
Proof of Stake

Kai Mast
CS639/839

Spring 2023

Announcements

• Midterm Thu, March 23rd 5:45pm in Bio chem 1120

• Review Session on Wed, March 22nd (usual class time)

• Project 2b will be released soon TM

• Please fill out the course evaluation
– Any constructive feedback is welcome!
– E.g., let me know if you find the pace and difficulty adequate

Today's AGENDA

• Overview of Proof of Stake
– Limitations of PoW
– Challenges with PoS

• Discussion of two PoS protocols
– Algorand
– Ouroboros

• Final Project Topics

RECAP: Proof of WORK

hash() ≤

Goal: Tie likelihood of generating a block to processing power
• Each node only has some finite amount of hardware

Approach: Create a very hard-to-solve task (the “crypto puzzle”)
• Random tries are needed to find the solution
• We might need many attempts to solve it

Block
Data Nonce Target Hash

Set by the miner based on
pending transactions,
longest chain etc.

Changed by
the miner on
every attempt

Defined by
the current
difficulty

Recap: Information Asymmetry

• Each node sees some subset of all blocks
• In Bitcoin and Ethereum 1.0 there is no certain way of knowing which blocks

have been seen by a majority of nodes

Why?
• Network failures and delays
• Attackers might not forward blocks

1

2A 3A

1

2A

2B 2B2A

1

Node 1’s View Node 2’s View Node 3’s View

leveraging information Asymmetry

• Nodes that see blocks earlier have an advantage
– Can start mining on the most recent block before others

• Nodes that do not see blocks in time have a disadvantage
– Will mine on an outdated version of the chain

• Nodes can intentionally hide blocks
– Selfish Mining
– Eclipse Attacks

Recap: Environmental IMPACT of POW

Source: HTTP://economist.net/bitcoin-energy-consumption

https://digiconomist.net/bitcoin-energy-consumption

CENTRALIZATION IN Proof of WORK

In 2017
• Bitcoin: over 50% of mining power controlled by four miners
• Ethereum: over 50% of mining power controlled by three miners

 [Gencer; 2018]

Centralization in Proof of WORK

Reasons:
• More efficient to operate mining pools at large scale

– Some fixed cost, e.g., cooling, easier to amortize

• Large mining pools have a more reliable revenue stream
– Small miners may not find blocks for a long time

• Miners see their own blocks first
– More likely that their next block will be part of the winning chain

Proof of STAKE

Idea: Assign voting power by stake, not mining power
• Stake is the amount of currency held by a particular entity

Challenge 1: How to pick block creators?
• We need some kind of randomness
• True randomness is hard to generate in the blockchain setting
• Attackers might try to influence the random number generation

(grinding attack)

Challenge 2: Nothing at Stake
• Block creation is computationally cheap
• Easy for an attacker to try to create many blocks

Permissioned Chains

Simplest version of Proof of Stake
• Fixed committee: Set of stakers always stays the same
• Each committee member has the same voting power

GENERALIZING Proof of Stake

Support varying voting power
• Either total balance of an entity or staked balance
• Staked balance: Need to lock up some money to be used for staking

– Simpler to implement but less flexible

Support delegation
• Not everyone might have the resources to participate in consensus
• Allow for “stake pools”

POS-Based Approaches

Randomize Schedule, e.g, Ouroboros
• Time is split into fixed-size slots
• Set a sequence of block creators in advance, each responsible for one slot

Random Selection, e.g., Algorand
• Time is split into fixed-size slots
• Every node has some chance to be part of the committee of a block

Random Sampling, e.g., Avalanche
• Ask other nodes about which transaction they have accepted
• Eventually converge to the same set of accepted transactions
• More about this in another lecture

Always: Voting power (or chance to be selected) is proportional to stake

• Developed by Silvio Micali and others at MIT

• First published in 2017 at SOSP

• Main network launched in 2019

Synchronicity & FAILURE TYPES
Protocols are designed against a particular synchronicity model

For now, simplest case: synchronous networks
• Messages are never lost
• Messages are delivered within a known time bound

Protocol are designed against a particular failure model

For now, a fairly simple case: crash failures
• Nodes are bug free and honest
• Crashes can still happen

SIMPLIFIED ALOGRAND

• No Byzantine Failures

• Synchronous network

• Permissioned

A Synchronous permissioned protocol
Time is split into fixed size slots (or rounds)
• Slots are larger than the maximum network delay
• All messages sent at the beginning of a slot, reach all nodes at the end of

the slot

At the beginning of a slot, each node proposes at most one block per slot
• Each node has the same “voting power”

If we receive multiple blocks per slot, we have a tiebreaker
• Tiebreaker can be computed, e.g., by combining slot number and node id

– H(slot_num | node_id)
• All nodes accept at most one block per slot

Simple one-round protocol: No forks possible

SIMPLIFIED ALOGRAND

• No Byzantine Failures

• Synchronous network

• Permissioned

Adding BYZANTINE FAILURES
Problem: Faulty nodes might propose conflicting blocks
• Attacker might not send block to all nodes
• Simple tiebreaker is not sufficient

Protocol now needs three steps
• Proposal: Each node can propose a block

– Honest nodes will pick the block with the highest tiebreaker

• Reduction: Nodes broadcast which block they have accepted
– Allows detecting if an attacker proposes multiple blocks at once
– If a node receives the same block from a majority (2/3), start BA with

that block
– Otherwise, start BA with the empty-block

• Binary Agreement: Decide between a proposed block or empty-block
– Need 2/3 majority to agree on a block

SIMPLIFIED ALOGRAND

• No Byzantine Failures

• Synchronous network

• Permissioned

LOOSENING NETWORK ASSUMPTIONS
The last few slides: Synchronous Network
• Known time bound for message delivery

Most realistic: Asynchronous
• No bounds on network delay
• Very hard, but not impossible to support

A compromise: Partial Synchrony
• Generally the network behaves synchronously
• Sometimes there might be a network partition

– Can last any amount of time, but eventually the network will be
synchronous again

– Protocol will not make any progress during that time

A partially SYNCHORNOUS Protocol

• We might not reach final consensus on a block for every round
– Some nodes might accept a block tentatively

• Tentative blocks are considered final if one of their ancestors are
considered final
– This means we can have forks

• Need to vote on competing forks using the same mechanism as voting
on competing blocks
– Network partition will eventually end and the network converges on

a single chain

SIMPLIFIED ALOGRAND

• No Byzantine Failures

• Synchronous network

• Permissioned

MAKING THE PROTOCOL PERMISSIONLESS

• So far, fixed set of validators
– Not a public/permissionless system!
– No stake, everyone has the same voting power

• We need to randomly pick membership
– Committee should be a weighted random subset of all stakers
– Weighted by stake

• Not all nodes should be able to create blocks
– Creates a lot of unneeded network traffic
– A smaller subset of the stakers are block proposers

Verifiable RANDOM FUNCTIONS

VRFRandom
Input

Private Key

Random
Value

+ Proof

Can be verified using
the public key

VRFs in Algorand

VRFSeed generated from
previous round

User’s
Private

Key

Random
Value

+ Proof

User is a committee
member if value below
some threshold

ALGORAND COMMITTEE SIZE

We need a large committee to ensure at least 2/3 are honest

Alogrand PERFORMANCE

• Measured on a geo-replicated network
• Algorand confirms blocks in less than 25s

Break?

Ouroboros

• The first PoS protocol that is provably correct

• First presented at CRYPTO 2017

• Basis for the Cardano blockchain

• Developed by folks at IOHK and University of
Edinburgh

• We only discuss the most basic variant today

Timing assumptions in Ouroboros

• Time is split into slots
• Slots are grouped into epochs

Network is synchronous
• Each block will be visible to all correct nodes at the end of a slot

(*not true for all versions of Ouroboros)

Epochs

Slots

Leaders

EPOCHS IN OUROBORS

An epoch consists of some fixed number of slots

At the beginning of an epoch
• Stake is updated depending on state changes in the previous epoch
• Randomness is generate through multi-party computation

– out of the scope of this lecture
• Use randomness and state to generate a leader schedule

– relies on VRFs, like Algorand

Leaders in Ouroboros
• There is a pre-defined leader schedule for each epoch, but leaders can be

faulty.
• There is exactly one leader (block creator) per slots

Honest Leaders:
• Will always extend the longest chain
• Create at most one block

Faulty Leaders:
• May attempt to extend multiple forks in one slot
• May hide block its mines (covert adversary)

Forks and Forkable Strings

String encodes leader schedule
 (whether leader is malicious)

Malicious leader may
append to multiple

forks

Density of string is equal to the
voting power of attackers (here 4/9)

Forkable Strings cont.

A leader schedule (or "string") is forkable if the adversary can produce two
disjoint paths with the same length.

• Forkable strings are impossible if density is <1/3
• In the paper they show prevention against adversaries as large as <1/2

(from Peter Gaži's talk at MIT)

Ouroboros Confirmation Delay
General adversary

includes covert attacks

Time (in minutes) after which
transaction is finalized with

at least 99.9% certainty

Attack Power
(as a fraction of the total stake or

mining power)

POS: Summary

Advantages
• Vastly less energy consumed
• Can be more decentralized

Disadvantages
• Not fully permissionless
• Protocols are generally more complicated

– More potential for bugs and exploits

More on Proof of Stake in the next two lectures!

Failures in Blockchain
Systems

Plot consensus
protocols

How can I do XYZ in
a smart contract?

Layer 2 Protocols

Sharding Blockchains

Can systems tolerate
software bugs?

Insurance
Schemes

Audit
Mechanisms

Virtual Machines

Ethereum
WebAssembly

Filecoin and Proofs
of Replication

Collaborative
Auditing

Visualizing Protocols
or Networks

Zero-knowledge
proofs
and Blockchains

Machine
Learning

Evaluation and comparison
of existing systems

Stable Coins Tokenomics

Economics of
Blockchains

Avalanche
HyperSDK

Permissioned Chains

Smart Contracts and
Trusted Execution

Privacy

How are networks and miners
clustered?

Class Project
Suggestions

Alternatives
to PoS/PoW

Building Decentralized
Applications

Proof of
Person hood

Proof of
Elapsed Time

Games /
Metaverses

