
Nakamoto Consensus

Kai Mast
CS639/839

Spring 2023

ANNOUCEMENT: UPCOMING TALKS

Natacha Crooks (UC Berkeley)
“Basil, a new transactional Byzantine Fault Tolerant key-value store”
• Friday (2/24) at noon
• Computer Sciences 2310 (limited space)

Lorenzo Alvisi (Cornell)
“Orderrr! A tale of Money, Intrigue, and Specifications”
• Monday (2/27) at noon
• Via Zoom

Agenda
Basics
• Recap: Peer-to-Peer Networks
• Gossip Protocols
• What is Consensus?

Break 1

Nakamoto Consensus

Break 2

More Details
• Block Size and Block Frequency
• GHOST

Recap: Peer-To-Peer Networks

• Not all nodes are known to everybody else
• No fixed topology
• Each node is only connected to a few peers

Message PROPAGATION

How does a message, e.g., a transaction, reach all nodes in a network?

Naive Solution: Directly send the message to every node in the network

Why does that not work?
• There are many (hundreds) of nodes
• Not all nodes may be known

– We cannot directly talk to them

More Challenges
• Need to tolerate network failures
• Nodes might join or leave at any time

Gossip Protocols

Idea: Use the peer-to-peer network to disseminate message across the network

Approach:
• When you create a message, send it to all your peers
• When you receive a message, send it to all your peers

Very Scalable:
Each node only needs to forward message to a constant number of peers,
independent of the network size

Failure resilient:
If individual nodes or networks links failed, message will spread through a
different path

Gossip: IMPLEMENATION ATTEMPT

def create_message(self, content):
msg = {

“uid”: random(),
“content”: content,

}

for peer in self.peers:
peer.send(msg)

def on_receive(self, msg):
for peer in self.peers:

peer.send(msg)

Problem: Can create infinite loops

Gossip: IMPLEMENATION

def create_message(self, content):
msg = {

“uid”: random(),
“content”: content,

}

reuse code
self.on_receive(msg)

def on_receive(self, msg):
if msg[“uid”] in self.known_messages:

ignore duplicates
return

for peer in self.peers:
peer.send(msg)

self.known_messages.insert(msg[“uid”])

More Possible Optimizations:
• Don’t send message back to the peer we received it from
• Only advertise a message, and send it if needed

Gossip IN Blockchains

def create_message(self, content):
msg = {

“uid”: random(),
“content”: content,

}

reuse code
self.on_receive(msg)

def on_receive(self, msg):
if msg[“uid”] in self.known_messages:

ignore duplicates
return

if not is_valid(msg.content):
ignore invalid blocks/txns
return

for peer in self.peers:
peer.send(msg)

self.known_messages.insert(msg[“uid”])

Gossip in BITCOIN
Most Important Message Types

inv (“Inventory”): Advertise new blocks/transactions to your peers

getdata: Request specific blocks/transactions from a peer

block or tx (“transaction”): Send the requested data

Full Bitcoin Protocol Specification:
https://en.bitcoin.it/wiki/Protocol_documentation

https://en.bitcoin.it/wiki/Protocol_documentation

Consensus
Make multiple nodes agree on the same thing, e.g., which transaction to accept.

Why is this hard?
• Nodes can be faulty or malicious*
• Network delays might drop or reorder messages

Why is this even harder in the public blockchain setting?
• Large scale network
• (Usually) not all participants are known
• Nodes have different hardware and operating systems

*malicious behavior is technically also a type of failure

The Two (WISCONSIN) GENERALS’ PROBLEM

Example to illustrate the challenges in achieving consensus
• Two generals have agreed to attack an enemy’s camp
• The attack only succeeds if they attack at the same time
• They need to send a messenger through a snowstorm to agree on a time

– There is a possibility the messenger dies in the storm and the message is lost

General 1 General 2

Enemy Camp

Message

The Two (WISCONSIN) GENERALS’ PROBLEM

• To reach agreement, we need to know whether a message has arrived
• But the acknowledgement can also get lost

The problem, in this form, is unsolvable:
• We need additional assumptions about communication reliability to solve this

Message Message

Ack

Case 1: Message gets lost Case 1: Acknowledgement gets lost

The Byzantine Generals Problem
"Attack"

"Retreat"

"Attack" "Retreat"

Attacks

Retreats

• Generals need to agree on whether or not to attack
• A malicious minority can cause the honest generals to adopt a bad decision

Break 1

Nakamoto CONSENSUS

• Introduced with the Bitcoin paper in 2009
– Named after the inventor’s pseudonym

A new class of consensus protocols
• First permissionless/public protocol
• Behaves in a probabilistic fashion
• Works well with large-scale networks

Aside: Conventional CONSENSUS PROTOCOLS

• Existing protocols are deterministic
– We know which blocks/transactions have been accepted with full

certainty

• Existing protocols are permissioned/private
– All involved nodes are known
– Adding or removing a node requires reconfiguration

• Most protocols, e.g., Paxos or PBFT, rely on a leader
– One node is elected and in charge of generating blocks
– Detecting leader failure and electing a new leader is tricky

The BLOCKCHAIN

Purpose 1: Store transaction data and determine transaction ordering

Purpose 2: Track agreement on which transactions are accepted

Genesis Block

There exists a single block as the
“root” of every blockchain
• All chains/forks extend from here

Genesis block is part of the protocol
definition
• Hard-coded into each

implementation

Nakamoto CONSENSUS: DEFINITION

Component 1: (Pseudo-)random Block Generation
• No pre-determined entity generates blocks, but virtually anyone can
• Multiple blocks can be created at the same time

Component 2: Longest Chain Rule
• Correct nodes will always extend the longest chain when creating a new block
• When there are multiple longest chains, pick one at random

Longest
Chain

BYZANTINE FAILURES IN NAKAMOTO CONSENSUS

Faulty nodes might
• Not extend the longest chain
• Send invalid blocks
• Create empty blocks
• Delay network messages

What problems could this cause?

DOUBLE SPEND ATTACK

Goal
• When the network assumes a transaction is finalized, create some longer

chain that reverts the transaction

Old
Longest
Chain

Contains “Alice pays
Bob with UTXO
0xC0FFE”

New
Longest Chain

Alice adds
blocks here

Contains “Alice pays Carol
with UTXO 0xC0FFE”

Bob thinks the first transaction is finalized

Nakamoto CONSENSUS: Convergence

Assumption 1: Synchronous network
• There exists some fixed time bound in which

messages, e.g., blocks, will be delivered
• In Bitcoin the bound is usually assumed to be five

minutes

Assumption 2: Faulty nodes control a minority of the
mining power
• Honest nodes create more blocks on average

At some point it is virtually impossible for the faulty
chain to overtake the honest chain

"Figure" from the paper:
q is the mining power of the attacker
z is the length of the “honest” chain

SYBIl Resistance

A malicious entity might try to configure many nodes to take over the
network
• These are called Sybils
• We need some mechanism to detect or weaken Sybils

In permissioned/private protocols, the members (set of nodes) are pre-
defined
• New nodes can only be added with a reconfiguration

In permissionless/public protocols, we need a dedicated Sybil-resistance
mechanisms
• e.g., Proof-of-Work (today) or Proof-of-Stake (future lecture)

hash() ≤

Proof-of-Work

Goal: Tie likelihood of generating a block to processing power
• Each node only has some finite amount of hardware

Approach: Create a very hard-to-solve task (the “crypto puzzle”)
• Random tries are needed to find the solution
• We might need many attempts to solve it

Block
Data Nonce Difficulty

Set by the miner based on
pending transactions,
longest chain etc.

Changed by
the miner on
every attempt

Set by the
protocol

Proof-of-work in Bitcoin

Header

Body

Prev. Block

Nonce

Txn Hash

Timestamp

Transaction 1
Transaction 2
Transaction 3

Transaction n

• Miners pick a random nonce value

• For a block to be valid, the block
header’s hash needs to be below some
difficulty value

• Chance of mining a valid block at any
point in time is independent of time
already spent mining

Block Hash

POW: Environmental IMPACT

Source: https://digiconomist.net/bitcoin-energy-consumption

https://digiconomist.net/bitcoin-energy-consumption

Break 2

Difficulty ADJUSTMENT

Goal: Ensure that a blocks are created at the same frequency
• e.g., every 10 Minutes in Bitcoin

Challenge: Mining power can change over time
• Miners can join or leave at any time
• Miners might start (or stop) mining if it is (not) economical to so

– Depends on electricity, cryptocurrency, and hardware prices
• Miners can switch between networks (e.g., from Bitcoin to Dogecoin)

Adjust difficulty based on the observed frequency vs. the expected frequency

Difficulty Adjustment Mechanisms

Period-Based
• Every w blocks the

difficulty will be adjusted
• For example, in Bitcoin

every 2016 blocks (roughly
2 weeks) the difficulty is
recalculated

Incrementally Extrapolated
• Every block the difficulty

will be adjusted slightly
depending on how long it
took to mine it

• Difficulty is only adjusted,
not recalculated

• Used by Ethereum

Sliding Window
• Every block the difficulty

will be adjusted depending
on how long it took to
mine the last w blocks

• Used by Monero and
Bitcoin Cash

• Different implementations
have varying window sizes
and mechanism to deal
with outliers

Ethereum Block Generation

"Information propagation in the Bitcoin
network" (Decker and Wattenhofer, 2013)
• 95% of nodes can be reached in <13seconds
• 50% of nodes are reached within 6 seconds
• Numbers might be slightly different today

Why does block propagation take so long?
• Nodes verify/execute blocks before

forwarding
• Gossip network introduces additional

network hops

That’s All for TODAY

Next time
• More Nakamoto Consensus
• Selfish Mining

Reminder: Project 2a due in a week

