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Announcements
• New mini project will be out sometime this week

• Start thinking about projects!
– Feel free to meet with me to talk about ideas

• There will be an optional lecture series on blockchains with guest 
speakers
– Usually on Monday’s at noon
– I will send out more information soon

• Lecture on 3/8 will be online



Today’s AGENDA
• Recap: Ethereum/DApps

• More Token Content
– Decentralized Autonomous Organizations

• Decentralized Exchanges
– Automated Market Makers

• Break 

• Smart Contract Security
– Reentrancy Attacks
– The DAO hack



Recap: Blockchain Execution

In Ethereum-like protocols
• Blocks are created periodically (we talk soon about how)
• Each node executes and validates blocks in order

– We can only execute a block if we executed its predecessor

For each block
• Execute all transactions

– Usually in sequence; there is not concurrency
– Reject block if any transaction is invalid

• Compare resulting state and receipts with those in the block 
header
– If not, reject block



Transaction Types
(Externally-Owned) Account Creation
• Send Ether to an unused address

Contract Creation
• Send Code to an unused address
• (Optionally) also send some Ether

Simple Payments
• Send money to another account
• Data field is empty (or ignored by the recipient)

Function Invocation
• Data field contains function identifier and arguments
• (Optionally) also send some Ether



Transaction Execution (in Ethereum)

Execution of transaction updates the state of the blockchain

• Transactions execute sequentially and as a single “thread”
• If a transaction aborts (is reverted), it will not make any changes to the 

state
• Each transactions sees the changes created by the previous transaction
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Blockchain State
In the UTXO-Model (e.g., Bitcoin):
• Blockchain state is the set of unspent transaction outputs

In the Account Model (e.g., Ethereum):
• Blockchain state contains all existing accounts and their data
• For each account, the ledger needs to store

– Balance
– Code (if any)
– Custom Data (if any)



Function calls In CONTRACTS

Internal Calls
• Call a function within the same contract
• No context switch needed

External Calls
• Call a function of another contract
• Requires a context switch

Library Calls (or “Delegate Calls”)
• Run the code of another contract in the current context
• Allows reusing code



Function calls In CONTRACTS
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WEB3 and DAPPS

Smart contracts: Small-ish programs executing on the chain

Decentralized Apps: Applications backed by smart contracts and a blockchain

Web 3.0: DApps replace conventional/centralized web services

Frontend
(for example, a 

website)
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EVENT LOGS

# A player won
event Winner:
    player: address

@external
def set(i: uint256, j: uint256):
    [...]
    if self.check_winner(from_player):
        self.winner = from_player
        log Winner(msg.sender)

var ttt = web3.eth.contract(abi);
var c = ttt.at("0x1234...ab67");

// watch for changes in the callback
var c = ttt.Winner(
  function(error, result) {
     if(!error) {
      console.log(“Somebody won!”);
     }
  }    
);

Contract Code Frontend Code



transaction Receipts

• Certifies the output of a transaction
• Like state, they are not stored on the blockchain
• Unlike state, they cannot be accessed by smart contracts

What do they contain?
• GasUsed: The actual amount of gas consumed
• Status: Whether the transaction succeeded
• Log: Data logged by the transaction



contract Interfaces

Interfaces provide a common API/ABI across smart contracts

Some interfaces are standardized, e.g.
• ERC20 for fungible tokens
• ERC165 for interface discovery
• ERC721 for non-fungible tokens

from vyper.interfaces import ERC20

implements: ERC20



Tokens

Two types of tokens exists

Fungible Tokens (or just “Tokens”):
• Tokens are interchangeable and separable
• E.g., shares of a company or a 
• ERC20 is the standardized interface

Non-Fungible Tokens (NFTs):
• Each token is unique
• E.g., certificate of ownership of an asset
• ERC721 is the standardized interface for NFTs



FUNGIBLE Token Example: DAO

Decentralized Autonomous Organizations
• First proposed in the Ethereum Whitepaper

People can buy shares (the token)
• DAO pools money of share holders

Potential Use Case of a DAO: Crowdfunding
• DAO accepts proposals for investments
• Shareholders vote on proposals 
• Voting power is proportional to the number of shares held
• If vote succeeds, DAO invests



BUYING/Selling SHARES: CODE



NFT Example: OpenSEA

OpenSea is not an NFT, but an NFT marketplace
• Different tokens are traded on OpenSea

NFTs only contain a reference to the image/item
• Actual contents (images etc.) are stored elsewhere
• E.g., on IPFS

Token contract can generate information about the token
• For example, where the image is located
• Or, for example, what properties the “cryptokitty” has



Exchanges

Why?
• Buy/sell tokens at current market value

Two Types
• Centralized

– backend by a legal entity, e.g., Coinbase
• Decentralized

– backed by a blockchain



Market MAKERS

Market makers serves as an intermediate between sellers and buyers
• Market makers can profit from the "ask-bid spread" (difference between sell and buy 

offers)

Also called "liquidity provider"
• They offer a large quantity of the traded item(s) to facilitate continuous trade

Buyers SellersMarket
Makers



• Implements an Automated Market Maker
– First proposed by Vitalik Buterin1

• Development started in 2017 by Hayden Adams

• Implemented as a set of Ethereum smart contracts

• Governed by the UNI token, which itself is one of the most traded tokens

1 https://vitalik.ca/general/2017/06/22/marketmakers.html

https://vitalik.ca/general/2017/06/22/marketmakers.html


UNISWAP ARCHITECTURE

Source: 
https://docs.ethhub.io/guides/graphical-guide-
for-understanding-uniswap/ 

Factory contract
• Tracks mapping of all existing 

exchanges
• Creates new exchanges if needed

Exchange contracts
• Facilitate exchanges between Ether 

and a specific token
• Stores Ether and the token as 

needed

https://web.archive.org/web/20220129143458/https://docs.ethhub.io/guides/graphical-guide-for-understanding-uniswap/


Liquidity Providers in Uniswap

Problem: How does the exchange get liquidity (=money to trade)

Solution: “Crowdfund” liquidity
• Participants pool currency/tokens in a smart contract

– Participants receive some number of exchange-specific tokens in return

• When people trade through the contract, a fee is charged
– Each pool participants gets share of the fee proportional to their pool contribution

• Exchange tokens can be converted back into liquidity at the current 
exchange rate



Automated MARKET MAKERS
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Break



Smart COntract Security

• Smart contracts, like any software, are prone to bugs

• Attackers can exploit bugs
– By issuing malicious transactions
– Through other smart contracts

• Due to the immutability of smart contracts, bugs cannot easily be fixed

• Some vulnerabilities are “the usual suspects”
– e.g., integer overflow, missing assertions,...

• Some are blockchain-specific
– e.g., re-entrancy attacks



RE-Entrancy Attacks
Idea: Call back into a contract while it is still executing

Why does this work?
• Contract might have partially updated its state before calling another 

function
• Contract might not re-check assertions after an external call returns

First discovered 7 years ago, but still happens!

https://rekt.news/dforce-network-rekt/

https://rekt.news/dforce-network-rekt/


Fallback Functions

Fallback functions are the default behavior of a 
smart contract

They are called when:
• Money is sent to the contract without any 

calldata
• The contract receives a function call, but the 

function does not exist

They can perform arbitrary logic
• Including function calls!

@external
@payable
def __default__():
      # Do something here

Fallback Function in Vyper



The DAO hack

• ‘”The DAO” was the first Decentralized Autonomous Organization
– Held about $150 million in total
– Never actually invested in anything; it got hacked before it had a 

chance to

• First large scale attack on a smart contract
– Happened in 2016
– About $50 million stolen

• At is core, just a re-entrancy attack 



The DAO HACK

Withdraw Initialize 
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DAO Contract Attacker Contract

Fallback Function

Attacker loops until all money is drained



The DAO HACK: CODE



DAO HACK: Aftermath

Rollback and Fork
• Ethereum developers reverted chain state to undo the hack

– Shareholders of the DAO were refunded
• Caused “Ethereum Classic” to split off Ethereum

Language/Protocol Changes
• Ethereum limited gas available to the fallback function when calling 

send()
• Some languages, e.g., Vyper, do not allow integer over- and underflows
• Re-entrancy locks are now considered good practice for all smart 

contracts



RE-Entrancy Locks

Re-entrancy locks ensure mutual exclusion:
• Grab a lock while entering a function
• If lock is already held, revert(=abort) transaction

@external
@nonreentrant("my_lock")
def make_a_call(_addr: address):
    # this function is protected from re-entrancy
    ...



That’s All (For TODAY)

• Next time: Blockchain Protocols


