
Tokens (Cont.) &
 Smart CONtract SEcurity

Kai Mast
CS639/839

Spring 2023

Announcements
• New mini project will be out sometime this week

• Start thinking about projects!
– Feel free to meet with me to talk about ideas

• There will be an optional lecture series on blockchains with guest
speakers
– Usually on Monday’s at noon
– I will send out more information soon

• Lecture on 3/8 will be online

Today’s AGENDA
• Recap: Ethereum/DApps

• More Token Content
– Decentralized Autonomous Organizations

• Decentralized Exchanges
– Automated Market Makers

• Break

• Smart Contract Security
– Reentrancy Attacks
– The DAO hack

Recap: Blockchain Execution

In Ethereum-like protocols
• Blocks are created periodically (we talk soon about how)
• Each node executes and validates blocks in order

– We can only execute a block if we executed its predecessor

For each block
• Execute all transactions

– Usually in sequence; there is not concurrency
– Reject block if any transaction is invalid

• Compare resulting state and receipts with those in the block
header
– If not, reject block

Transaction Types
(Externally-Owned) Account Creation
• Send Ether to an unused address

Contract Creation
• Send Code to an unused address
• (Optionally) also send some Ether

Simple Payments
• Send money to another account
• Data field is empty (or ignored by the recipient)

Function Invocation
• Data field contains function identifier and arguments
• (Optionally) also send some Ether

Transaction Execution (in Ethereum)

Execution of transaction updates the state of the blockchain

• Transactions execute sequentially and as a single “thread”
• If a transaction aborts (is reverted), it will not make any changes to the

state
• Each transactions sees the changes created by the previous transaction

Block

Tx Tx Tx Tx

Block

Tx Tx Tx Tx

Block

Tx Tx Tx

Blockchain State
In the UTXO-Model (e.g., Bitcoin):
• Blockchain state is the set of unspent transaction outputs

In the Account Model (e.g., Ethereum):
• Blockchain state contains all existing accounts and their data
• For each account, the ledger needs to store

– Balance
– Code (if any)
– Custom Data (if any)

Function calls In CONTRACTS

Internal Calls
• Call a function within the same contract
• No context switch needed

External Calls
• Call a function of another contract
• Requires a context switch

Library Calls (or “Delegate Calls”)
• Run the code of another contract in the current context
• Allows reusing code

Function calls In CONTRACTS

Externally-
Owned
Account

Contract
1

Contract
2

Transaction Request
(contains a Message) Message

Transaction

WEB3 and DAPPS

Smart contracts: Small-ish programs executing on the chain

Decentralized Apps: Applications backed by smart contracts and a blockchain

Web 3.0: DApps replace conventional/centralized web services

Frontend
(for example, a

website)

Blockchain
Storage

Decentralized

Contract

Contract

Contract

EVENT LOGS

A player won
event Winner:
 player: address

@external
def set(i: uint256, j: uint256):
 [...]
 if self.check_winner(from_player):
 self.winner = from_player
 log Winner(msg.sender)

var ttt = web3.eth.contract(abi);
var c = ttt.at("0x1234...ab67");

// watch for changes in the callback
var c = ttt.Winner(
 function(error, result) {
 if(!error) {
 console.log(“Somebody won!”);
 }
 }
);

Contract Code Frontend Code

transaction Receipts

• Certifies the output of a transaction
• Like state, they are not stored on the blockchain
• Unlike state, they cannot be accessed by smart contracts

What do they contain?
• GasUsed: The actual amount of gas consumed
• Status: Whether the transaction succeeded
• Log: Data logged by the transaction

contract Interfaces

Interfaces provide a common API/ABI across smart contracts

Some interfaces are standardized, e.g.
• ERC20 for fungible tokens
• ERC165 for interface discovery
• ERC721 for non-fungible tokens

from vyper.interfaces import ERC20

implements: ERC20

Tokens

Two types of tokens exists

Fungible Tokens (or just “Tokens”):
• Tokens are interchangeable and separable
• E.g., shares of a company or a
• ERC20 is the standardized interface

Non-Fungible Tokens (NFTs):
• Each token is unique
• E.g., certificate of ownership of an asset
• ERC721 is the standardized interface for NFTs

FUNGIBLE Token Example: DAO

Decentralized Autonomous Organizations
• First proposed in the Ethereum Whitepaper

People can buy shares (the token)
• DAO pools money of share holders

Potential Use Case of a DAO: Crowdfunding
• DAO accepts proposals for investments
• Shareholders vote on proposals
• Voting power is proportional to the number of shares held
• If vote succeeds, DAO invests

BUYING/Selling SHARES: CODE

NFT Example: OpenSEA

OpenSea is not an NFT, but an NFT marketplace
• Different tokens are traded on OpenSea

NFTs only contain a reference to the image/item
• Actual contents (images etc.) are stored elsewhere
• E.g., on IPFS

Token contract can generate information about the token
• For example, where the image is located
• Or, for example, what properties the “cryptokitty” has

Exchanges

Why?
• Buy/sell tokens at current market value

Two Types
• Centralized

– backend by a legal entity, e.g., Coinbase
• Decentralized

– backed by a blockchain

Market MAKERS

Market makers serves as an intermediate between sellers and buyers
• Market makers can profit from the "ask-bid spread" (difference between sell and buy

offers)

Also called "liquidity provider"
• They offer a large quantity of the traded item(s) to facilitate continuous trade

Buyers SellersMarket
Makers

• Implements an Automated Market Maker
– First proposed by Vitalik Buterin1

• Development started in 2017 by Hayden Adams

• Implemented as a set of Ethereum smart contracts

• Governed by the UNI token, which itself is one of the most traded tokens

1 https://vitalik.ca/general/2017/06/22/marketmakers.html

https://vitalik.ca/general/2017/06/22/marketmakers.html

UNISWAP ARCHITECTURE

Source:
https://docs.ethhub.io/guides/graphical-guide-
for-understanding-uniswap/

Factory contract
• Tracks mapping of all existing

exchanges
• Creates new exchanges if needed

Exchange contracts
• Facilitate exchanges between Ether

and a specific token
• Stores Ether and the token as

needed

https://web.archive.org/web/20220129143458/https://docs.ethhub.io/guides/graphical-guide-for-understanding-uniswap/

Liquidity Providers in Uniswap

Problem: How does the exchange get liquidity (=money to trade)

Solution: “Crowdfund” liquidity
• Participants pool currency/tokens in a smart contract

– Participants receive some number of exchange-specific tokens in return

• When people trade through the contract, a fee is charged
– Each pool participants gets share of the fee proportional to their pool contribution

• Exchange tokens can be converted back into liquidity at the current
exchange rate

Automated MARKET MAKERS

ETH Token

AMM se
lls

Tok
en

AMM buys

Token

ETH Token ETH Token

Price Increases Price Decreases

푇표푘푒푛����푒 =
퐸�ℎ 푅푒푠푒��푒

푇표푘푒푛 푅푒푠푒��푒

Break

Smart COntract Security

• Smart contracts, like any software, are prone to bugs

• Attackers can exploit bugs
– By issuing malicious transactions
– Through other smart contracts

• Due to the immutability of smart contracts, bugs cannot easily be fixed

• Some vulnerabilities are “the usual suspects”
– e.g., integer overflow, missing assertions,...

• Some are blockchain-specific
– e.g., re-entrancy attacks

RE-Entrancy Attacks
Idea: Call back into a contract while it is still executing

Why does this work?
• Contract might have partially updated its state before calling another

function
• Contract might not re-check assertions after an external call returns

First discovered 7 years ago, but still happens!

https://rekt.news/dforce-network-rekt/

https://rekt.news/dforce-network-rekt/

Fallback Functions

Fallback functions are the default behavior of a
smart contract

They are called when:
• Money is sent to the contract without any

calldata
• The contract receives a function call, but the

function does not exist

They can perform arbitrary logic
• Including function calls!

@external
@payable
def __default__():
 # Do something here

Fallback Function in Vyper

The DAO hack

• ‘”The DAO” was the first Decentralized Autonomous Organization
– Held about $150 million in total
– Never actually invested in anything; it got hacked before it had a

chance to

• First large scale attack on a smart contract
– Happened in 2016
– About $50 million stolen

• At is core, just a re-entrancy attack

The DAO HACK

Withdraw Initialize
Withdrawal

Transfer Ether

Update Balance

DAO Contract Attacker Contract

Fallback Function

Attacker loops until all money is drained

The DAO HACK: CODE

DAO HACK: Aftermath

Rollback and Fork
• Ethereum developers reverted chain state to undo the hack

– Shareholders of the DAO were refunded
• Caused “Ethereum Classic” to split off Ethereum

Language/Protocol Changes
• Ethereum limited gas available to the fallback function when calling

send()
• Some languages, e.g., Vyper, do not allow integer over- and underflows
• Re-entrancy locks are now considered good practice for all smart

contracts

RE-Entrancy Locks

Re-entrancy locks ensure mutual exclusion:
• Grab a lock while entering a function
• If lock is already held, revert(=abort) transaction

@external
@nonreentrant("my_lock")
def make_a_call(_addr: address):
 # this function is protected from re-entrancy
 ...

That’s All (For TODAY)

• Next time: Blockchain Protocols

