure is detected after any state shared with the kernel has been modified then these systems

cannot rollback to a last good state. Other driver isolation systems such as SUD [13] and

Linux user-mode drivers [53], require writing class-specific wrappers in the kernel that

are hard to maintain as the kernel evolves. FGFT differs from existing isolation systems by

providing transactional semantics and limits the runtime overheads only to suspect code.

Software fault tolerance. Existing SFI techniques use programmer annotations (SafeDrive [118])

or API contracts (LXFI [62]) to provide type safety. XFI [105] transforms code binaries to

provide inline software guards and stack protection. In contrast, FGFT operates on source

code and allows drivers to operate on a copy of shared data. FGFT marshals the minimum

required data and uses a range hash to provide spatial safety.

Transactional kernels. FGFT executes drivers as a transaction by buffering their state

changes until they complete. VINO [90] similarly encapsulated extensions with SFI and

used a compensation log to undo kernel changes. However, VINO applied to an entire

extension and did not address recovering device state. In addition, it terminated faulty

extensions, while most users want to continue using devices following a failure. FGFT

is complementary to other transactional systems, such as TxOS [78], that provide transac-

tional semantics for system calls. These techniques could be applied to driver calls into the
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kernel instead of using a kernel undo log of compensation records. Currently, these sys-

tems do not perform device I/O transactionally and either rely on higher-level atomicity

techniques (TxOS [78] and xCalls [108]) or serialize transactions with a lock (TxLinux [84]).

Program Partitioning Program partitioning has been used for security [14, 20] and re-

mote code execution [22]. Existing program partitioning tools statically partition user

mode code or move driver code to user mode [37]. FGFT is the first system to partition pro-

grams within the kernel and is hence able to provide partitioning benefits to kernel specific

components such as interrupt delivery and critical I/O path code. Furthermore, instead

of partitioning code in any one domain, FGFT replicates its entry points and decides on a

runtime basis whether a particular thread should run in isolation.
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Chapter 6
Lessons

In this section, I describe the lessons from my dissertation. I describe the advantages of

the fault isolation techniques used, the implications for reliable driver design and my ex-

perience with the Linux kernel community.

6.1 Hybrid Static/Run-Time Checking

Carburizer and FGFT are complete fault isolation systems because they detect faults and

also provide both isolation and recovery. Both systems use a combination of language

and system runtime techniques to provide fault tolerance. In this subsection, I discuss the

advantages of this approach.

The hybrid approach provides common advantages of the static and runtime ap-

proach and hide one another’s shortcomings. The first advantage is to test the validity

of the approach over wide variety of drivers. Static analysis techniques can be validated

against lots of drivers without requiring real hardware. I ran Carburizer on all drivers

over Linux kernel. With FGFT, I was able to measure using static analysis tools, for what

fraction of drivers, my approach may not work. Furthermore, automatic code generation
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helps us avoid writing class specific fault tolerance code such as wrappers. Due the large

number of classes supported by Linux, this code can be significant. As an example, Nooks

required about 14K LoC of wrapper code [103] which FGFT avoids.

Second, Carburizer and FGFT use static analysis to lower the performance overhead

and reduce the complexity of the OS runtime required. Carburizer is able to detect hard-

ware failures before they propagate to the operating system. Hence, it is able to avoid a

large isolation system in the kernel and any overhead that it may impose. Similarly, FGFT

uses static analysis to only isolate faulty code and sets up fault tolerance dynamically.

Fault free code runs without isolation reducing overhead in the common case. Further-

more, FGFT sets up fault tolerance during the compile phase and reduces the runtime

complexity by removing this code from the OS. This code provides the functionality to

interpose driver communication to detect failures and provide isolation and is generated

automatically using the code generation tools in FGFT.

Third, static analysis can be used to extract driver specific information and provide

stronger reliability guarantees than a runtime only approach. For example, static analysis

can be used to interpret the different types of data structures being passed around. I use

this technique in FGFT to implement base and bounds memory protection that provides

fine-grained memory protection to detect memory errors.

Finally, the runtime techniques complement the inadequacies of static analysis tools.

Static analysis tools cannot reason about certain program properties that are either vendor

specific or cannot tolerate false positives to remain useful. As an example of the former,

static analysis cannot detect when an interrupt has been fired or when a DMA occurs. The

reasons is that the driver and device have private protocols to trigger these actions and it

is not possible to detect these actions across drivers with a common analysis. Hence, Car-

burizer uses a runtime kernel module to provide fault tolerance against interrupt failures.

Furthermore, static analysis is prone to false positives and this can be problematic in cases

such as bogus invocation of recovery code, if the detected fault is a false positive. For

invalid values from hardware, Carburizer checks against the failure inducing condition

before invoking the recovery code to avoid this situation.
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To summarize, with Carburizer and FGFT, I find that the hybrid language/runtime

approach works well and provides the best of both worlds. It provides low overhead, low

OS complexity, wide applicability to many drivers and the ability to extract driver and OS

behavior in a precise and accurate manner.

6.2 Implications for driver design

I now describe the implications for reliable driver design based on my experience on de-

veloping fault tolerance mechanisms for device drivers. These implications are compli-

mentary to what automatic patching tools such as Carburizer can achieve. From my ex-

periences, I find that a driver architecture that provides 1) coarse-grained communication

mechanisms, 2) limits driver code to device specific code and 3) provides abstractions for

driver code re-use, improves driver code reliability.

Coarse-grained interface I find that having a coarse grained interaction between the

driver and the hardware and the driver and the kernel aids in a more reliable driver de-

sign. As an example, USB drivers interact with the device hardware using a coarse-grained

interface that is very similar to how networking works. USB drivers create a packet with

the data payload and send it to the lower layers (the USB bus) to communicate with the

hardware. The drivers from the vendor are not responsible for device specific issues like

timeouts and overflow and the USB bus library provides these guarantees. Since all drivers

communicate using this bus, these checks are necessarily enforced. A limitation of such

an interface is that supporting high performance devices can be complicated due the lack

of a fine-grained communication interface with the device.

Apart from the driver-hardware communication, the driver-kernel communication

should also be coarse-grained. Drivers should request kernel services through standard-

ized APIs instead of directly modifying kernel structures and locks. This avoids accidental

overwriting of kernel structures and reduces the possibility of deadlocks.
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Device specific code Driver code standardization can benefit drivers since drivers re-use

a common implementation. Hence, the vendor specific code implementation only imple-

ments device specific nuances that the device supports. This code is more reliable because

of two reasons. First, the common code is usually written by OS developers instead of

device vendors and it is well-tested because it is used by a variety of devices. Second, the

vendor specific code rarely invokes the kernel and hence avoids any kernel API misuse.

Most device specific code only provide device specific details like device register addresses

that is unique to the device being supported.

In existing Linux kernel, only some existing drivers support this device specific de-

sign and their widespread use should be encouraged. Currently, device classes such as

ATA and IDE and the USB bus type support a design where vendors only add device spe-

cific code. Here, the kernel supports a large common driver and vendors support device

specific routines, if necessary. As an example, the main USB storage driver code is largely

common, but includes call-outs to device-specific code. This code includes device-specific

initialization, suspend/resume (not provided by USB-storage and left as an additional fea-

ture requirement) and other routines that require device-specific code. Similarly, a num-

ber of other drivers such as ATA, IDE and ACPI drivers abstract driver functionality when

there is little variation across drivers: rather than having a driver that invokes support li-

brary routines, these drivers are themselves a small set of device-specific routines called

from a much larger common driver. This design is termed a “miniport” driver in Windows.

Thus, these drivers benefit from a common implementation of most driver functionality,

and only the code differences are implemented in the device-specific code. These drivers

are often quite small and have little code that is not device specific.

These drivers are able to support such a design due to device interface standard-

ization. For example, USB storage devices implement a standard interface [106]. Push-

ing such standardization more aggressively can improve overall driver organization and

reliability. While there are greater standardization efforts for USB drivers, it is still not

complete. Other device classes such as network drivers should also support similar stan-

dardization to limit drivers to device specific code. Most network interfaces support a
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ring-buffer interface to send/receive packets. Most drivers re-implement the code of plac-

ing and retrieving packets from this buffer while sending/receiving network packets. It

may be possible to simplify these drivers by providing standard abstractions of hardware

data structures while providing mechanisms to extend driver/device specific details such

as ring buffer structures.

Driver code reduction I finally look at how better abstractions encourage driver code

re-use and reduce the amount of driver code. My study of drivers looks at the question

of do we really need seven million lines of code and I find that 8% of all driver code (or

400,000 LOC) is repetitive and can be improved through better abstractions or libraries.

Better abstractions for code-reuse can reduce the size of the rapidly growing codebase and

reduce incidence of bugs [56].

As described in Chapter 3, I see three methods for achieving this reduction: (i) proce-

dural abstractions for driver sub-classes, (ii) better multiple chipset support and (iii) table

driven programming. First, procedural abstraction means moving shared code in driver

sub-classes to a library and to provide parameters covering the differences in implementa-

tion. There is significant code in single drivers or families of drivers with routines perform-

ing similar functions on different code paths. Creating driver-class or sub-class libraries

will significantly reduce this code. Second, existing driver libraries can be enhanced with

new abstractions that cover the similar behavior. There are many families of drivers that

replicate code heavily. Abstracting more code out these families by creating new driver

abstractions that support multiple chipsets can simplify driver code significantly. Finally,

functions that differ only by constant values can be replaced by table-driven code. This

may also be applicable to reducing drivers to just device specific code as described in the

previous paragraph. Drivers with larger differences but fundamentally similar structures,

such as network drivers that use ring buffers to send and receive packets can use such

paradigm to reduce driver code. By providing these abstractions, I believe there is an op-

portunity to reduce the amount of driver code, consequently reducing the incidence of

bugs and improving the driver development process by producing concise drivers in the
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future.

6.3 Experience with the kernel community

I will now describe my efforts to inform the Linux kernel developers about the problem

of hardware dependence bugs in Linux and my solution – Carburizer. With Carburizer,

I discovered an extremely large number of hardware dependence bugs in 2009. Further-

more, this count continued to increase when I ran Carburizer tool in a newer kernel after

18 months. I found over 1200 hardware dependence bugs in Linux 2.6.37.6. I subsequently

contacted the kernel developers through Linux mailing lists informing them about the

widespread of nature hardware dependence bugs in Linux. The feedback was encour-

aging and I subsequently presented a talk at Linux Plumbers Conference, 2011 and made

the tool available for download. Linux Weekly News also featured an article on Carbur-

izer in February, 2012 along with a list of bugs identified by Carburizer. I also submitted

patches to the Linux kernel to fix these bugs. I now describe lessons from this experience.

This experience is Linux specific but should apply to other large open-source projects.

I learnt two lessons while interacting with kernel developers. First, the developers

are unlikely to use a tool or review a list of bugs that has a high false positive rate. The

developers preferred a tool with no false positives. This observation is consistent with

developers of Coverity [39], who experienced that false positives in their reports decreased

the probability of triaging their future reports. This can be challenging with static analysis

tools which can have high false positive rates. Simplifying analyses to improve accuracy

of the results found can be beneficial but it may reduce the total number of bugs found.

The second lesson on where to submit bug reports, especially a large list of bugs

such as that produced by Carburizer. A large list of programming errors such as mem-

ory and pointer misuse or kernel API misuse is best presented to Linux kernel janitor

projects, where many kernel developers are on the active lookout to fix problems in Linux

kernel. More complex bug reports such as driver specific bugs are more likely to get

a response if the reports are presented directly to the maintainers of the specific driver
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or specific subsystem. I found most success with Carburizer in getting my bug reports

triaged by directly submitting patches to maintainers. Linux kernel provides a helpful

script (get_maintainer.pl) in its source tree to get this information for each file.

6.4 Summary

In summary, the first line of defense in improving driver reliability is by improving driver

design through better architectures and programming paradigms. I find that writing drivers

that limit themselves to device specific code and communicate with the kernel and hard-

ware using coarse-grained tools improve reliability. Next, from my experience in devel-

oping fault isolation mechanisms, I find that hybrid language/runtime approach allows

us to provide reliability solutions at low overhead. Finally, I share my experiences on how

to get bug fixes upstreamed in Linux kernel successfully.
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Chapter 7
Future Work

In this section, I discuss future work, describing extensions to Carburizer, driver study and

fine-grained fault tolerance.

7.1 Carburizer

Carburizer assumes that if a driver detects a hardware failure, it correctly responds to that

failure. In practice, I find this is often not the case. In addition, Carburizer does not assist

drivers in handling unexpected events; we have seen code that crashes when the device

returns a flag before the driver is prepared. One of the reasons this can happen is because

because the driver does not follow the protocol of the specific device or device class such

as SCSI.

Device protocol violations Device protocol violations occur when drivers incorrectly in-

teract with devices. Often, drivers are written from hardware specifications with poor/miss-

ing documentation. These problems are difficult to detect since they require a working

device in order to verify that device protocols have been implemented correctly. One pos-
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sible way to detect these violations is to automatically infer device behavior from existing

driver code and detect its inconsistent use within drivers using static analysis. Carburizer

already detects how drivers interact with devices such as when it performs a sequence of

operations and fails. Detecting inconsistencies in such driver-device interactions can help

us detect these problems. However, fixing these bugs will still require access to the correct

device or device class specifications.

7.2 Driver Study

My study on drivers showed different ways in which driver research can be improved/ex-

tended and I will discuss two of those in this section. First, I review how driver code syn-

thesis should be improved to make it applicable to a variety of drivers. Next, I review how

driver code can be run outside the OS for improved reliability.

Improving driver synthesis Recently, driver research has looked how to generate driver

code automatically. Automatic driver code generation improves driver code reliability

because the code is auto-generated instead of hand-written by device vendors who may

introduce bugs. In my study of drivers, I look at how do these existing techniques work

in practice and how can they be improved.

I find that most driver classes have substantial amounts of device-specific function-

ality outside class definition i.e. standard interfaces. Code supporting /proc and /sys

is present in 16.3% of drivers and comprises over 5.3% of total driver code. Also, 36%

of drivers have load-time parameters to control their behavior and configure options not

available through the class interface. Additionally, ioctl code comprises 6.2% of driver

code, can also cause non-class behavior of drivers. Hence, for 44% of drivers, attempts to

synthesize drivers from common descriptions of the class, like Termite [86], may not work

for a substantial number of drivers. Thus, future research should explicitly consider how

to accommodate unique behaviors efficiently.

I also find that 28% of drivers support more than one chipset and these drivers sup-
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port 83% of the total devices. Any system that generates unique drivers for every chipset

or requires per-chipset manual specification may lead to a great expansion in driver code

and complexity.

Hence, there is an opportunity for future automatic driver code synthesis research to

(1) develop mechanisms to generate code for non-class behavior and (2) efficiently support

multiple chipsets by merging states in device state machines that perform common tasks.

Removing drivers from OS With the driver study, I measure the benefits and feasibility

of removing drivers from Linux and running elsewhere such as directly onto the device.

Removing drivers from the OS improves its reliability since the unreliable driver code now

executes outside the OS. The following trends in virtualized environments indicate that

a new device architecture where driver code executes outside the OS can be beneficial.

First, devices other than CPU and memory are increasingly being accessed remotely (such

as Amazon’s EBS [1]). Second, micro-servers (such as single fabric computers) that per-

form all their I/O over the network are being used [82]. Third, there is an increase in the

processing power of devices making them capable enough to execute driver code on them.

With the driver study, I find that this architecture is beneficial and feasible.

First, it is beneficial because it pushes towards driver code standardization and re-

moves vendor code from the OS. I evaluate existing buses that can be adapted to this archi-

tecture and find that USB and Xen support device standardization. These drivers support

multiple devices with a single driver and mediate communication through this driver.

XenBus drivers push standardization further by removing all device-specific code from

the driver and executing it elsewhere. This approach can be extended to run driver code

remotely. Specifically, it may be possible to use XenBus drivers to access a driver running

on the device itself rather than in a separate virtual machine; this could in effect remove

many drivers from the kernel and host processor. Furthermore, the kernel no longer re-

quires device-specific code, as it is relegated to the common task of channel establishment.

Devices with common driver interfaces, such as network adapters, can share driver li-

braries. Devices with unique interfaces require separate driver libraries, but the code can
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Fault Tolerance
Device recovery: Current recovery mechanisms require writing wrappers to track all device state and
full device restart results in long latency.
OS functionality
Fast reboot: Restarting the OS requires probing all bus and device drivers.
NVM operating systems: Providing persistent state of a running system requires ability to checkpoint
a running device.
I/O Virtualization
Device consolidation: Re-assignment of passthrough devices across different VMs needs to wait for

device initialization.
Live migration: Live migration of pass-through devices converts the millisecond latency of migra-

tions to multiple seconds due to device initialization.
Clone VMs: Ability to launch many cloned VMs very quickly is limited by device initialization.

Table 7.1: Other uses for fast device state checkpointing.

executes in user mode and may have few OS dependencies.

Second, I find that such a device architecture is feasible. Our results demonstrate

that most of the communication is for memory and synchronization calls across all drivers,

so the kernel support required is small for most drivers. With our study, we also find that a

large fraction of driver/kernel interactions are for generic routines (memory, synchroniza-

tion, libraries) that do not involve other kernel services. Thus, they could be implemented

by a runtime environment local to the driver. For example, a driver executing in a separate

virtual machine or on the device itself can make use of its local OS for these routines, and

drivers in user space can similarly invoke user-space versions of these routines, such as

the UML environment in SUD [13].

With these encouraging results, I find that there is an opportunity to re-visit the ex-

isting I/O stack and (1) Design remote I/O communication between device and OS that

removes inefficiencies of current fine-grained access, (2) Improve driver code standardiza-

tion by removing device specific code from the kernel, (3) Support access to proprietary

device features using higher level communication mechanisms and (4) Support low latency

device access for applications, such as giving a database direct access to a disk.
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7.3 FGFT

FGFT demonstrates how to provide fast recovery from driver failures by using novel check-

point and restore mechanisms. Fast checkpoint and restore enables new applications and

can be used to improve the latency of existing OS applications. With FGFT, I demonstrate

a new application of dynamic fault tolerance at fine granularity that was not previously

possible.

In the future, there is an opportunity to apply fast device checkpoints in other areas.

Table 7.1 lists five possible uses. Within an operating system, checkpoints support fast re-

boot after upgrading system software by restoring device state from a checkpoint rather

than reinitializing the driver. Similarly, operating systems using non-volatile memory to

survive power failures [5, 71] can restart drivers from a checkpoint rather than reinitializ-

ing the device. In virtualized settings, pass-through and virtualization-aware devices [76]

allow drivers in guest operating systems to interact with physical hardware. Device state

checkpoints enable virtual-machine checkpoints to a pass-through device [61] and live mi-

gration, because the device state from the source can be extracted and restored on identical

hardware at the destination. With virtual devices, the latency of live migration can be as

low as 60ms [23], so a 2 second delay to initialize a pass-through device adds significant

downtime [48]. However, for uses of checkpoint that move state across machines, such as

virtual machine migration, the ability to restore from fully powered off may be necessary

as devices may be attached at different I/O memory addresses.

7.4 Summary

To summarize, in this section, I present two broad approaches towards future work. The

first approach is to improve extend and improve existing tools and apply them to new

problems such as device protocol violations and new applications of checkpoint/ restore.

The second approach is to re-design how drivers communicate with the operating system

and develop protocols for remote driver invocation.
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Chapter 8
Conclusions

As computers evolve and provide greater functionality in our lives, understanding and

improving their complexity and reliability becomes important. My dissertation develops

tools and mechanisms to improve reliability and improves our understanding of device

drivers in modern operating systems.

In this dissertation, I have addressed three problems to improve device access. First,

I review a new failure mode in device drivers and review how drivers behave when de-

vices fail. I investigate how this can affect OS reliability. I have looked at how to address

crashes caused by hardware dependence, how to report a failing device and finally how

to recover from transient failures. The resulting system, Carburizer is a static analysis/run-

time framework that addresses these issues. Carburizer’s static analysis is fast, scanning

upwards of 3000 drivers in less than 30 minutes while also generating hardened binary

drivers. Using Carburizer, I was able to find 992 hardware dependence bugs in the Linux

2.6.18.8. Additionally, I found approximately 1100 cases where the driver was missing er-

ror reporting information about device failures. Carburizer hardened driver and runtime

imposed almost no performance or CPU overheads.

Next, I took a holistic view of all driver code to understand how modern driver re-
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search applies to Linux drivers and what are the opportunities for future research. Through

this study, I have attempted to break out of the one-driver-at-a-time mold of research, and

instead try to see the forest of drivers. I find that common assumptions about drivers, such

as that they belong to a class and perform little processing, are generally but not always

true. Thus, research that relies on these assumptions can chip away at the problem drivers

cause, but may leave behind a long tail of special cases and the resulting infrastructure to

support these drivers preventing the widespread adoption of such solutions. My study

has provided a better understanding of driver behavior, of the applicability of existing re-

search to these drivers, and of the opportunities that exist for future research such as driver

synthesis and remote driver execution.

Finally, I address one of the implications from this study: complex and incomplete

driver recovery with existing fault tolerance systems. I built, Fine-Grained Fault Tolerance

(FGFT), a code-generation and runtime recovery system to provide fast device driver re-

covery. With FGFT, I demonstrate three important results. First, I demonstrate a novel

mechanism that provides checkpoint/restore support in modern drivers by re-using ex-

isting power management code already present in many drivers. Second, FGFT shifts the

burden of fault tolerance from a large monolithic patch to incrementally deployable driver

changes reducing software maintenance. Third, FGFT demonstrates how to execute driver

code as transactions and introduces a fundamental different way to think about driver iso-

lation.

The great strength of popular operating systems is their ability to function with a

huge variety of different devices. However, many of the problems with drivers arise be-

cause of this diversity, because it reduces the resources available to test every driver and

increases the difficulty of revamping the driver architecture. My dissertation improves

device access while acknowledging this diversity.
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