
Graph-Based Protocols

Kai Mast
CS639/839

Spring 2023

Announcements

• More great upcoming talks
– Dahlia Malkhi from Chainlink (formerly Diem) on Monday

• Project 2b extended until Monday night

• I will get back to you soon about project proposals!

Today’s AGENDA

• Background on concurrent transaction processing
– Serializability
– Intra-block transaction ordering

• IOTA: A flawed approach

• Avalanche
– Snowman

Recap: Proof Of Stake

Ouroboros (v1)
• Randomly pick block creators for each time slot
• Probabilistic block confirmation, like Bitcoin
• Synchronous network model

Algorand
• Randomly pick block creator and committee
• Blocks are confirmed after committee approves a created block
• Partially synchronous network model

Ethereum 2.0
• Ouroboros-like block creation + Casper (Finality Gadget)
• Block are confirmed in two rounds

– first “justified”, then “finalized”
• Partially synchronous network model

Partial Orders W/ UTXOs

Identifier Inputs Outputs
0x1 [0xA:0] [1,1]
0x2 [0x1:1] [1]

0x3 [0x1:0] [0.5,0.5]
0x4 [0x3:0, 0x3:1] [1]

0x1

0x2

0x3 0x4

Partial Orders W/ UTXOs

0x1

0x2

0x3 0x4

Input Set
0xA:0

Output Set
0x2:0
0x4:1

Possible Serial Execution Orders
0x1, 0x2, 0x3, 0x4
0x1, 0x3, 0x4, 0x2
0x1, 0x3, 0x2, 0x3

0x2 can execute independently from 0x3 and 0x4!

Serializability
A common property enforced by database transactions

• Allows parallelism between unrelated operations
• Ensures execution is equal to some serial execution
• The I in ACID (for “Isolation”)

Can be enforced through locking or by tracking dependencies (e.g. using
UTXOs)

Transaction order in Bitcoin

Many Bitcoin-like chains follow Topological Transaction Ordering (TTOR)
in their blocks

• The first transaction is the coinbase transaction (payment to the miner),
• All other transactions must respect the input/output dependencies

TTOR can enable some concurrency when executing/validating a block

DAG-BASED PROTOCOLS

Idea
• Remove notion of blocks entirely
• Network directly agrees on a directed acyclic graph of transactions

Works well with the UTXO model
• For an honest client, a transaction never conflicts with another
• An attacker might still issue conflicting “rogue” transactions

Problem
• When is a transaction confirmed?

IOTA

Anyone can issue a transaction
• Transactions need to include a proof of work to reduce spam
• Each transaction references at least two predecessors and

confirmst them

attacking IOTA

What could go wrong?
• Attacker’s confirm their own transaction by creating other transactions
• The DAG could diverge into multiple conflicting branches

IOTA’s Band-Aid: The Coordinator

IOTA relies on a centralized entity to frequently checkpoint the network
– Creates milestones (empty transactions) in frequent intervals that

confirms all valid transactions

This entity can stop the network from finalizing transactions if it does
not issue new milestones

Avalanche

An new type of consensus protocols
• Relies on probabilistic sampling

Similar properties as Nakamoto consensus
• Works with very large networks
• Can handle changing membership
• Constant communication complexity per node and round

– Larger networks need more communication rounds

Differences to Nakamoto consensus
• Requires knowledge of most nodes in the network
• Can work with, both, DAGs and chains
• Fast confirmation times

Slush
Simplified version of Avalanche
• No Byzantine fault tolerance
• Binary decision (either “Red” or “Blue”)

Some nodes start with a specific color
• Others adopt a color when first queried

Each round, nodes sample a random set of k
other nodes
• If a majority of sampled peers responds with

the same color, adopt the color
• Majority is defined by parameter α

Execut for m rounds
• Protocol will reach agreement with a high

enough value of high m
• m grows logarithmically with the network

size

Snowflake
Slush with Byzantine Fault-Tolerance
• Binary decision (either “Red” or “Blue”)

Some nodes start with a specific color
• Others adopt a color when first queried

Each round, nodes sample a random set of k
other nodes
• If a majority of sampled peers respond with

the same color, adopt that color
• If we already have adopted the color,

increase counter cnt
• If we have not adopted the color yet, reset

the counter

Run until confidence exceeds some threshold β

Snowball
Like Snowflake, but
• Keeps track of majorities reached per color as

confidence value d

• Confidence is increased every time a majority is
reached in a voting round

• Only change decision when confidence for one color
exceeds confidence for the other color

More resistant against Byzantine actors

Snowball SIMULATION

Snowball Fault Tolerance

With k=10 and β=250 for Avalanche

For Bitcoin, it models the probability that a block with 6 confirmations (1 hour)
will be reorganized

Avalanche

Transactions can reference any number of predecessors
• They do not actually need to depend on the respective UTXOs
• A transaction is only valid if none of its predecessors conflict
• Transactions can be re-issued if one of its parents conflict

Extends snowball with the notion of a DAG
• Confirming a transaction in the DAG, also confirms all its predecessors
• Need not confirm every transaction, but sets of transactions

Avalanche

• Shows <counter, confidence> for each
transaction

• Shaded areas are conflicting transactions

Avalanche queries the network at most
once per transaction

• Predecessor of the transaction inherit
its count and confidence

• Transactions are eventually
confirmed by their predecessors in the
absence of conflicts

• No-op transactions can be inserted to
allow for additional voting rounds

Avalanche batches queries about
multiple transactions if possible

Batching in AVALANCHE

Achieve consensus on every UTXO
input, not the transaction as a whole

• Allows for multi-input transactions

• We can batch queries about different
UTXOs in a single request for
efficiency

Avalanche Performance

Throughput of Avalanche without geo-replication

Light blue bars show batch size 20 and right bars batch size 40.

Avalanche in the WILD

Exchange Chain
• Creates and transfers tokens
• Uses a DAG

Platform-Chain
• Keeps track of validators (stakers) and other metadata
• Uses a blockchain

Contract Chain
• Supports EVM smart contracts
• Uses a blockchains

How can we support a blockchain (not a DAG) in Avalanche?

Snowman CONSENSUS

Any validator can propose a block
• New blocks are created every ~2 seconds

Use Avalanche to decide between blocks
• Compare all block hashes
• Decide on conflicting bits in the block hashes
• Multiple rounds of binary consensus

Snowman++
• Only allow a random subset of the validators to create blocks
• Reduces conflicts

That’s all for today

Next time:
• Some more info on Avalanche subnetworks
• A deep dive into blockchain node storage

