NAKAMOTO CONSENSUS

Kai1 Mast
CS639/839
Spring 2023

ANNOUCEMENT: UPCOMING TALKS

Natacha Crooks (UC Berkeley)

“Basil, a new transactional Byzantine Fault Tolerant key-value store”
 Friday (2/24) at noon

e Computer Sciences 2310 (limited space)

Lorenzo Alvisi (Cornell)
“Orderrr! A tale of Money, Intrigue, and Specifications”

 Monday (2/27) at noon
* Via Zoom

AGENDA

Basics

 Recap: Peer-to-Peer Networks
* Gossip Protocols

e What is Consensus?

Break 1

Nakamoto Consensus
Break 2

More Details

* Block Size and Block Frequency
« GHOST

RECAP: PEER-TO-PEER NETWORKS

* Not all nodes are known to everybody else
* No fixed topology
 Each node is only connected to a few peers

MESSAGE PROPAGATION

How does a message, e.g., a transaction, reach all nodes in a network?
Naive Solution: Directly send the message to every node in the network

Why does that not work?
 There are many (hundreds) of nodes
 Not all nodes may be known

- We cannot directly talk to them

More Challenges
 Need to tolerate network failures
 Nodes might join or leave at any time

GOSSIP PROTOCOLS

Idea: Use the peer-to-peer network to disseminate message across the network

Approach:
* When you create a message, send it to all your peers
* When you receive a message, send it to all your peers

Very Scalable:

Each node only needs to forward message to a constant number of peers,
independent of the network size

Failure resilient:

If individual nodes or networks links failed, message will spread through a
different path

GOSSIP: IMPLEMENATION ATTEMPT

def create message(self, content):

msg = {
“uid”: random(),
“content”: content,

¥

for peer in self.peers:
peer.send(msg)

Problem: Can create infinite loops

def on_receive(self, msg):
for peer in self.peers:
peer.send(msg)

GOSSIP: IMPLEMENATION

def create_message(self, content): def on_receive(self, msg):
msg = { if msg[“uid”] in self.known_messages:
“uid”: random(), # ignore duplicates
“content”: content, return
}

for peer in self.peers:
reuse code peer.send(msg)
self.on_receive(msg)

self.known _messages.insert(msg[“uid”])

More Possible Optimizations:
 Don’t send message back to the peer we received it from
* Only advertise a message, and send it if needed

GOSSIP IN BLOCKCHAINS

def create_message(self, content): def on_receive(self, msg):
msg={ . €3 A . .
«“uid”: random(), if msgp uid”] in Self.known_messages.
“content”: content, # ignore duplicates
} return

#f reuse code

if not i lid .content):
self.on_receive(msg) if not is_valid(msg.content)

ignore invalid blocks/txns
return

for peer in self.peers:
peer.send(msg)

self.known _messages.insert(msg[“uid”])

GOSSIP IN BITGOIN

Most Important Message Types
inv (“Inventory”): Advertise new blocks/transactions to your peers
getdata: Request specific blocks/transactions from a peer

block or tx (“transaction”): Send the requested data

Full Bitcoin Protocol Specification:
https://en.bitcoin.it/wiki/Protocol documentation

https://en.bitcoin.it/wiki/Protocol_documentation

CONSENSUS

Make multiple nodes agree on the same thing, e.g., which transaction to accept.

Why is this hard?
* Nodes can be faulty or malicious™
 Network delays might drop or reorder messages

Why is this even harder in the public blockchain setting?
 Large scale network

 (Usually) not all participants are known

* Nodes have different hardware and operating systems

*malicious behavior is technically also a type of failure

THE TWO (WISCONSIN) GENERALS’ PROBLEM

General 1 B 58 General 2

4

Enemy Camp

Example to illustrate the challenges in achieving consensus
 Two generals have agreed to attack an enemy’s camp
 The attack only succeeds if they attack at the same time
 They need to send a messenger through a snowstorm to agree on a time
- There is a possibility the messenger dies in the storm and the message is lost

THE TWO (WISCONSIN) GENERALS’ PROBLEM

Case 1: Message gets lost Case 1: Acknowledgement gets lost

a a a a
Message Q\ Message

‘-ﬂ Ack
p—

* Toreach agreement, we need to know whether a message has arrived
 But the acknowledgement can also get lost

The problem, in this form, is unsolvable:
* We need additional assumptions about communication reliability to solve this

THE BYZANTINE GENERALS PROBLEM

A@(éﬁy
| "Attack" I l "Retreat" I

"Retreat”

* Generals need to agree on whether or not to attack

* A malicious minority can cause the honest generals to adopt a bad decision

BREAK 1

A new class of consensus protocols
First permissionless/public protocol

NAKAMOTO CONSENSUS

Introduced with the Bitcoin paper in 2009
- Named after the inventor’s pseudonym

Behaves in a probabilistic fashion

Works well with large-scale networks

Bitcoin: A Peer-to-Peer Electronic Cash System

Satoshi Nakamoto
satoshin@gmx.com
www.bitcoin.org

Abstract. A purely peer-to-peer version of electronic cash would allow online
payments to be sent directly from one party to another without going through a
financial institution. Digital signatures provide part of the solution, but the main
benefits are lost if a trusted third party is still required to prevent double-spending.
We propose a solution to the double-spending problem using a peer-to-peer network.
The network timestamps transactions by hashing them into an ongoing chain of
hash-based proof-of-work, forming a record that cannot be changed without redoing
the proof-of-work. The longest chain not only serves as proof of the sequence of
events witnessed, but proof that it came from the largest pool of CPU power. As
long as a majority of CPU power is controlled by nodes that are not cooperating to
attack the network, they'll generate the longest chain and outpace attackers. The
network itself requires minimal structure. Messages are broadcast on a best effort
basis, and nodes can leave and rejoin the network at will, accepting the longest
proof-of-work chain as proof of what happened while they were gone.

1. Introduction

Commerce on the Internet has come to rely almost exclusively on financial institutions serving as
trusted third parties to process electronic payments. While the system works well enough for
most transactions, it still suffers from the inherent weaknesses of the trust based model.
Completely non-reversible transactions are not really possible, since financial institutions cannot
avoid mediating disputes. The cost of mediation increases transaction costs, limiting the
minimum practical transaction size and cutting off the possibility for small casual transactions,
and there is a broader cost in the loss of ability to make non-reversible payments for non-
reversible services. With the possibility of reversal, the need for trust spreads. Merchants must
be wary of their customers, hassling them for more information than they would otherwise need.
A certain percentage of fraud is accepted as unavoidable. These costs and payment uncertainties
can be avoided in person by using physical currency, but no mechanism exists to make payments

ASIDE: CONVENTIONAL CONSENSUS PROTOCOLS

 Existing protocols are deterministic

- We know which blocks/transactions have been accepted with full
certainty

 Existing protocols are permissioned/private
- All involved nodes are known
- Adding or removing a node requires reconfiguration

 Most protocols, e.g., Paxos or PBFT, rely on a leader
- One node is elected and in charge of generating blocks
- Detecting leader failure and electing a new leader is tricky

THE BLOGKCHAIN

Purpose 1: Store transaction data and determine transaction ordering

Purpose 2: Track agreement on which transactions are accepted

GENESIS BLOCK

There exists a single block as the
“root” of every blockchain
o All chains/forks extend from here

Genesis block is part of the protocol

definition

 Hard-coded into each
implementation

00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
000000A0
000000B0
000000CO
000000D0
000000E0
000000F0
00000100
00000110

Bitcoin Genesls Block

Raw

00
00
A3
c8
AB
01
00
00
65
30
6E
64
6E
43
30
61
Cl
Fl

00
00
ED
1B
S5F
00
0o
FF
20
30
pA
20
6B
41
B7
DE
12
1D

Hex Uersion

00
00
FD
C3
49
00
00
FF
54
39
62
62
73
04
10
B6

5F

00
00
7A
88
FF
00
00
FF
69
20
72
61
FE
67
5C
49
5C

00
00
7B
8A
FF
00
00
FF
6D
43
69
69
FF
BA
D6
F6
38
00

00
00
12
51
00
00
00
4D
65
68
6E
eC
FF
FD
A8
BC
4D
00

00
00
B2
32
1D
00
00
04
73
61
6B
6F
FF
BO
28
3F
F7
00

00
00
A
3A
1D
00
00
FF
20

20
75
01

EO
4C
BA
00

00
00
Cc7
9F
AC
00
00
FF
30
63
(33
74
00
55
39
EF
0B

eesegEAYZ{.22C,>
gv.a.B.A"802:¥ 2
K. J)« IV, .-

..EThe Times 03/
Jan/2009 Chancel
lor on brink of

second bailout f£
or banksyiyiy..o.
*,...CA.gSy°pUH'
.gii}jg0-.\0"(a9.|
ybaé.aPTI6k?Li8A
6U.A.A.P\BM+2..W
SLp+kii. -....

NAKAMOTO CONSENSUS: DEFINITION

Longest
Chain

Component 1: (Pseudo-)random Block Generation

 No pre-determined entity generates blocks, but virtually anyone can
 Multiple blocks can be created at the same time

Component 2: Longest Chain Rule

 Correct nodes will always extend the longest chain when creating a new block
* When there are multiple longest chains, pick one at random

BYZANTINE FAILURES IN NAKAMOTO CONSENSUS

Faulty nodes might

* Not extend the longest chain
 Send invalid blocks
 Create empty blocks
 Delay network messages

What problems could this cause?

DOUBLE SPEND ATTACK

New
Longest Chain

with UTXO 0xCOFFE”

Alice adds
blocks here

Contains “Alice pays Carol]

Old
Contains “Alice pays Longest
Bob with UTXO Chain
OxCOFFE” Bob thinks the first transaction is finalized]
Goal

* When the network assumes a transaction is finalized, create some longer
chain that reverts the transaction

NAKAMOTO CONSENSUS: CONVERGENCE

g=0.3
z=0 P=1.0000000
z=5 P=0.1773523
) =10 P=0.0416605
Assumption 1: Synchronous network Gl B S
* There exists some fixed time bound in which z=20 P-0,0024804
. . z=25 P=0.0006132
messages, e.g., blocks, will be delivered z=30 P=0.0001522
* In Bitcoin the bound is usually assumed to be five o A e
minutes z=45 P=0.0000024
z=50 P=0.000000¢6
Assumption 2: Faulty nodes control a minority of the Solving for P less than 0.1%...
mining power
P < 0.001
 Honest nodes create more blocks on average g=0.10 u=t
g=0.15 z=8
e . . . g=0.20 z=11
At some point it is virtually impossible for the faulty q=0.25 z=15
. . g=0.30 z=24
chain to overtake the honest chain 4=0.35 z=41
g=0.40 z=89
g=0.45 z=340

"Figure'" from the paper:
q is the mining power of the attacker
z is the length of the “honest” chain

SYBIL RESISTANGE

A malicious entity might try to configure many nodes to take over the

network
e These are called Sybils
* We need some mechanism to detect or weaken Sybils

In permissioned/private protocols, the members (set of nodes) are pre-

defined
* New nodes can only be added with a reconfiguration

In permissionless/public protocols, we need a dedicated Sybil-resistance

mechanisms
e e.g., Proof-of-Work (today) or Proof-of-Stake (future lecture)

PROOF-OF-WORK

Goal: Tie likelihood of generating a block to processing power
 KEach node only has some finite amount of hardware

Approach: Create a very hard-to-solve task (the “crypto puzzle”)
* Random tries are needed to find the solution
* We might need many attempts to solve it

hash(]13)121?: s) < Difficulty

Changed by
the miner on
every attempt

Set by the
protocol

Set by the miner based on
pending transactions,
longest chain etc.)

/

PROOF-OF-WORK IN BITCOIN

Header
Block Hash Timestamp
Prev. Block Txn Hash
Nonce eee
Body

Transaction 1

Transaction 2

Transaction 3

Transaction n

* Miners pick a random nonce value

 For a block to be valid, the block
header’s hash needs to be below some
difficulty value

* Chance of mining a valid block at any
point in time is independent of time
already spent mining

POW: ENVIRONMENTAL IMPACT

Annualized Total Bitcoin Footprints

Carbon Footprint Electrical Energy Electronic Waste

50.83 Mt CO2 91.14 TWh 50.86 kt

o~ <O —N
A\ X w
Comparable to the carbon footprint of Comparable to the power Comparable to the small IT equipment
Hungary. consumption of Philippines. waste of the Netherlands.
Single Bitcoin Transaction Footprints
Carbon Footprint Electrical Energy Electronic Waste

460.60 kgCO2 825.80 kWh 460.90 grams

o~ vt 9
JA -8 w
Equivalent to the carbon footprint of Equivalent to the power consumption Equivalent to the weight of 2.81
1,020,849 VISA transactions or 76,767 of an average U.S. household over iPhones 12 or 0.94 iPads. (Find more
hours of watching Youtube. 28.30 days. info on e-waste here.)

Source: https://digiconomist.net/bitcoin-energy-consumption

https://digiconomist.net/bitcoin-energy-consumption

BREAK 2

DIFFIGULTY ADJUSTMENT

(Goal: Ensure that a blocks are created at the same frequency
e e.g., every 10 Minutes in Bitcoin

Challenge: Mining power can change over time
 Miners can join or leave at any time
 Miners might start (or stop) mining if it is (not) economical to so
- Depends on electricity, cryptocurrency, and hardware prices
* Miners can switch between networks (e.g., from Bitcoin to Dogecoin)

Adjust difficulty based on the observed frequency vs. the expected frequency

DIFFICULTY ADJUSTMENT MECHANISMS

Difficulty
adjustment

BHE e G [A{BIHC}—DHEHF—G! [AHBHCHDHEHF-G:
Period-Based Incrementally Extrapolated Sliding Window
* Every w blocks the * Every block the difficulty * Every block the difficulty
difficulty will be adjusted will be adjusted slightly will be adjusted depending
* For example, in Bitcoin depending on how long it on how long it took to
every 2016 blocks (roughly took to mine it mine the last w blocks
2 weeks) the difficulty is e Difficulty is only adjusted, * Used by Monero and
recalculated not recalculated Bitcoin Cash
 Used by Ethereum * Different implementations

have varying window sizes
and mechanism to deal
with outliers

ETHEREUM BLOCK GENERATION

"Information propagation in the Bitcoin
network" (Decker and Wattenhofer, 2013)
* 95% of nodes can be reached in <13seconds
* 50% of nodes are reached within 6 seconds
 Numbers might be slightly different today

Why does block propagation take so long?

* Nodes verify/execute blocks before
forwarding

* (Gossip network introduces additional
network hops

Block propagation

0.12
0.10}
0.08}

(NN

0 0.06};

0.04

0.02

0.00
0 10 20 30 40

Time since first observation [s]

50

60

THAT'S ALL FOR TODAY

Next time

e More Nakamoto Consensus
 Selfish Mining

Reminder: Project 2a due in a week

