

CS 540 Introduction to Artificial Intelligence Linear Algebra \& PCA

Fred Sala
University of Wisconsin-Madison
Sep 15, 2022

Announcements

- Homeworks:
- HW1 due 5 minutes ago; HW2 released today.
- Class roadmap:

Tuesday, Sep 13	Probability
Thursday, Sep 15	Linear Algebra and PCA
Tuesday, Sep 20	Statistics and Math Review
Thursday, Sep 22	Introduction to Logic
Tuesday, Sep 27	Natural Language Processing

From Last Time

- Conditional Prob. \& Bayes:

$$
P\left(H \mid E_{1}, E_{2}, \ldots, E_{n}\right)=\frac{P\left(E_{1}, \ldots, E_{n} \mid H\right) P(H)}{P\left(E_{1}, E_{2}, \ldots, E_{n}\right)}
$$

- Has more evidence.
- Likelihood is hard---but conditional independence assumption

$$
P\left(H \mid E_{1}, E_{2}, \ldots, E_{n}\right)=\frac{P\left(E_{1} \mid H\right) P\left(E_{2} \mid H\right) \cdots, P\left(E_{n} \mid H\right) P(H)}{P\left(E_{1}, E_{2}, \ldots, E_{n}\right)}
$$

Classification

- Expression

$$
P\left(H \mid E_{1}, E_{2}, \ldots, E_{n}\right)=\frac{P\left(E_{1} \mid H\right) P\left(E_{2} \mid H\right) \cdots, P\left(E_{n} \mid H\right) P(H)}{P\left(E_{1}, E_{2}, \ldots, E_{n}\right)}
$$

- H: some class we'd like to infer from evidence
- We know prior $P(H)$
- Estimate $P\left(E_{i} \mid H\right)$ from data! ("training")
- Very similar to envelopes problem. Part of HW2

Linear Algebra: What is it good for?

- Everything is a function
- Multiple inputs and outputs
- Linear functions
- Simple, tractable
- Study of linear functions

In AI/ML Context

Building blocks for all models

- E.g., linear regression; part of neural networks

Hieu Tran

Outline

- Basics: vectors, matrices, operations
- Dimensionality reduction
- Principal Components Analysis (PCA)

Lior Pachter

Basics: Vectors

Vectors

- Many interpretations
- Physics: magnitude + direction
- Point in a space

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]
$$

Basics: Vectors

- Dimension
- Number of values $\quad x \in \mathbb{R}^{d}$
- Higher dimensions: richer but more complex
- $\mathrm{Al} / \mathrm{ML}$: often use very high dimensions:
- Ex: images!

Basics: Matrices

- Again, many interpretations
- Represent linear transformations
- Apply to a vector, get another vector
- Also, list of vectors
- Not necessarily square
- Indexing! $\quad A \in \mathbb{R}^{c \times d}$

$$
A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right]
$$

- Dimensions: \#rows x \#columns

Basics: Transposition

- Transposes: flip rows and columns
- Vector: standard is a column. Transpose: row
- Matrix: go from $m \times n$ to $n x m$

$$
\begin{array}{r}
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] x^{T}=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right] \\
A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23}
\end{array}\right] \quad A^{T}=\left[\begin{array}{ll}
A_{11} & A_{21} \\
A_{12} & A_{22} \\
A_{13} & A_{23}
\end{array}\right]
\end{array}
$$

Matrix \& Vector Operations

- Vectors
- Addition: component-wise
- Commutative
- Associative

$$
x+y=\left[\begin{array}{l}
x_{1}+y_{1} \\
x_{2}+y_{2} \\
x_{3}+y_{3}
\end{array}\right]
$$

- Scalar Multiplication
- Uniform stretch / scaling

$$
c x=\left[\begin{array}{l}
c x_{1} \\
c x_{2} \\
c x_{3}
\end{array}\right]
$$

Matrix \& Vector Operations

- Vector products.
- Inner product (e.g., dot product)

$$
<x, y>:=x^{T} y=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}
$$

- Outer product

$$
x y^{T}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]=\left[\begin{array}{lll}
x_{1} y_{1} & x_{1} y_{2} & x_{1} y_{3} \\
x_{2} y_{1} & x_{2} y_{2} & x_{2} y_{3} \\
x_{3} y_{1} & x_{3} y_{2} & x_{3} y_{3}
\end{array}\right]
$$

Matrix \& Vector Operations

- Inner product defines "orthogonality"
- If $\langle x, y\rangle=0$
- Vector norms: "size"

$$
\|x\|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}
$$

Matrix \& Vector Operations

- Matrices:
- Addition: Component-wise
- Commutative! + Associative

$$
A+B=\left[\begin{array}{ll}
A_{11}+B_{11} & A_{12}+B_{12} \\
A_{21}+B_{21} & A_{22}+B_{22} \\
A_{31}+B_{31} & A_{32}+B_{32}
\end{array}\right]
$$

- Scalar Multiplication

$$
c A=\left[\begin{array}{ll}
c A_{11} & c A_{12} \\
c A_{21} & c A_{22} \\
c A_{31} & c A_{32}
\end{array}\right]
$$

Matrix \& Vector Operations

- Matrix-Vector multiply
- I.e., linear transformation; plug in vector, get another vector
- Each entry in $A x$ is the inner product of a row of A with x

$$
A x=\left[\begin{array}{c}
A_{11} x_{1}+A_{12} x_{2}+\ldots+A_{1 n} x_{n} \\
A_{21} x_{1}+A_{22} x_{2}+\ldots+A_{2 n} x_{n} \\
\vdots \\
A_{n 1} x_{1}+A_{n 2} x_{2}+\ldots+A_{n n} x_{n}
\end{array}\right]
$$

Matrix \& Vector Operations

Ex: feedforward neural networks. Input x.

- Output of layer k is

Output of layer k : vector

Wikipedia

Weight matrix for layer k: Note: linear transformation!

Matrix \& Vector Operations

- Matrix multiplication
- "Composition" of linear transformations
- Not commutative (in general)!
- Lots of interpretations

More on Matrix Operations

- Identity matrix:
- Like "1"
- Multiplying by it gets back the same matrix or vector
- Rows \& columns are the "standard basis vectors" e_{i}

$$
I=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & \vdots & \ldots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right]
$$

More on Matrices: Inverses

- If for A there is a B such that $A B=B A=I$
- Then A is invertible/nonsingular, B is its inverse
- Some matrices are not invertible!
- Usual notation: A^{-1}

$$
\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right] \times\left[\begin{array}{cc}
3 & -1 \\
-2 & 1
\end{array}\right]=I
$$

Eigenvalues \& Eigenvectors

- For a square matrix A , solutions to $A v=\lambda v$
$-v$ (nonzero) is a vector: eigenvector
$-\lambda$ is a scalar: eigenvalue
- Intuition: A is a linear transformation;
- Can stretch/rotate vectors;
- E-vectors: only stretched (by e-vals)

Dimensionality Reduction

- Vectors used to store features
- Lots of data -> lots of features!
- Document classification
- Each doc: thousands of words/millions of bigrams, etc
- Netflix surveys: 480189 users x 17770 movies

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6
Tom	5	$?$	$?$	1	3	$?$
George	$?$	$?$	3	1	2	5
Susan	4	3	1	$?$	5	1
Beth	4	3	$?$	2	4	2

Dimensionality Reduction

Ex: MEG Brain Imaging: 120 locations x 500 time points x 20 objects

- Or any image

Dimensionality Reduction

Reduce dimensions

- Why?
- Lots of features redundant
- Storage \& computation costs
- Goal: take $x \in \mathbb{R}^{d} \rightarrow x \in \mathbb{R}^{r}$ for $r \ll d$
- But, minimize information loss

Compression

Examples: 3D to 2D

Andrew Ng

Principal Components Analysis (PCA)

- A type of dimensionality reduction approach
- For when data is approximately lower dimensional

Principal Components Analysis (PCA)

- Goal: find axes of a subspace
- Will project to this subspace; want to preserve data

Principal Components Analysis (PCA)

- From 2D to 1D:
- Find a $v_{1} \in \mathbb{R}^{d}$ so that we maximize "variability"
- IE,

- New representations are along this vector (1D!)

Principal Components Analysis (PCA)

- From d dimensions to r dimensions
- Sequentially get $v_{1}, v_{2}, \ldots, v_{r} \in \mathbb{R}^{d}$
- Orthogonal!
- Still minimize the projection error
- Equivalent to "maximizing variability"
- The vectors are the principal components

PCA Setup

- Inputs
- Data: $\quad x_{1}, x_{2}, \ldots, x_{n}, x_{i} \in \mathbb{R}^{d}$
- Can arrange into
- Centered!
- Outputs

$$
\begin{gathered}
X \in \mathbb{R}^{n \times d} \\
\frac{1}{n} \sum_{i=1}^{n} x_{i}=0
\end{gathered}
$$

Victor Powell

- Principal components $v_{1}, v_{2}, \ldots, v_{r} \in \mathbb{R}^{d}$
- Orthogonal!

PCA Goals

- Want directions/components (unit vectors) so that
- Projecting data maximizes variance
- What's projection?

$$
\sum_{i=1}^{n}\left\langle x_{i}, v\right\rangle=\|X v\|^{2}
$$

- Do this recursively
- Get orthogonal directions $v_{1}, v_{2}, \ldots, v_{r} \in \mathbb{R}^{d}$

PCA First Step

- First component,

$$
v_{1}=\arg \max _{\|v\|=1} \sum_{i=1}^{n}\left\langle v, x_{i}\right\rangle^{2}
$$

- Same as getting

$$
v_{1}=\arg \max _{\|v\|=1}\|X v\|^{2}
$$

PCA Recursion

- Once we have k-1 components, next?

$$
\hat{X}_{k}=X-\sum_{i=1}^{k-1} X v_{i} v_{i}^{T}
$$

- Then do the same thing

$$
v_{k}=\arg \max _{\|v\|=1}\left\|\hat{X}_{k} w\right\|^{2}
$$

PCA Interpretations

- The v's are eigenvectors of $X^{\top} X$ (Gram matrix)
- Show via Rayleigh quotient
- $X^{\top} X$ (proportional to) sample covariance matrix
- When data is 0 mean!
- I.e., PCA is eigendecomposition of sample covariance
- Nested subspaces span(v1), span(v1,v2),

Lots of Variations

- PCA, Kernel PCA, ICA, CCA
- Unsupervised techniques to extract structure from high dimensional dataset
- Uses:
- Visualization
- Efficiency
- Noise removal
- Downstream machine learning use

Application: Image Compression

- Start with image; divide into 12×12 patches
- I.E., 144-D vector
- Original image:

Application: Image Compression

- 6 most important components (as an image)

Application: Image Compression

- Project to 6D,

Compressed

Original

