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Abstract

Although the sequential consistency (SC) model is the most intu-
itive, processor designers often choose to support relaxed memory
consistency models for higher performance. This is because SC im-
plementations that match the performance of relaxed memory mod-
els require post-retirement speculation and its associated hardware
costs. In this paper we propose an efficient approach for enforcing
SC without requiring post-retirement speculation. While prior SC
implementations guarantee SC by explicitly completing memory
operations within a processor in program order, we guarantee SC
by completing conflicting memory operations, within and across
processors, in an order that is consistent with the program order.
More specifically, we identify those conflicting memory operations
whose ordering is critical for the maintenance of SC and explicitly
order them. This allows us to safely (non-speculatively) complete
memory operations past pending writes, thus reducing memory or-
dering stalls. Our experiments with SPLASH-2 programs show that
SC can be achieved efficiently, with performance comparable to
RMO (relaxed memory order).

Categories and Subject Descriptors C.1.2 [Processor Architec-
tures]: Multiple Data Stream Architectures (Multiprocessors)—
Parallel processors

General Terms Design, Performance, Experimentation

Keywords Sequential consistency, Conflict ordering

1. Introduction

While parallel architectures are becoming ubiquitous, extracting
performance from them is contingent on programmers writing par-
allel software. To this end, there has been significant research on
developing programming models, memory models, and debugging
tools for making programmers’ tasks easier. In particular, one rea-
son why programmers find parallel programming hard is because
of the intricacies involved in the underlying memory consistency
models. The complexity of the memory models is well illustrated
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in recent work by Sewell et al. [28] in which they describe how the
recent Intel and AMD memory model specifications do not match
with the actual behavior observed in real machines. Among the var-
ious memory consistency models, the sequential consistency (SC)
model in which memory operations appear to take place in the or-
der specified by the program is most intuitive to programmers. In-
deed, most works on semantics and software checking that strive
to make concurrent programming easier assume SC [28]; several
debugging tools for parallel programs, e.g. RaceFuzzer [27], also
assume SC. Finally, SC would simplify the memory models of lan-
guages such as Java and C++ by enabling simpler implementations
of Java volatile or C++ atomic.

(Prior SC implementations). In spite of the advantages of the SC
model, processor designers typically choose to support relaxed con-
sistency models; none of the Intel, AMD, ARM, Itanium, SPARC,
or PowerPC processor families choose to support SC. This is be-
cause SC requires reads and writes to be ordered in program or-
der, which can cause significant performance overhead. Indeed, SC
requires the enforcement of all four possible program orderings:
r → r, r → w, w → w, w → r, where r denotes a read opera-
tion and w denotes a write operation. A straightforward SC imple-
mentation enforces these orderings by delaying the next memory
operation until the previous one completes, introducing a signifi-
cant number of program ordering stalls. Some of these stalls can
be reduced in a dynamically scheduled ILP processor, where in-
window speculation support can be used to execute memory oper-
ations out-of-order while completing them in program order [12].
Nonetheless, enforcing the w → r (and w → w) order necessi-
tates that the write-buffer is drained before a subsequent memory
operation can be completed. Thus, a high latency write can still
cause significant program ordering stalls – which in-window specu-
lation is unable to hide. Recent works have utilized post-retirement
speculation – speculation beyond instruction window – to eliminate
these program ordering stalls [6–8, 11, 13–15, 23, 31]. While this
approach is promising, the significant hardware complexity associ-
ated with post-retirement speculation could hinder its wide-spread
adoption [3].

(Our Approach). SC requires memory operations of all proces-
sors to appear to perform in some global memory order, such that,
memory operations of each processor appear in this global memory
order in the order specified by the program [17]. Prior SC imple-
mentations ensure this by enforcing program ordering by explic-
itly completing memory operations in program order. More specif-
ically, if m1 and m2 are two memory operations with m1 pre-
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ceding m2 in the program order, prior SC implementations ensure
m1 → m2 by allowing m2 to complete only after m1 completes;
in effect, m2 is made to wait until m1 and all of m1’s predeces-
sors in the global memory order have completed. In other words, if
pred(m1) refers to m1 and its predecessors in the global memory
order, m2 is allowed to complete only when all memory operations
from pred(m1) have completed.

While enforcing program ordering is a sufficient condition for
ensuring SC [26], it is not a necessary condition [19, 25, 29]. In
contrast with prior SC implementations, we ensure SC by explicitly
ordering only conflicting memory operations – where conflicting
memory operations are pairs of memory operations that access the
same address, with one of them being a write. More specifically,
we observe that m1 appears to be ordered before m2, as long
as those memory operations from pred(m1) which conflict with
m2, complete before m2. In other words, if predp(m1) refers to
memory operations from pred(m1) which are pending completion,
m2 can safely complete before m1 as long as m2 does not conflict
with any of the memory operations from predp(m1). It is worth
noting that the above condition generally evaluates to true, since
in well-written parallel programs conflicting accesses are relatively
rare and staggered in time [14, 19].

Our SC implementation, which allows for memory operations to
be safely (and non-speculatively) completed past pending writes,
is considered in the context of a scalable CMP with local caches
kept coherent using an invalidation based cache coherence proto-
col. When a write-miss w is encountered, we conservatively es-
timate predp(w) to be the set of write misses that are currently
being serviced by the coherence controller. This lets us safely com-
plete subsequent memory operations which do not conflict with
predp(w), even while w is pending.

The main contribution of this paper is an efficient and lightweight
approach for SC using conflict ordering. More specifically, our SC
implementation is:

• Efficient. Our experiments with SPLASH-2 programs show
that SC can be achieved efficiently, with performance compa-
rable to RMO (relaxed memory order).

• Lightweight. Ours is the first SC implementation that performs
almost as well as RMO, while requiring no post-retirement
speculation.

• Scalable. Our SC implementation scales well, with perfor-
mance that is comparable to RMO even with 32 cores.

2. Background

Memory consistency models [4] constrain memory behavior with
respect to read and write operations from multiple processors, pro-
viding formal specifications of how the memory system will ap-
pear to the programmer. Each of these models offers a trade-off
between programming simplicity and high performance. Sequen-
tial consistency (SC) is the simplest model that is easy to under-
stand but can potentially affect the performance of programs. The
strict memory ordering imposed by SC can potentially restrict both
compiler and hardware optimizations that are possible in unipro-
cessors [4]. For performance reasons, researchers have proposed
relaxed memory consistency models at the cost of programming
complexity [4, 5]. Such memory models provide fence instructions
to enable programmers to explicitly provide memory ordering. For
instance, the SPARC RMO model (relaxed memory order) relaxes
all four program orderings – but provides memory fence instruc-
tions that the programmer can use for overriding the relaxations
and enforce memory orderings on demand. The complexities of
specifying relaxed memory models, however, combined with the
additional burden it places on the programmers have rendered re-

laxed memory models inadequate [3]. Next, we discuss different
approaches for achieving SC.

2.1 SC via program ordering

In program ordering based SC implementations the hardware di-
rectly ensures all four possible program ordering constraints [6, 12–
14, 23]; they are based on the seminal work by Scheurich and
Dubois [26], in which they state the sufficient conditions for SC
for general systems with caches and interconnection networks.

(Naive). A naive way to enforce program ordering between a pair
of memory operations is to delay the second until the first fully
completes. However, this can result in a significant number of
memory ordering stalls; for instance, if the first access is a miss,
then the second access has to wait until the miss is serviced.

(In-window speculation). Out-of-order processing capabilities of a
modern processor can be leveraged to reduce some of these stalls.
This is based on the observation that memory operations can be
freely reordered as long as the reordering is not observed by other
processors. Instead of waiting for an earlier memory operation to
complete, the processor can use hardware prefetching and specu-
lation to execute memory operations out of order, while still com-
pleting in order [12, 33]. However, such reordering is within the
instruction window – where the instruction window refers to the
set of instructions that are in-flight. If the processor receives an ex-
ternal coherence (or replacement) request for a memory operation
that has executed out of order, the processor’s recovery mechanism
is triggered to redo computation starting from that memory opera-
tion. Nonetheless, enforcing the w → r (and w → w) order neces-
sitates that the write-buffer is drained before a subsequent memory
operation can be completed. Thus, a high latency write can still
cause significant program ordering stalls – which in-window spec-
ulation is unable to hide. Our experiments with the SPLASH-2 pro-
grams show that programs spend more than 20% of their execution
time on average waiting for the write buffer to be drained. For our
work, we assume in-window speculation support as part of baseline
implementations of SC as well as fences in RMO.

(Post-retirement speculation). Since in-window speculation is
not sufficiently able to reduce program ordering stalls, researchers
have proposed more aggressive speculative memory reordering
techniques [6–8, 11, 13–15, 23, 31]. The key idea is to speculatively
retire instructions neglecting program ordering constraints while
maintaining the state of speculatively-retired instructions sepa-
rately. One way to do this is to maintain the state of speculatively-
retired instructions at a fine granularity, which enables precise re-
covery from misspeculations [13, 14, 23]. This obviates the need
for a load to wait until the write buffer is drained and is made to re-
tire speculatively. More recently, researchers have proposed chunk
based techniques [6–8, 11, 15, 31] which again use aggressive
speculation to efficiently enforce SC at the granularity of coarse-
grained chunks of instructions instead of individual instructions.
While the above approaches show much promise, hardware com-
plexity associated with aggressive speculation, being contrary to
the design philosophy of multi-cores consisting of simple energy-
efficient cores [1, 2], can hinder wide-spread adoption. Through
our work, we seek to show that a lightweight SC implementation is
possible without sacrificing performance.

2.2 Other SC approaches

Shasha and Snir, in their seminal work [29], observed that not all
pairs of memory operations need to be ordered for SC; only those
pairs which conflict with others run the risk of SC violation and
consequently need to be ordered. To ensure memory operation pairs
are not reordered, memory fences are inserted. They then propose
delay set analysis, a compiler based algorithm for minimizing the
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number of fences inserted for ensuring SC. This work led to other
compiler based algorithms that implement various fence insertion
and optimization algorithms [10, 18]. Recently, we proposed con-
ditional fence [19], a novel fence mechanism that dynamically de-
cides if a fence needs to stall; we show that with conditional fences,
the number of fences that actually need to stall is reduced signif-
icantly. The limitation of compiler-based SC implementations is
that they rely on alias analysis for identifying conflicts, and so are
overly conservative for programs that employ pointers and dynamic
data structures [3, 19].

In developing delay set analysis, Shasha and Snir introduced
a precise formalism for SC in terms of the program order being
consistent with the execution order. Their SC formalism reflects
the notion that SC does not actually require memory operations to
be performed in program order; it merely requires the execution
to be consistent with program order. Gharachorloo et al.later built
on Shasha and Snir’s formalism to derive aggressive SC specifi-
cations [25] which relaxes program ordering constraints. While our
idea of conflict ordering and its formalization is strongly influenced
by Shasha and Snir’s SC formalism, we additionally leverage this
idea and propose a lightweight and efficient SC implementation,
that performs almost as well as RMO.

Mainstream programming languages like C++ and Java use
variants of the data-race-free memory model [4, 5] which guarantee
SC as long as the program is free of data races. However, if the pro-
grams do have data races then these models provide much weaker
semantics. To redress this there have been works that employ dy-
namic race detection [9] in order to stop execution when semantics
become undefined. Since dynamic data race detection can be slow,
recent works [20, 21, 30] propose raising an exception upon en-
countering an SC violation as this can be done more efficiently.

Finally, recent work has shown that it is possible to support high
performance compiler that preserves SC [22]. Their SC-preserving
compiler, however, cannot prevent the hardware from exposing
non-SC behaviour. Thus, our work which proposes an efficient and
lightweight hardware SC implementation, is complementary to the
above work.

3. SC via conflict ordering

In this section, we first informally describe our approach of enforc-
ing SC using conflict ordering with a motivating example. We then
formally prove that our approach correctly enforces SC.

3.1 A motivating example

SC requires that memory operations appear to complete in program
order. To ensure this, prior SC implementations force memory oper-
ations to explicitly complete in program order. However, is program
ordering necessary for ensuring SC? Let us consider the example
in Fig. 1, which shows memory operations a1, a2, b1 and b2 from
processors A and B. They are two pairs of conflicting accesses. Can
a2 complete before a1 in an execution without breaking SC? Prior
SC implementations forbid this and force a2 to wait until a1 com-
pletes. In this work, we observe that a1 appears to complete before
a2, as long as a2 is made to complete after b1, with which a2 con-
flicts. In other words, a2 can complete before a1 without breaking
SC, as long as we ensure that a2 waits for b1 to complete. Indeed,
if b1 and b2 have completed before a1 and a2, the execution order
(b1, b2, a2, a1) is equivalent to the original SC order (b1, b2, a1, a2)
as the values read in the two executions are identical.

We propose conflict ordering, a novel approach to SC, in which
SC is enforced by explicitly ordering only conflicting memory op-
erations. Conflict ordering allows a memory operation to complete,
as long as all conflicting memory operations prior to it in the global
memory order have completed. More specifically, let m1 and m2

be consecutive memory operations; furthermore let pred(m1) refer

Figure 1. A motivating example: As long as a2 is made to wait
until the conflicting access b1 completes, a2 can be safely reordered
before a1, without breaking SC

to memory operations that include m1 and those before m1 in the
global memory order. Conflict ordering allows m2 to safely com-
plete as long as those memory operations from pred(m1), which
conflict with m2, have completed.

3.2 Conflict ordering enforces SC

In this section, we prove that conflict ordering enforces SC using
the formalism of Shasha and Snir [29]. For the following discus-
sion, we assume an invalidation based cache coherence protocol
for processors with private caches. A read operation is said to com-
plete when the returned value is bound and can not be updated by
other writes; a write operation is said to complete when the write
invalidates all cached copies, and the generated invalidates are ac-
knowledged [12]. Furthermore, we assume that the coherence pro-
tocol serializes writes to the same location and also ensures that the
value of a write not be returned by a read until the write completes
– in other words, we assume that the coherence protocol ensures
write atomicity [4].

Definition 1. The program order P is a local (per-processor) total
order which specifies the order in which the memory operations
appear in the program. That is, m1Pm2 iff the memory operation
m1 occurs before m2 in the program.

Definition 2. The conflict relation C is a symmetric relation on
M (all memory operations) that relates two memory operations (of
which one is a write) which access the same address.

Definition 3. An execution E (or execution order or conflict order)
is an orientation of C. If m1Cm2, then either m1Em2 or m2Em1

holds.

Definition 4. An execution E is said to be atomic, iff E is a proper
orientation of C, that is, iff E is acyclic.

Definition 5. An execution E is said to be sequentially consistent,
iff E is consistent with the program order P, that is, iff P ∪ E has
no cycles.

Definition 6. The global memory order G is the transitive closure
of the program order and the execution order, G = (P ∪ E)+.

Remark. In the scenario shown in Fig. 1, b1 appears before a1 in
the global memory order, since b1 appears before b2 in program
order, and b2 is ordered before a1 in the execution order. That is,
b1Ga1 since b1Pb2 and b2Ea1.

Definition 7. The function pred(m) returns a set of memory oper-
ations that appear before m in the global memory order G, includ-
ing m. That is, pred(m) = {m} ∪ {m′ : m′Gm}.
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Definition 8. An SC implementation constrains the execution by
enforcing certain conditions under which a memory operation can
be completed. An SC implementation is said to be correct if it is
guaranteed to generate an execution that is sequentially consistent.

Definition 9. Conflict ordering is our proposed SC implementation
in which a memory operation m2 (whose immediate predecessor
in program order is m1) is allowed to complete iff those memory
operations from pred(m1) which conflict with m2 have completed.
That is, m2 is allowed to complete iff {m ∈ pred(m1) : mCm2}
have already completed.

Figure 2. Conflict ordering ensures SC

Lemma 1. Any execution E (Definition 3) is atomic.

Proof. Let w and r with a subscript be a write operation and
a read operation. Write-serialization ensures that w1Ew2 iff w1

completes before w2; furthermore, w1Ew2 and w2Ew3 result in
w1Ew3. Write-atomicity also ensures that w1Er2 iff w1 completes
before r2. Since reads are atomic, r1Ew2 iff r1 completes before
w2. Furthermore, w1Er2 and r2Ew3 result in w1Ew3. Thus, E is
acyclic; therefore, from Definition 4, E is atomic.

Theorem 1. Conflict ordering is correct.

Proof. We need to prove that any execution E generated by conflict
ordering is sequentially consistent. That is, to prove that the graph
P ∪ E is acyclic (from Definition 5). Let us attempt a proof by
contradiction, and assume that there is a cycle in P ∪ E. Since
E is acyclic (from Lemma 1), the assumed cycle should contain
at least one program order edge. Without loss of generality, let
us assume that the program order edge that contains a cycle is
m1Pm2 as shown in Fig. 2. To complete the cycle, there must
be a conflict order edge m2Em, where m ∈ pred(m1). Conflict
ordering, however, ensures that those memory operations from
pred(m1), which conflict with m2 would have completed before
m2 (from Definition 9). Since m ∈ pred(m1), m would have
completed before m2. Thus, the conflict order edge m2Em is not
possible, which results in a contradiction. Thus, conflict ordering is
correct.

4. Hardware Design

In this section we describe our hardware design that incorporates
conflict ordering to enforce SC efficiently. We first describe our
basic design in which all memory operations will have to check for
conflicts before they can complete. We then describe how we can
determine phases in program execution where memory operations
can complete without checking for conflicts.
(System Model). For the following discussion we assume a tiled
chip multiprocessor, with each tile consisting of a processor, a lo-
cal L1 cache and a single bank of the shared L2 cache. We assume

that the local L1 caches are kept coherent using a directory based
cache coherence protocol, with the directory distributed over the
L2 cache. We assume that addresses are distributed across the di-
rectory at a page granularity using the first touch policy. We assume
a directory protocol in which the requester notifies the directory on
transaction completion, so each coherence transaction can have a
maximum of four steps. Thus, each coherence transaction remains
active in the directory until the time at which it receives the no-
tification of transaction completion. Furthermore, we assume that
the cache coherence protocol provides write atomicity. We assume
each processor core to be a dynamically scheduled ILP processor
with a reorder buffer (ROB) which supports in-window specula-
tion. All instructions, except memory writes, are made to complete
in program order, as and when they retire from the ROB. Writes on
the other hand, are made to retire into the write-buffer, so that the
processor need not wait for them to complete. Finally, it is worth
noting that our proposal is also applicable to bus based coherence
protocols; indeed, we report experimental results for both bus based
and directory based protocols.

4.1 Basic conflict ordering

We describe our conflict ordering implementation which allows
memory operations (both reads and writes) to complete past pend-
ing writes, while ensuring SC; it is worth noting, however, that
our system model does not allow memory operations to complete
past pending reads. Recall that conflict ordering allows a memory
operation m2, whose immediate predecessor is m1, to complete
as long as m2 does not conflict with those memory operations
from pred(m1) which are pending completion – let us call such
pending operations as predp(m1). Thus, for m2 to safely com-
plete, we need to be sure that m2 does not conflict with any of the
memory operations from predp(m1). Alternatively, if addrp(m1)
refers to the set of addresses accessed by memory operations from
predp(m1), we can safely allow m2 to complete if its address
is not contained in addrp(m1). The challenge is to determine
addrp(m1) as quickly as possibly – and in particular without
waiting for m1 to complete. Next, we show how we compute
addrp(m1) for a write-miss, cache-hit, and a read-miss respec-
tively.

(Write-misses). Our key idea for determining addrp(m1) for a
write-miss m1 is to simply get this information from the directory.
We show that those memory operations from predp(m1), if any,
would be present in the directory (as pending memory operations
that are currently being serviced in the directory), provided write-
misses such as m1 are issued to the directory, before subsequent
memory operations are allowed to complete. In other words, if
addr-list refers to the set of addresses of the cache misses being
serviced in the directory, addrp(m1) would surely be contained
in addr-list. In addition to this, since our system model does not
allow memory operations to complete past pending reads, we are
able to show that addrp(m1) would surely be contained in write-
list – where write-list refers to the set of memory addresses of
the write-misses being serviced in the directory. Consequently,
when the write-miss m1 is issued to the directory, the directory
replies back with the write-list, containing the addresses of the
write-misses which are currently being serviced by the directory
(to minimize network traffic we safely approximate the write-list
by using a bloom filter). A subsequent memory operation m2 is
allowed to complete, only if m2 does not conflict with any of the
writes from the write-list. If m2 does conflict, then the local cache
block m2 maps to is invalidated, and the memory operation m2

and its following instructions are replayed when necessary. During
replay, m2 would turn out to be a cache miss and hence the miss
request would be sent to the directory. This would ensure that m2

would be ordered after its conflicting write that was pending in the
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directory. It is worth noting that memory operations that follow a
pending write, will now need to wait only until the write is issued
to the directory and get a reply back from the directory, as opposed
to waiting for the write-miss to complete. While the former takes
as much time as the round trip latency to the directory, the latter
can take a significantly longer time – since it may involve the time
taken to invalidate all shared copies, and also access memory if it
is a miss.

Figure 3. predp(b1) = {b1} ∪ predp(b0) ∪ predp(a1).

(Cache-hits). Fig. 3 shows how predp(b1) relates to predp(b0),
where b0 is the immediate predecessor of b1 in the program order,
and a1 is the immediate predecessor of b1 in the conflict order. As
we can see, predp(b1) = {b1} ∪ predp(b0) ∪ predp(a1); this is
because the global memory order is the union of the program order
and the conflict order. If, however, b1 is a cache hit, then its immedi-
ate predecessor in the conflict order must have completed and hence
cannot be pending; if it were pending, b1 would become a cache-
miss. Thus predp(b1) = {b1} ∪ predp(b0). Since memory opera-
tions that follow a cache-hit are allowed to complete only after the
cache hit completes, predp(b1) remains the same as predp(b0).
Consequently, addrp(b1) remains the same as addrp(b0) and thus,
the write-list for a cache-hit need not be computed afresh.

Figure 4. Basic Conflict Ordering: Example

(Read-misses). One important consequence of completing mem-
ory operations past pending writes is that, when a read-miss com-
pletes, there might be writes before it in the global memory order
that are still pending. As shown in Fig. 4(a), if b2 is allowed to com-
plete before b1, b1 might still be pending when a1 completes. Now,
conflict ordering mandates that memory operations that follow a1

can complete, only when they do not conflict with predp(a1). To
enable this check, read-misses are also made to consult the direc-
tory and determine the write-list. Accordingly, when read-miss a1

consults the directory, it fetches the write-list and replies to the pro-
cessor. Having obtained the write-list, a2 which does not conflict
with memory operations from the write-list, is allowed to complete.
Memory operation a3, since it conflicts, is replayed obtaining its
value from b1 via the directory.

4.1.1 Handling distributed directories

To avoid a single point of contention, directories are typically
distributed across the tiles, with the directory placement policy
deciding the mapping from the address to the corresponding home
directory; we assume the first touch directory placement policy.
With a distributed directory, a write-miss (or a read-miss) m1 is
issued to its home directory and can only obtain the list of pending
writes from that directory. This means that a memory operation m2

that follows m1 can use the write-list to check for conflicts only if
m2 maps to the same home directory as m1. If m2 does not map to
the same home node as m1, then m2 will have to be conservatively
assumed to be conflicting. Consequently m2 will have to go to its
own home directory to ensure that it does not conflict. If it does not
conflict, then m2 can simply commit like a cache hit; otherwise,
it is treated like a miss and replayed. When m2 goes to its home
directory to check for conflicts, we take this opportunity to fetch the
write-list from m2’s home directory, so that future accesses to the
same node can check for conflicts locally. To accommodate this, the
local processor has multiple write-list registers which are tagged by
the tile id.

The scenario shown in Fig. 4(b) illustrates this. Let us assume
that the variable X maps to Node 1, while variables Z, W and
Y map to Node 2. Note that the processor also has two write-list
registers. When a1 is issued to its directory, it returns the pending
write-misses from Node 1. Consequently, this is put into one of
the write-list register which is tagged with the id of Node 1. The
contents of the other write-registers are invalidated as they might
contain out-of-date data. When a2 tries to commit, the tags of
the write-list registers are checked to see if any of the write-list
registers is tagged with the id of Node 2, which is the home node for
a2. Since none of the write-list registers have the contents of Node
2, a2 is sent to its home directory (Node 2) to check for conflicts.
After ensuring that a2 does not conflict, the pending stores of the
home directory (from Node 2) are returned and inserted into the
write-list register. This allows us to commit a3 which maps to the
same node. Likewise, when a4 tries to commit, it is found to be
conflicting and hence replayed.

Although the distributed directory could potentially reduce the
number of memory operations that can complete past pending
writes, our experiments show that, due to locality, most of the
nearby accesses tend to map to the same home node, which allows
us to complete most memory operations past pending writes.

4.1.2 Correctness

The correctness of our conflict ordering implementation hinges on
the fact that when a cache-miss m1 is issued to the directory, the
write-list returned by the directory is correct; that is, the write-list
should include addrp(m1), the addresses of all pending memory
operations that occur before m1 in the global memory order. We
prove this formally, next.

Lemma 2. When a cache-miss m1 is issued to the directory, all
pending memory operations prior to it in the global memory order
must be present in the directory . That is, when m1 is issued to the
directory, {m : mGm1} must be present in the directory.

Proof. (1) m1 is a write-miss. When m1 is issued to the directory,
conflict ordering ensures that all pending memory operations prior
to m1 in the program order must have been issued to the directory.
(2) m1 is a read-miss. m1 is issued to the directory to fetch the
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Figure 5. Correctness of conflict ordering implementation: m2

cannot be a read in each of the 3 scenarios

write-list only when it is retired, and all memory operations prior
to it have in turn been issued. Thus, whether m1 is a write-miss
or a read-miss, when m1 is issued to the directory, {m : mPm1}
must be present in the directory. Likewise, when m1 is issued to the
directory all memory operations prior to m1 in the conflict order,
{m : mEm1} must have been issued to the directory. Thus, when
m1 is issued to the directory, {m : mGm1} must be present in the
directory.

Lemma 3. When a read-miss m1 is issued to the directory (to
obtain the write-list), none of the pending memory operations prior
to it in the global memory order are read-misses.

Proof. Let us attempt a proof by contradiction and assume that such
a pending read-miss exists. Let m2 be the assumed read-miss such
that m2 ∈ predp(m1). Now the read-miss m2 cannot occur before
m1 in the program order, as all such read-misses would have retired
and hence cannot be pending. m2 cannot occur before m1 in the
conflict order, as two reads do not conflict with each other. Thus, the
only possibility is as shown in Fig. 5(a), where there is a write-miss
m3 such that m2Pm3 and m3Em1 (without loss of generality).
This again, however, is impossible since the write m3 will be issued
only after all reads before it (including m2) complete.

Lemma 4. When a write-miss m1 is issued to the directory, all
pending read-misses prior to it in the global memory order, conflict
with m1.

Proof. As shown in Fig. 5(b), it is possible that there exists m3,
a read-miss, such that m3Gm1 since m3Em1. There cannot be,
however, any read-miss m2 such that m2Gm1 with m2 not con-
flicting with m1. Proof is by contradiction, along similar lines to
Lemma 3 (m2 in Fig. 5 (b) and Fig. 5 (c) cannot be reads).

Theorem 2. When a cache-miss m1 is issued to the directory,
the write-list returned will contain addrp(m1), the addresses of
all pending memory operations that occur before m1 in the global
memory order.

Proof. When a cache-miss m1 is issued to the directory, the ad-
dresses of the memory operations serviced in the directory (addr-
list) will contain addrp(m1) (from lemma 2). All pending read-
misses which occur before m1 in the global memory order, if any,
would conflict with m1 and hence access the same address as m1.
(from Lemma 3 and Lemma 4). Thus, the write-list is guaranteed
to contain addrp(m1).

4.2 Enhanced conflict ordering

In this section, we describe our enhanced conflict ordering design,
in which we identify phases in program execution where memory
operations can complete without checking for conflicts. But first,
we discuss the limitations of basic conflict ordering, to motivate
our approach.

4.2.1 Limitations of basic conflict ordering

We illustrate the limitations of basic conflict ordering with the
example shown in Fig. 6(a) and (b). As we can see, in Fig. 6(a),
the write-miss a1 estimates predp(a1) by consulting the directory
and obtaining the write-list. All memory operations that follow
the pending write miss a1 need to be checked with the write-list
for a conflict, before they can complete. It is important to note
that even after a1 completes, memory operations following a1 will
still have to be checked for conflicts. This is because b1, which
precedes a1 in the global memory order, could still be pending
when a1 completes. In other words, the completion of the store
a1 is no longer an indicator of all memory operations belonging to
pred(a1) completing. Thus, in basic conflict ordering, all memory
operations that follow a write miss (or a read miss) need to be
continually checked for conflicts before they can safely complete.

Another limitation stems from the fact that a read-miss (or a
write-miss) conservatively estimates its predecessors in the global
memory order by accessing the directory. Let us consider the sce-
nario shown in Fig. 6(b), in which the read-miss a1 estimates
predp(a1) from the directory. However, if b2 and a1 are sufficiently
staggered in time, which is typically common [19], then all mem-
ory operations belonging to pred(b2) (including b1) might have
already completed by the time a1 is issued. In such a case, there is
no need for a1 to compute its write list; indeed, memory operations
such as a2 can be safely completed past a1.

4.2.2 Our approach

(HW support and operation). Our approach is to keep track of
the (local) memory operations that have retired from the ROB, but
whose predecessors in the global memory order are still pending.
We call such memory operations as active and we track such mem-
ory operations in a per-processor augmented write buffer (AWB).
The AWB is like a normal write-buffer, in that, it buffers write-
misses; unlike a conventional write-buffer, however, it also buffers
the addresses of other memory operations (including read-misses,
read-hits and write-hits) that are active. Therefore, an empty AWB
indicates an executing phase in which all preceding memory oper-
ations in the global memory order have completed; this allows us
to complete succeeding memory operations without checking for
conflicts. To reduce the space used by AWB, the consecutive cache
hits to the same block are merged.

We now explain how we keep track of active memory operations
in the AWB. A write-miss that retires from the ROB is marked
active by inserting it into the AWB, as usual. The write-miss,
however, is not necessarily removed from the AWB (i.e. marked
inactive) when it completes; we will shortly explain the conditions
under which a write-miss is removed from the AWB.

A memory operation which retires from the ROB while the
AWB is non-empty is active by definition. Consequently, a cache
hit which retires while the AWB is non-empty is marked active by
inserting its cache block address into the AWB; it is subsequently
removed when the memory operation becomes inactive – i.e., when
all prior entries in the AWB have been removed.

A cache miss which retires while the AWB is non-empty, like
a cache hit, is marked active by inserting its cache block address
into the AWB. However, unlike a cache hit, its block address is not
necessarily removed when all prior entries in the AWB have been
removed. Indeed, a cache miss remains active, and hence its cache
block address remains buffered in the AWB, until its predecessors
in the conflict order become inactive. Accordingly, even if a write-
miss completes, it remains buffered in the AWB until all the cache
blocks that it invalidates turn inactive. Likewise, a read-miss that
completes is inserted into the AWB, if it gets its value from a cache
block that is marked active. Here, a cache block is said to be active
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Figure 6. (a) and (b): Limitations of basic conflict ordering; (c) and (d): Our approach

if the corresponding cache block address is buffered in the AWB,
and inactive otherwise.

Thus, to precisely keep track of cache misses that are active,
we need to somehow infer whether its predecessors in the conflict
order are active. We implement this by tagging coherence messages
as active or inactive. When a processor receives a coherence request
for a cache block, we check the AWB to see if it is marked active. If
it is marked active, the processor responds to this coherence request
with a coherence response that is tagged active. This would enable
the recipient (cache miss) to infer that the coherence response
is from an active memory operation. At the same time, when a
processor receives a coherence request to an active cache block, it
is buffered; when the cache block eventually becomes inactive, we
again respond to the buffered coherence request with a coherence
response that is tagged inactive. This would enable the recipient
(cache miss) to infer that the response is from a block that has
transitioned to inactive. A cache miss, when it receives a coherence
response, is allowed to complete irrespective of whether it receives
an active or an inactive coherence response; however, it remains
active (and hence buffered in the AWB) until it gets an inactive
response. Finally, by not allowing an active cache block to be
replaced, we ensure that if a cache miss has predecessors in the
conflict order, it will surely be exposed via the tagged coherence
messages.

(Write-Miss: Example). We now explain the operation with the
scenario shown in Fig. 6(c) which addresses the limitation shown
in Fig. 6(a). First, the write-miss b1 is issued from the ROB of pro-
cessor B and is inserted into the AWB (step 1), after which the
read-hit b2 is made to complete past it. Since, the AWB is non-
empty when b2 completes, b2 is marked active by inserting the
cache block address X into the AWB (step 2). Then, write-miss a1

to same address X is issued in processor A, inserted into the AWB,
and issued to the directory (step 3). The directory then services this
write-miss request, sending an invalidation request for cache block
address X to processor B. Since cache block address X is active
in processor B (cache block address X is buffered in processor B’s
AWB), processor B sends an active invalidation acknowledgement
back to processor A (step 4); at the same time, processor B buffers
the invalidation request so that it would be able to respond again
when cache block address X eventually becomes inactive. When
processor A receives the invalidation acknowledgement, a1 com-
pletes (step 5), and so it sends a completion acknowledgement to
the directory. It is worth noting that a1 has completed at this point,
but is still active and hence is still buffered in processor A’s AWB.
Let us assume that b1 completes at step 6; furthermore let us assume
that at this point all the predecessors of b1 in the global memory or-

der have also completed – in other words, b1 has becomes inactive.
Since b1 has become inactive, cache block address Y is removed
from the AWB. This, in turn, causes b2 (cache block address X)
to be removed from the AWB, because all those entries that pre-
ceded b2 (including b1) have been removed from the AWB. Since
cache block address X has become inactive, processor B again re-
sponds to the buffered invalidation request by sending an inactive
invalidation acknowledgement to processor A. When processor A
receives this inactive acknowledgement, the recipient a1 is made
inactive and hence removed from the AWB (step 7). This will allow
succeeding memory operations like a2 to safely complete without
checking for conflicts (step 8).

(Read-Miss: Example). Fig. 6(d) addresses the limitation shown
in Fig. 6(b). First, the write-miss b1 is issued and made active by
inserting it into the AWB (step 1). Then, the write-hit b2 which
completes past it is made active by inserting address X into the
AWB (step 2). Let us assume that b1 then completes, and also
becomes inactive (step 3). This causes b1 to be removed from
the AWB, which in turn causes b2 (cache block address X) to be
removed. When the read-miss a1 is issued to the directory (step
4), it sends a data value request for address X to processor B.
Since the cached block address X is inactive, processor B responds
with an inactive data value reply to processor A (step 5). Upon
receiving this value reply, a1 completes. Furthermore, since the
reply is inactive, it indicates that all the predecessors of a1 in the
conflict order have completed. Thus, the write-list is not computed
and a1 is not inserted into the AWB. Indeed when a2 is issued (step
8), assuming the AWB is empty, it can safely be completed.

(Misses to uncached blocks). When a cache-miss is issued to the
directory and it is found to be uncached in each of the other pro-
cessors, this indicates that the particular cache block is inactive in
each of the other processors. This is because an active block is not
allowed to be replaced from the local cache. This allows us to han-
dle a miss to an uncached block similar to a cache hit, in that, we
do not need to compute a new write-list for such misses. Indeed, if
there are no other pending entries in the AWB, then memory op-
erations that come after a miss to an uncached block can be com-
pleted without checking for conflicts. It is worth noting that misses
to local variables, which account for a significant percentage of
misses, would be uncached in other processors. This optimization
would allow us to freely complete memory operations past such
local misses.

(Avoiding AWB snoops). In the above design, all coherence re-
quests and replacement requests must snoop the AWB first to see
if the corresponding cache block is marked active. To avoid this,
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we associate an active bit with every cache block; the active bit
is set whenever the corresponding cache block address is inserted
into the AWB and reset, whenever the cache block address is not
contained in the AWB.

(Deadlock-freedom). Deadlock-freedom is guaranteed because
memory operations that have been marked active will eventually
become inactive. It is worth recalling that a memory operation
becomes inactive when all its predecessors in the global memory
order in turn become inactive. In theory, since conflict ordering
guarantees SC, there cannot be any cycles in the global memory
order, which ensures deadlock-freedom. The fact that an active
cache block is not allowed to be replaced, however, can potentially
cause the following subtle deadlock scenario. In this scenario, an
earlier write-miss is not allowed to bring its cache block into its
local cache, since all the cache blocks in its set have been marked
active by later memory operations which have completed. In such
a scenario, the later memory operations that have completed are
marked active, and are waiting for the earlier write-miss to turn
inactive; the earlier write-miss, however, cannot complete (and be-
come inactive), since it is waiting for the later memory operations
to turn inactive. We avoid such a scenario by forcing a write-miss to
invalidate the cache block chosen for replacement and set its active
bit, before the write-miss is issued to the directory. This will ensure
that later memory operations which complete before the write-miss
will not be able to use the same cache block used by the write-miss,
as this cache block has been marked active by the write-miss. Thus,
the deadlock is prevented.

Figure 7. Hardware Support: Conflict Ordering

4.3 Summary

(Hardware support). Fig. 7 summarizes the hardware support re-
quired by conflict ordering. First, each processor core is associated
with a set of write-list registers. Second, each processor core is as-
sociated with an augmented write buffer (AWB), which replaces a
conventional write-buffer. Like a conventional write-buffer, each
entry of the AWB is tagged by the cache block address; unlike
a conventional write buffer, however, it also buffers read-misses,
read-hits and write-hits. To distinguish write-misses from other
memory operations, each entry of the AWB is associated with a

write-miss bit. If the current entry corresponds to a write-miss, i.e.
the write-miss bit is set, the entry additionally points to the data
that is written by the current write-miss. Each entry is also associ-
ated with a conflict-active bit, which is set if any of its predeces-
sors which conflict with it are active. Third, an active bit is added
to each local cache block, which indicates whether that particular
cache block is active. Lastly, conflict ordering requires minor exten-
sions to the cache coherence subsystem. Each processor is associ-
ated with a req-buffer which is used to buffer coherence requests to
active cache blocks. Each coherence response message (data value
reply and invalidation acknowledgement) is tagged with an active
bit, to indicate whether it is an active response or an inactive re-
sponse. Also, conflict ordering involves the exchange of additional
coherence message. While additional coherence messages are ex-
changed as part of conflict ordering, it is worth noting that the co-
herence protocol and its associated transactions for maintaining co-
herence are left unchanged. We summarize the additional transac-
tions next.

(Write-miss actions). The actions performed when the write-miss
retires from the ROB are as follows:

• Insert into the AWB. The write-miss is first inserted into the
AWB as follows: the inserted entry is tagged with the cache
block address of the write-miss; since the entry corresponds to a
write-miss, the write-miss bit is set to 1 and the entry points to
the data written by the write-miss; the conflict-active bit is set to
1 since its predecessor in the conflict order may be active.

• Invalidate replacement victim. Once the write-miss is inserted
into the AWB, the cache block chosen for replacement is invali-
dated and its active bit is set to 1 – it is worth recalling that this
is done to prevent the deadlock scenario discussed earlier.

• Issue request to home-directory. Now, the write-miss is issued
to its home directory. If the corresponding cache block is found
to be uncached in any of the other processors, the directory
replies with an empty write-list. If the cache block is indeed
cached in some other processor, the directory replies with the
list of pending write-misses being serviced in the directory. To
minimize network traffic, before sending the write-list, a bloom
filter is used to compress the list of addresses.

• Process response. Once the processor receives the write-list,
if it indeed receives a non-empty write-list, it updates the local
write-list register. When the write-miss receives all of its inval-
idation acknowledgements, it completes. When the write-miss
completes, it sends a completion message to the directory, so
that the directory knows about its completion. When a write-
miss receives all of its acknowledgements and each of the ac-
knowledgements are tagged inactive, its corresponding conflict-
active bit (in the AWB) is reset to 0. When the conflict-active
is reset, the write-miss checks the AWB to see if there are any
entries prior to it. If there are none, it implies that the write-miss
has become inactive and can be removed from the AWB.

• Remove write-miss and other inactive entries from the AWB.
Before removing the write-miss entry, we first identify those
memory operations which follow the original write-miss that
have also become inactive. To identify such inactive memory
operations, the AWB is scanned sequentially starting from the
original entry, selecting all those entries whose conflict-active
bit is reset to 0; the scanning is stopped when an entry whose
conflict-active bit is set to 1 is encountered. All such selected
entries are removed from the AWB, and the active bits of their
respective cache blocks are reset to 0.

(Cache-hit actions). The actions performed when a cache-hit
reaches the head of the ROB are as follows:
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• AWB empty. The AWB is first checked to see if it is empty. If
the AWB is empty, the cache-hit completes without checking for
conflicts.

• Check for conflicts. If the AWB is not empty, the write-list
registers are checked to see if the cache-hit conflicts with it. If
the cache-hit conflicts (or if write-list register does not cache the
directory entries of the cache-hit’s home node), the cache-hit is
treated like a miss and is issued to its home directory.

• No conflicts. If the cache-hit does not conflict, it is allowed to
safely complete. Since the AWB is non-empty, the cache-hit is
marked active by inserting it into the AWB with the write-miss
bit set to 0, the conflict-active bit set to 0 (since it is a cache-hit,
its predecessors in the conflict order must have completed), and
the active bit of the cache block is set to 1.

(Read-miss actions). The actions performed when a read-miss
reaches the head of the ROB are as follows:

• AWB empty. The AWB is first checked to see if it is empty.
If the AWB is empty, the read-miss completes without check-
ing for conflicts. Then, the data value reply that the read-miss
received as a coherence response is examined. If it is tagged ac-
tive, it is inserted into the AWB with the write-miss bit set to
0, the conflict-active bit set to 1 (since it obtained an active re-
sponse), and the active bit of the cache block is set to 1. Later,
when the read-miss receives its inactive response, the read-miss
entry is removed along with subsequent inactive entries, as dis-
cussed earlier.

• Check for conflicts. If the AWB is not empty, the write-list
registers are checked to see if the read-miss conflicts with it. If
the read-miss conflicts (or if write-list register does not cache the
directory entries of the read-miss’ home node), the cache-miss
is re-issued to its home directory.

• No conflicts. If the read-miss does not conflict, the read-miss
is allowed to safely complete. Since the AWB is non-empty,
the read-miss is marked active by inserting into the AWB with
the write-miss bit set to 0. The conflict-active bit is set to 0
or 1 depending on whether the read-miss received an inactive
or an active data value response, respectively. If it received an
active response – later, when the read-miss receives the inactive
response, the read-miss entry is removed along with subsequent
inactive entries, as discussed earlier.

(Coherence and replacement requests). When a coherence re-
quest (invalidate or data value request) is received for a cache block
that is marked active/inactive, the coherence response is in turn
tagged active/inactive. Additionally, if the coherence request is for
an active cache block, the coherence request is buffered in the req-
buffer. When the cache block is eventually reset to inactive, the cor-
responding entry is removed from the req-buffer and the processor
again responds to the buffered request – but now with an inactive
response. When a coherence request is received for an active cache
block and the req-buffer is full, the coherence response is delayed
until a space in the req-buffer frees up. As discussed earlier, this
cannot cause a deadlock, since active cache blocks will eventually
turn inactive. Finally, a cache block that is marked active is not al-
lowed to be replaced. When a replacement request is received, and
all cache blocks in the set are marked active, the response is delayed
until once of the blocks in the set turns inactive – again, without the
risk of a deadlock.

5. Experimental Evaluation

We performed our experiments with several goals in mind. First
and foremost, we want to evaluate the benefit of ensuring SC via

conflict ordering in comparison with the baseline SC and RMO im-
plementations. We then study the effect of varying the values of the
parameters in our HW implementation, on the performance. Since
the performance of our approach is dependent on how fast requests
can get back replies from directories, we study the sensitivity to-
wards the network latency. We also vary the size of write-lists to
evaluate their effects on performance. We then study the character-
ization of conflict ordering to see how it reduces the overhead of
using in-window speculation technique. Furthermore, we measure
the additional network bandwidth that is used up and finally, we
also measure the on-chip hardware resources that conflict ordering
utilizes. However, before we present the results of our evaluation,
we briefly describe our implementation.

5.1 Implementation

Processor 8, 16 and 32 core CMP, out of order

ROB size 176

L1 Cache private 32 KB 4 way 2 cycle latency

L2 Cache shared 8 MB 8 way 9 cycle latency

Memory 300 cycle latency

Coherence directory based invalidate

# of AWB entries 50 per core

# of req-buffer entries 8 per core

# of write-list registers 6 per core

write-list size 160 bits

2D torus (2×4 for 8-core,
Interconnect 4×4 for 16-core, 4×8 for 32-core)

5 cycle hop latency

Table 1. Architectural Parameters.

Benchmark Inputs

barnes 16K particles

fmm 16K particles

ocean 258× 258

radiosity batch

raytrace car

water-ns 512 molecules

water-sp 512 molecules

cholesky tk15.O

fft 64K points

lu 512×512

radix 1M integers

Table 2. Benchmarks.

We implemented conflict ordering using SESC [24] simulator,
targeting the MIPS architecture. The simulator is a cycle-accurate,
execution-driven multi-core simulator with detailed models for the
processor and the memory systems. To implement conflict order-
ing, we added the associated control logic to the simulator. We
considered conflict ordering in the context of a CMP with local
caches kept coherent using a distributed directory based protocol.
The architectural parameters for our implementation are presented
in Table 1. The default architectural parameters were used in all
experiments unless explicitly stated otherwise. We measured per-
formance with 8, 16 and 32 processors in Section 5.2, and for other
studies, we assumed 32 processors. We used the SPLASH-2 [32], a
standard multithreaded suite of benchmarks for our evaluation. We
could not get the program volrend to compile using the compiler
infrastructure that targets the simulator and hence we omitted it.
We used the input data sets described in Table 2 and ran the bench-
marks to completion.

(Our baseline SC implementation). Our SC baseline, referred to
as conventional SC in the experiments below, uses in-window spec-
ulation support. It is an aggressive implementation that uses hard-
ware prefetching and support for speculation in modern processors
to speculatively reorder memory operations while guaranteeing SC
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ordering using replay. However, such speculation is within the in-
struction window – where the instruction window refers to the set
of instructions that are in-flight. The implementation we use is sim-
ilar to ones used as SC baselines in proposals such as [6, 14, 31].

(Our baseline RMO implementation). Our baseline RMO im-
plementation allows memory operations to be freely reordered,
enforcing memory ordering only when fences are encountered.
Even when fences are encountered, in-window speculation support
(as used in the SC baseline) is used to mitigate the delays. The
RMO implementation is similar to ones used in recent works such
as [6, 14, 31].

5.2 Execution time overhead
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Figure 8. Conventional SC normalized to RMO
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Figure 9. Conflict ordering normalized to RMO

We measure the execution time overhead of ensuring SC via our
approach conflict ordering and compare it with the corresponding
overhead for conventional SC. We conducted this experiment for
8, 16 and 32 processors using the default hardware implementation
presented in Table 1. Fig. 8 and Fig. 9 show the execution time
overheads for conventional SC and conflict ordering, respectively.
The execution time overheads are normalized to the performance
achieved using RMO. As we can see, most benchmark programs
experience significant slowdown for conventional SC (more than
20% overhead on average for all numbers of processors). In par-
ticular, radix has the highest overhead. This is because radix has a
relatively high store-miss rate which forces the following loads to

wait longer before they can be retired. As we can see, with con-
flict ordering the overhead of ensuring SC is significantly reduced.
On average, the overhead is just 2.0% for 8 processors, 2.2% for 16
processors and 2.3% for 32 processors, and thus the performance of
our approach is comparable to RMO. With conflict ordering loads
and stores do not need to wait until outstanding stores complete;
they can mostly retire as soon as the pending stores get replies back
from directories. Since the time to get replies from directories is
significantly less than the time for outstanding stores to complete,
loads do not end up causing stalls and stores can also be performed
out of order. This explains why the performance with conflict order-
ing is significantly better than conventional SC. Furthermore, it is
worth noting that, with different numbers of processors, the perfor-
mance does not vary significantly. Therefore, our approach appears
scalable.
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Figure 10. Performance for bus-based implementation.

(Bus-based implementation). In addition to the distributed directory-
based implementation, we also evaluated a bus-based implementa-
tion to find out if conflict ordering is applicable to current multi-
core processors which are predominantly bus based. For our bus
based implementation, we just implement basic conflict ordering;
we maintain a centralized on-chip structure called write-list-buffer
(WLB), which records the addresses of the write-misses which are
currently pending. When a write-miss retires into a local write-
buffer it is sent to the WLB; upon receiving the write-miss, the
WLB inserts its address into the WLB and replies back with the
write-list – containing all the addresses that are currently present
in the WLB except the addresses from the source processor. Sim-
ilar to the directory-based implementation, a bloom filter is used
to compress the addresses. Memory operations which attempt to
complete past the write-miss, check the received write-list to de-
cide whether they can be completed safely, without violating SC.
We conducted experiments for bus-based implementation with 4
and 8 processors, and set the round-trip latency for accessing WLB
as 5 cycles. Fig. 10 shows the execution time normalized to RMO.
As we can see, the execution time of our technique is close to RMO
for both 4 and 8 processors, with the overhead less than 2% on av-
erage. This shows that conflict ordering is also applicable to small
scale multi-core processors that use a bus for coherence.

5.3 Sensitivity studies

(Sensitivity towards network latency). The performance of con-
flict ordering hinges on the time for a miss to get replies from the
directory. It is desirable that conflict ordering is reasonably toler-
ant to the network latency. In our experiments, we used 2D torus
network and varied the latency of each hop with values of 3 cycles,
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Figure 11. Varying the latency of network.

5 cycles, and 8 cycles, as shown in Fig. 11. The performance is
measured with 32 processors. As we can see, the overhead does not
vary significantly when the latency is increased from 3 cycles to 5
cycles. Even when the latency is increased to 8 cycles, the average
performance drops only slightly, to 3.5%. This shows conflict or-
dering is reasonably tolerant to the network latency. In our default
design, we choose 5 cycles as each hop latency, assuming 2 cycle
wire delay between routers and 3 cycle delay per pipelined router.
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Figure 12. Varying number of bits of write-list.

(Sensitivity towards size of write-list). Recall that, to minimize
network bandwidth, the addresses within replies to cache miss re-
quests are compressed to form a write-list using a bloom filter.
While a smaller size is beneficial as far as saving network band-
width is concerned, it could also result in false positives. A false
positive can lead us to falsely conclude that a load or store con-
flicts with a pending store, causing the load to re-execute or the
store to stall. In this experiment, we evaluated the minimum size
of the write-list that does not result in performance loss. We varied
the number of bits of write-list with the value 128, 160, and 192
to evaluate the performance and corresponding false positive rates
with 32 processors. In our implementation, we used a bloom filter
with 4 hash functions. Fig. 12 shows the results, where lines rep-
resent false positive rates and bars represent execution time over-
heads. As the number of bits increases from 128 to 192, the false
positive rate decreases (on average, 8.01%, 2.42%, and 0.69% re-
spectively), and the execution overhead also decreases (on average,
2.97%, 2.33% and 2.29% respectively). A size of 160 bits performs
slightly better than 128 bits and very close to 192 bits. Therefore,
we choose 160 bits (20 bytes) as the size of the write-list in our
implementation.

5.4 Characterization of conflict ordering

In this experiment, we wanted to examine how conflict ordering
reduces the overhead of using conventional SC. Recall that, in

the conventional SC implementation, loads cannot be retired if
there are pending stores and stores cannot be performed out of
order, which leads to the gap between the performance of SC and
RMO. On the other hand, using conflict ordering, we can safely
retire loads and complete stores past pending stores by checking
the write-list. Hence, performance hinges on how often loads and
stores can be reordered with their prior pending stores.
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Figure 13. Breakdown of checks against write-lists.
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Figure 14. Reduced accesses to directories.

Fig. 13 shows the breakdown for all checks against write-lists.
We categorize these checks into three types: checks against empty
write-lists, checks against non-empty write-lists without finding
any conflict, and checks against non-empty write-lists with finding
a conflict. When a request to the directory finds that the targeted
block is not cached, it indicates that no active memory operation
has accessed the block and the requesting processor can get a
reply with an empty write-list. As we can see, most checks are
against empty write-lists (around 90% on average). For the checks
against non-empty write-lists, there is almost no conflict. Hence,
our approach allows almost all memory operation to be reordered,
achieving performance comparable to RMO.

Fig. 14 shows the reduced directory accesses using enhanced
conflict ordering, compared to basic conflict ordering. The perfor-
mance of our approach also hinges on the frequency of directory ac-
cesses. Hence, it is important to have fewer directory accesses. As
we can see, using enhanced conflict ordering, on average we only
have about 6% directory accesses of basic conflict ordering. This is
because, for most benchmark programs, AWB is empty most of the
time. For some benchmarks, such as ocean, the access frequency
does not reduce as much as other benchmarks. However, the access
frequency for these benchmarks in basic conflict ordering is already
low. Therefore, their overhead is still low.

5.5 Bandwidth increase

In this experiment, we measure the bandwidth increase due to
write-lists that need to be transferred and extra traffic introduced by
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Benchmark Bandwidth increase (%)

barnes 2.49

fmm 0.98

ocean 2.64

radiosity 8.36

raytrace 1.21

water-ns 2.08

water-sp 2.21

cholesky 0.24

fft 1.16

lu 1.96

radix 1.71

Table 3. Bandwidth Increase.

conflict ordering for 32 processors. Table 3 shows the bandwidth in-
crease compared to RMO. As we can see, for most benchmarks, the
bandwidth increase is less than 3% (2.27% on average). radiosity
has relatively higher bandwidth increase. This is because its write
miss rate is relatively higher and requests to directories usually get
non-empty write-lists, resulting in write-lists taking up a relatively
high proportion of bandwidth.

5.6 HW resources utilized

Recall that the additional HW resources utilized by conflict order-
ing are AWB, req-buffers, write-list registers, and the active bits
added to each cache block. Each AWB entry contains the cache
block address, the conflict-active and the write-miss bits; we do
not count the storage required for data written by the write-miss,
since it is already present in conventional write buffers. Since we
use 50 AWB entries per core, each of size 5 bytes, the total size
per processor core amounts to 250 bytes for the AWB. Since we
use 8 entries for the req-buffer, each of size 6 bytes (for storing the
cache block address and the processor id), the total size per proces-
sor core amounts to 48 bytes. With 6 write-list registers per core,
each of size 20 bytes, the total size per processor core amounts to
120 bytes. In addition, we also require active bits to be added to
each cache block in the L1 cache. This amounts to an additional
64 bytes of on-chip storage per processor core. Thus the total ad-
ditional on-chip storage space amounts to 482 bytes per processor
core. In addition to this we require the hardware resources needed
for in-window speculation which is also required by our SC and
RMO baselines. Thus, the additional hardware resources utilized
for conflict ordering is nominal.

6. Conclusion

Should hardware enforce SC? Researchers have examined this
question for over 30 years, with no definite answers, yet. While
there has been no clear consensus on whether hardware should
support SC [3, 16], it is important to note, however, that the bene-
fits of supporting SC are widely acknowledged [3]. Indeed, critics
of hardware enforced SC, question it based on whether the costs
of supporting SC justify its benefits – all prior SC implementa-
tions needing to employ aggressive speculation and its associated
complexity for supporting SC.

In this paper we demonstrate that the benefits of SC can indeed
be realized using nominal hardware resources. While prior SC im-
plementations guarantee SC by explicitly completing memory op-
erations within a processor in program order, we guarantee SC by
completing conflicting memory operations, within and across pro-
cessors, in an order that is consistent with the program order. More
specifically, we identify those shared memory dependencies whose
ordering is critical for the maintenance of SC and intentionally or-
der them. This allows us to non-speculatively complete memory
operations past pending writes and thus reduce the number of stalls
due to memory ordering. Our experiments with SPLASH-2 suite

showed that SC can be achieved efficiently, incurring only 2.3%
additional overhead compared to RMO.
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