07-rpc. txt Tue Sep 18 08:46:11 2012 1

15- 440, Fall 2012, dass 07, Sept. 18, 2012
Randal E. Bryant

Al'l code avail able in:

| af s/ cs. crmu. edu/ academi c/ cl ass/ 15440-f 12/ code/ ¢l ass07
Remot e Procedure Calls (Tannenbaum 4. 1-4. 2)
Ceneral vocabul ary

M ddl eware: Protocol / software that |ives just bel ow Application
provi di ng hi gher-1evel services.

Exanpl es:
HTTP (al t hough now often used as transport protocol)
LSP from project 1
Persistent vs. Transient contmunication
Persistent: Protocol holds onto all information until operation
conpl et ed.
E.g., TCP, LSP

Transient: Protocol discards information if fails
E.g., UDP

Synchronous vs. Asynchronous
Synchronous: Sender bl ocks until operation conpletes

Asynchronous: Sender returns from operation i nmedi ately
E.g., Everything we’'ve seen so far

07-rpc. txt Tue Sep 18 08:46:11 2012 2

Renot e Procedure cal
One way to provide client/server nodel to nodel

Idea: On client, appear to make procedure call, but operation actually
perfornmed on server.

Natural way to express interaction
client-->server: Do this for me (call)
Server does sone work

server-->client: Here's nmy response (return)
How t hi s work:

1. dient application calls function

2. Function is really a "stub" that packages function nane & argunents
as nessage ("marshaling")

3. Send nessage to server

4. Server unpacks message, deternines what function is being requested
and executes it.

5. Server marshals results back into message and sends it back to
client

6. Client stub unmarshals results and returns back to caller

Two versions:
Synchronous: Cient nust wait for all steps to conplete.

Asynchronous: Stub returns after step 3. Sonme ot her nechani sm
provided to pick up result later.

H story: Devel oped by Bruce Nelson & Andrew Birrell, ca. 1980. At the
tinme, Nelson was PhD student at CMJ, although nmuch of the work done at
Xerox PARC. Nelson went on to being very successful, including as CTO
at C1SCO Died in 1999. Recognized via Bruce Nelson chair (held by
Manuel Bl um.

07-rpc. txt Tue Sep 18 08:46:11 2012 3

Let’s think about an application of RPC

How about a distributed password cracker. Simlar to that of Project
1, but designed to use RPC

Three cl asses of agents:

1. Request client. Subnits cracking request to server. Wits unti
server responds.

2. Worker. Initially a client. Sends join request to server. Now it
shoul d reverse role & becone a server. Then it can receive
requests frommain server to attenpt cracking over linited range.

3. Server. Ochestrates whole thing. Maintains collection of
wor kers. \When receive request fromclient, split into smaller jobs
over limted ranges. Farmthese out to workers. When finds
password, or exhausts conplete range, respond to request client.

So, here’'s the RPC version:

Request - - >Server - - >Request: C assic synchronous RPC

Wor ker-->Server. Synch RPC, but no return val ue.

"I"'ma worker and I'mlistening for you on host XXX, port YYY."

Server-->Wrker. Synch RPC? No that would be a bad idea. Better be Asynch

O herwise, it would have to bl ock while worker does its work, which
n sses the whol e point of having many workers.

07-rpc. txt Tue Sep 18 08:46:11 2012 4

Wiy is RPC different froma regular procedure call?

1. Running on different machines:
A. Don't have shared nenory space
Must ship argument data fromclient to server, and results back to client
If need any data structures, nust send them over, too.
B. Possibly, two nmachines differ (e.g., byte ordering), and client & server
may be witten in different | anguages, or running different OS s

2. Need to comunicate with each other
A. May need to locate server. Sinple: Have I P address. Mre elaborate: |ocate
server based on service being requested.
B. Need sonme kind of network connection between them
C. Need conventions for how to encode ("marshal") data, send,
and decode (unmarshal) it at other end.

3. Things don't always work right.
A. Packets get dropped, duplicated, or nangl ed.
B. Cient or server may die, before or during cal

4. M ght be worried about security
A. Need way to have client & server authenticate to each ot her
B. Need way to keep communi cati ons secret

07-rpc. txt Tue Sep 18 08:46:11 2012 5

Lets |l ook at some details:
Mar shal i ng:
Need convention for how to send objects.

Exanple = JSON. Very general form Converts struct to naned fields.
Applied recursively

Exanpl e applying it to our sequential buffer:
Data structures decl ared as:

/1 Linked list element

type BufEl e struct {

Val interface{}
Next *Buf El e

}

type Buf struct {
Head *BufEl e /1 O dest el enent
tail *BufEle /1 Most recently inserted el enent
cnt int /1 Nunber of elements in |ist

}

(Note that only upper case nanmes get marshal ed.)
Add nethod to bufi:

func (bp *Buf) String() string {
b, e := json.Mrshal I ndent(*bp, "", " ")
if el=nil {
return e.Error()
}

return string(b)

}

Here's exanpl es when inserting strings into the buffer:
Empty buffer
{

"Head": null
}

After inserting "pig",

cat", "dog":

"Head": ({
"Val": "pig",
"Next": {
"Val": "cat",
"Next": {
"Val": "dog",
"Next": null
}
}
}
}

Mai n point: There are standard ways to convert objects into byte
sequences. These are "deep" encodi ngs, nmeaning that they go all the
way into a structure. Beware of trying to do this with circul ar
data structures!

O her encodi ng net hods:

07-rpc. txt Tue Sep 18 08:46:11 2012

gob: Used by Go RPC.
XM

07-rpc. txt Tue Sep 18 08:46:11 2012 7

RPC Exanpl e.
Usi ng Go RPC package.
In general see two styles of RPC inplenentation

* Shallow integration. Mist use lots of library calls to set things
up:
- How to format data
- Registering which functions are avail abl e and how they are
i nvoked.

* Deep integration
- Data formatti ng done based on type decl arations
- (Alnost) all public nethods of object are registered.

Go is the latter.

07-rpc. txt Tue Sep 18 08:46:11 2012 8

Server side, wite each operation as a function

func (s *servertype) Operate (args *argtype, reply *argtype) Error
Function nust decode argunents, perform operation, encode reply.
Returns nil if no error.

Then rmust register servertype. All exported (uppercase nanes)
operations avail abl e.

dient side:
Synchr onous cal |

I nvoke Call, with operation name (as string), and pointers for
argunents and reply.

Wien Call returns, get result fromreply.
Asynchr onous cal | :

I nvoke Go, with operation name and pointers for argunents and reply,
and channel for responding.

Function returns inmedi ately.

If want to get result, then receive from channel

07-rpc. txt Tue Sep 18 08:46:11 2012 9

RPC Exanpl e: An RPC version of an asynchronous buffer

/1 For passing arbitrary val ues
type Val struct {

X interface{} # Enbed in struct. Gob wants it this way.
}

/1 Server inplenentation
type SrvBuf struct {
abuf *dserver. Buf # Use one of our asynchronous buffers
since needs concurrent access

}
func NewSrvBuf () *SrvBuf ({

return &SrvBuf{dserver. NewBuf ()}
}
Exanpl e nethods for server

Note signature. Pass in argunents + reply location
func (srv *SrvBuf) Insert(arg *Val, reply *Val) Error {

srv. abuf.Insert(arg. X # Insert object of type interface{}
*reply = null Val () # W apper around ni
return nil

}

func (srv *SrvBuf) Front(arg *Val, reply *Val) Error {
*reply = Val {srv. abuf. Front()}
return nil # This means it’s K

Here's the mmin incantation

func Serve(port int) {
srv : = NewSrvBuf ()
Regi ster takes object and nmakes it’'s exported nethods avail abl e
rpc. Regi ster(srv)
Use HITP as conmuni cati on protoco
rpc. Handl eHTTP()
addr := fnt.Sprintf(":%", port)
I, e :=net.Listen("tcp", addr)
Checkf at al (e)
Set up HTTP server
http. Serve(l, nil)

07-rpc. txt Tue Sep 18 08:46:11 2012 10

Client side

Really don’t need nore than provided by RPC package
type SCient struct ({

client *rpc.dCient
}

Wapper to access Call function

func (cli *SClient) Call(serviceMethod string, args interface{},
reply interface{}) os.Error {
return cli.client.Call (serviceMethod, args, reply)

}

Setup up TCP client

func NewSClient (host string, port int) *SCient {
hostport := fnt.Sprintf("%: %", host, port)
client, e := rpc.D al HTTP("tcp", hostport)
Checkf at al (e)
return &SCient{client}

}
Making RPC calls

func (cli *SClient) Insert(val interface{}) {
v := Val{val}
var rv Val
e :=cli.Call("SrvBuf.Insert", &, &rv)
i f Checkreport(1, e)
fnt.Printf("lInsert failure\n")

}

}

func (cli *SClient) Renove() interface{} {
av := null Val ()
var rv Val

e :=cli.Call("SrvBuf.Renmove", &av, &rv)

i f Checkreport(1l, e) {
fm.Printf("Renove failure\n")
return null Val ()

}

return rv. X

07-rpc. txt Tue Sep 18 08:46:11 2012 11

What about bi gger data structures?
Suppose we want to return entire buffer contents.
Add to bufi:

/1 Return slice containing entire buffer contents
func (bp *Buf) Contents() []interface{} {

result := nmake([]interface{}, bp.cnt)
e : = bp. Head
for i :=0; i < bp.cnt; i++ {
result[i] = e.Val
e = e. Next
}

return result

}

(Al'so added field cnt to bufi.Buf, to keep count of nunber of el enents)

Added to dserver
func (bp *Buf) Contents() []interface{}

Add to RPC code
1. Let’s nane this data type

type Islice []Jinterface{}
var islice Islice

2. Let’s let the server & client know about this type:

func NewSrvBuf () *SrvBuf ({

gob. Regi ster(islice)

return &SrvBuf{dserver. NewBuf ()}
}

func NewSC ient (host string, port int) *SCient {
gob. Regi ster(islice)
hostport := fnt.Sprintf("%: %", host, port)
client, e := rpc.D al HTTP("tcp", hostport)
Checkf at al (e)
return &Cient{client}

}

3. Let’s inplenent the server function:

func (srv *SrvBuf) Contents(arg *Val, reply *Val) error {
c :=Islice(srv.abuf.Contents())
*reply = Val {c}
VI ogf (2, "Cenerated contents: %\n", c)

return ni

}

func (cli *SClient) Contents() Islice {
av = nullVal ()
var rv Val

e :=cli.Call("SrvBuf.Contents", &av, &rv)
i f Checkreport(1, e) {
fnt.Printf("Contents failure: %\n", e.Error())

return rv. X. (Islice)

07-rpc. txt Tue Sep 18 08:46:11 2012 12

O her issues:
Dealing with failures:

Net wor k dr opped/ dupl i cat ed/ mangl ed packets
* Cient or server dies before or during operation

Typically, want operation required by RPC call to take place EXACTLY
once.

This is hard to guarantee.

Vari ant s:

"At nost once": Cient sends request to server. Hopefully gets response.
Fails if:

1. Request nessage doesn't get to server

2. Server fails

3. Response nessage doesn’'t get to client.

Note that with #1 & #2, call not executed. Wth #3 call executed,
e.g., could cause state change by server. ("Wthdraw $100 from ny bank account")

"At |east once" Cient executes loop: { send request; wait for response }
until either get response or give up

Sanme failure nodes. But overcomes cases where these failures are not persistent.

Danger: Server gets multiple requests and doesn’'t realize they are duplicates.
(Thi nk of the account wi thdrawal exanple)

Sol ution: Want to nake operations "idenpotent:" Doing sanme operation
multiple times has sanme effect as doing it once.

Exanpl e nechani sm Use sequence nunbers.

Requi res maintaining per-client state at server. (lnagine having 1Mclients.)

07-rpc. txt Tue Sep 18 08:46:11 2012 13

See exanple in Project 1 protocol.

LSP is like RPC, in that it serves as middl eware between client and
server applications. Deals with failed nessages, clients, and
servers. But provides nessage passing nodel between clients &
servers, rather than RPC

* Each data nessage includes sequence nunber.
- Can detect duplicate nessages (either fromnetwork or fromresending)

* Each data nmessage acknow edged.
- Sender knows that it’s been received.

* Sender cannot new send nmessage until previous one acknow edged
- Prevents |l ost nmessage in mddle of data stream

* Periodic resend of nost recent data + acknow egenent.
- Conpensate for dropped nessages
- Indication that nachine at other end of connection still alive.
Sanme effect as "heartbeat" nessages

* Detect failure at other end if no nessages for K epochs
- Independent of application-level activity.

07-rpc. txt Tue Sep 18 08:46:11 2012 14

Wher e t hese mechani sns show up in RPC

* Typically use TCP or HTTP. Provides reliable transport |evel that
el i mi nat es nost network probl ens.

* Typically have sequence nunbers to avoid acting on duplicate requests
(May need to persist across nultiple TCP sessions.)

* Don't (by default) do a very good job detecting failed clients or servers.

O her RPC systens:

ONC RPC (a.k.a. Sun RPC). Fairly basic. Includes encoding standard
XDR + | anguage for describing data fornats.

Java RM (rempte nethod invocation). Very elaborate. Tries to make it | ook Iike
can performarbitrary nethods on renote objects.

Thrift. Devel oped at Facebook. Now part of Apache Qpen Source
Supports nultiple data encodi ngs & transport mechani sms. Works across
mul ti pl e | anguages.

Avro. Al so Apache standard. Created as part of Hadoop project. Uses
JSON. Not as el aborate as Thrift.

