
Nakamoto CONSENSUS Continued:
GHOST AND Selfish Mining

Kai Mast
CS639/839

Spring 2023

Announcements

• Submit project proposals by 3/26
– Can be short
– Can be earlier!

• Next week’s lecture will be on Zoom

Today’s AGENDA

Part 1: Nakamoto Consensus Continued
• A deeper look at difficulty adjustments
• The GHOST protocol

Break

Part 2: Selfish Mining
• Problems with the original Bitcoin protocol

Recap: Gossip Protocols

• Each node is connected to a small set of peers (=other nodes)

• Nodes forward messages to their peers when they receive them

• Malicious nodes can delay or not forward any message
– However, for each pair of nodes multiple paths of communications exist

(usually)
– Attackers can only efficiently withhold their own messages

RECAP: Nakamoto CONSENSUS

Component 1: (Pseudo-)random Block Generation
• No predetermined entity generates blocks, but virtually anyone can
• Multiple blocks can be created at the same time

Component 2: Longest Chain Rule
• Correct nodes will always extend the longest chain when creating a new block
• When there are multiple longest chains, pick one at random

Longest
Chain

RECAP: The BLOCKCHAIN

Purpose 1: Store transaction data and determine transaction ordering

Purpose 2: Track agreement on which transactions are accepted
– Blocks confirm their ancestors

Information Asymmetry

• Each node sees some subset of all blocks
• In Bitcoin and Ethereum 1.0 there is no certain way of knowing which blocks

have been seen by a majority of nodes

Why?
• Network failures and delays
• Attackers might not forward blocks

1

2A 3A

1

2A

2B 2B2A

1

Node 1’s View Node 2’s View Node 3’s View

hash() ≤

Recap: Proof-of-Work

Goal: Tie likelihood of generating a block to processing power
• Each node only has some finite amount of hardware

Approach: Create a very hard-to-solve task (the “crypto puzzle”)
• Random tries are needed to find the solution
• We might need many attempts to solve it

Block
Data Nonce Difficulty

Set by the miner based on
pending transactions,
longest chain etc.

Changed by
the miner on
every attempt

Set by the
protocol

CHAIN SAFETY

Attackers might intentionally build a fork to overtake the honest chain

Worst Case: One strong coordinated attacker

Assumption: Attacker’s mining power <50%

Old Longest Chain
Created by Honest Miners

New Longest Chain
Created by Attacker

Advantage of Honest Chain

Honest Mining Power: p Attacker’s Mining Power: q = 1 - p

Chance the miner overtakes after z blocks
asymptotically approaches 0

q q q q q q

0-1-2-3 321

p p p p p p

Recap: Difficulty ADJUSTMENT

Goal: Ensure that a blocks are created at the same frequency
• e.g., every 10 Minutes in Bitcoin

Challenge: Mining power can change over time
• Miners can join or leave at any time
• Miners might start (or stop) mining if it is (not) economical to so

– Depends on electricity, cryptocurrency, and hardware prices
• Miners can switch between networks (e.g., from Bitcoin to Dogecoin)

Adjust difficulty based on the observed frequency vs. the expected frequency

Difficulty Adjustment Mechanisms

Period-Based
• Every w blocks the

difficulty will be adjusted
• For example, in Bitcoin

every 2016 blocks (roughly
2 weeks) the difficulty is
recalculated

Incrementally Extrapolated
• Every block the difficulty

will be adjusted slightly
depending on how long it
took to mine it

• Difficulty is only adjusted,
not recalculated

• Used by Ethereum

Sliding Window
• Every block the difficulty

will be adjusted depending
on how long it took to
mine the last w blocks

• Used by Monero and
Bitcoin Cash

DIFFICULTY ADJUSTMENT EXAMPLE

Simplified Incremental Extrapolation
delta_t = block.time - block.get_parent().time
expected = 12 # Ideally it should take 12 seconds
if delta_t < expected-2: # Allow for some error

difficulty *= 1.1 # Increase difficulty
elif delta_t > expected+2:

difficulty *= 0.9 # Decrease difficulty

Time (s) 0 5 15 30

Difficulty
(normalized) 1.0 1.1 1.1 0.99

10 20 25

Difficulty ADJUSTMENT AND FORKS

• Difficulty is adjusted based on direct ancestors, not forks

• Different, competing, forks do not need to have the same difficulty

• Difficulty change always applies to the next block

Time (s) 0 10 20 30

Difficulty
1.0 * initial

Difficulty
0.9 * initial

Effects of Difficulty Adjustment
A new powerful miner joins the network (at T=0). The new miner has α of the total mining
power.
How long does it take to adjust difficulty?

Bitcoin adjusts difficulty every 2016 blocks Ethereum adjusts difficulty incrementally

Incentives for miners

Majority of miners (or mining power) is “honest”
• Will follow protocol as long as it makes financial sense
• Mining is very costly

We need a mechanism to make mining profitable
• Block rewards and transaction fees are paid to the miner
• Rewards are only paid out if block is on the winning chain

– Ensures convergence to a longest chain

Lower difficulty means, potentially, higher rewards for miners!

Determining the Winning Chain

So far: Longest Chain
• The chain with highest number of block wins

Problem: Does not work with difficult adjustment
• Majority of miners could work on chain with less blocks but higher

difficulty

Alternate Approach: Heaviest Chain
• Sum up difficulty values of all blocks to determine chain weight
• Used in most PoW chains

Greedy Heaviest Observed Subtree

Idea: Allow frequent forks without reducing the safety of the chain
• Blocks do not only reference their direct parent, but also uncle blocks
• Orphan blocks' transactions are not applied to the blockchain state, but their

mining power still counts towards the "heaviest" chain

UNCLE BLOCKS

In Ethereum, an uncle is any block that is
• A child of a direct ancestor
• Not an direct ancestor itself
• Not already marked as an uncle of a direct ancestor

In Ethereum, uncle blocks get some of the block reward
(but not transaction fees)

GHOST: FORMAL RESULTS

Throughput does increase with
higher block frequency

Security does not degrade with
higher block frequency

BREAK

Selfish Mining

• Demonstrates that the economic
incentives in the original Bitcoin paper
are not sound

• Published in 2013 by Ittay Eyal and
Emin Gün Sirer

• Later, "re-examined" by Kevin Negy,
Peter Rizun, and Emin Gün Sirer

Ittay Eyal
(Technion and
IC3)

Kevin Negy
(Cornell and
IC3)

Emin Gün Sirer
(Cornell, Ava
Labs,
and IC3)

Peter Rizun
(Bitcoin
Unlimited)

Selfish Mining

Idea: Selectively hide blocks you mine to gain an advantage

Public Branch
Visible to everyone

Private Branch
Only visible to selfish
miner(s)

Selfish-Mine Strategy: Intuition

Goal 1: Keep mined blocks hidden as long as possible
• Use "information asymmetry" to your advantage
• Other miners cannot mine on hidden blocks

Goal 2: Try to have two competing branches exist for as long as possible
• If there are multiple competing branches, honest mining power might be

split between them

Approach: When honest miners publish a block, try to reveal one (or more)
blocks from the private branch to "confuse" honest majority

WHEN TO PUBLISH A BLOCK
When selfish miner finds a block
 and private branch is now longer than public branch
 and private branch is now exactly two blocks
 then publish entire private branch (selfish miner wins)

When honest miner finds a block and public and private branch now have the same length
 then publish one block (confuse honest miners)

When honest miner finds a block and private branch is exactly two blocks longer
 then publish entire private chain (selfish miner wins)

When honest miner finds a block and private branch is still more than two blocks longer
 then publish one block (confuse honest miners)

When honest miner finds a block and public branch is longer than private branch
 then switch to mining on the public branch (honest miners win)

Selfish Mining: Example 1

1) Private and public branch
are both of length one

2) Selfish miner finds a new
block

3) Selfish miner reveals both of
its blocks and wins
(2honest becomes orphaned)

2honest

2selfish

1

2honest

2selfish

1
3selfish

2honest

2selfish

1
3selfish

Selfish Mining: Example 2

1) Private branch consist
of three hidden blocks

2) Honest miners publish a
block

3) Selfish miner reveals one of
their blocks so there are two
competing public branches

2selfish

1

3selfish 4selfish

2selfish

1
3selfish 4selfish

2honest

2selfish

1
3selfish 4selfish

2honest

Formal Analysis

Selfish miners
find a block

Honest miners find
a block

There are two
competing branches

There is only a single
(public) branch Selfish miner reveals

entire private branch
and "wins"

• α is the fraction of the
total mining power that
belongs to the selfish
miner

• γ is the fraction of
honest miners that pick
the selfish branch to
mine on

You do not need to
know this for the
midterm/final

Selfish-Mine Revenue

Use state probabilities to
calculate mining revenue

For the strategy to be
successful, the fraction of

revenue must be greater or
equal to the pools mining

powerα

Success of selfish mining
strategy depends on how

many honest miners choose
to mine on the selfish branch

You do not need to
know this for the
midterm/final

Selfish-Mine Revenue

• The paper presents both
theoretical and simulated results

• γ is the fraction of honest miners
that choose to mine on the selfish
chain

• If all miners pick the selfish chain,
selfish-mining is always
profitable!

"Fixing" the Bitcoin Protocol

• If there are two (or more) competing chains, pick which one you mine on
at random (γ = 0.5)
– Simple modification that does not require a hard fork

• Without this modification Bitcoin is vulnerable against any fraction of
selfish miners
– With the modification the threshold is still 1/3, not 1/2

Criticism of Selfish Mining

1. While selfish miners may win more blocks than expected, overall
revenue could still be lower because of high orphan rate

– If more blocks are orphaned, less blocks receive block rewards
– Difficulty adjustment will resolve this somewhat

2. Original analysis does not fully take difficulty adjustment into account
– Some critics say selfish mining must be maintained for weeks before

it becomes profitable

Effects of Difficulty Adjustment
New Honest Miner New Selfish Miner

Difficulty does not adjust (much) with selfish mining as rate of
orphan blocks is higher!

M
in

in
g

R
at

e
of

 th
e

N
ew

 M
in

er

(B
lo

ck
s/

M
in

ut
e)

M
in

in
g

R
at

e
of

 th
e

N
ew

 M
in

er

(B
lo

ck
s/

M
in

ut
e)

Selfish Mining and GHOST

GHOST almost nullifies the downsides of selfish mining, because even
orphan blocks get some reward!

Intermittent Selfish-Mining (ISM)

Idea: Leverage change in mining difficulty to increase selfish-mine revenue
Approach: Alternate between selfish and honest mining

Follow selfish mining strategy
(to win more blocks than expected)

Follow honest mining strategy
(to maximize revenue)

Intermittent Selfish-Mining in Action

An intermittent selfish miner causes the
difficulty to lower after selfish phases and
rise after honest phases (γ = 0)

Block win rate of the intermittent selfish
miner after two periods (2*2016 blocks)
• "Win rate" refers to the blocks that are

mined and do not become orphans
• Revenue is lower than before but still

higher than that of an honest miner

That's all for today

Conclusions

• For Blockchain systems, we always need to take economic
incentives into account

• Do not blindly believe claims of a paper, especially if it is not
peer-reviewed

