

CS 540 Introduction to Artificial Intelligence Linear Algebra & PCA

Fred Sala University of Wisconsin-Madison

Sep 15, 2022

Announcements

- Homeworks:
 - HW1 due 5 minutes ago; HW2 released today.
- Class roadmap:

Tuesday, Sep 13	Probability		-	Π
Thursday, Sep 15	Linear Algebra and PCA			
Tuesday, Sep 20	Statistics and Math Review			tuom.
Thursday, Sep 22	Introduction to Logic	J	Lais	ה
Tuesday, Sep 27	Natural Language Processing			

From Last Time

• Conditional Prob. & Bayes:

$$P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1, \dots, E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$$

- Has more evidence.
 - Likelihood is hard---but conditional independence assumption

$$P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1|H)P(E_2|H)\cdots, P(E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$$

Classification

• Expression

 $P(H|E_1, E_2, \dots, E_n) = \frac{P(E_1|H)P(E_2|H)\cdots, P(E_n|H)P(H)}{P(E_1, E_2, \dots, E_n)}$

- *H*: some class we'd like to infer from evidence
 - We know prior P(H)
 - Estimate $P(E_i|H)$ from data! ("training")
 - Very similar to envelopes problem. Part of HW2

Linear Algebra: What is it good for?

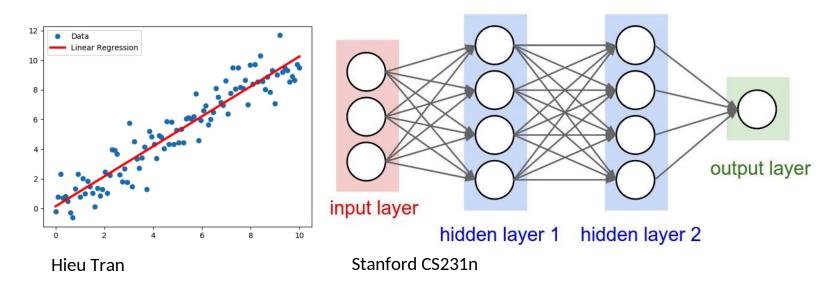
- Everything is a **function**
 - Multiple inputs and outputs

- Linear functions
 - Simple, tractable
- Study of linear functions

In AI/ML Context

Building blocks for **all models**

- E.g., linear regression; part of neural networks

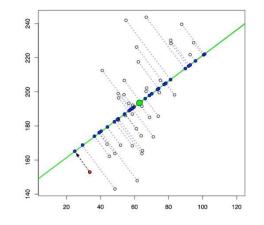


Outline

• Basics: vectors, matrices, operations

• Dimensionality reduction

• Principal Components Analysis (PCA)



Lior Pachter

Basics: Vectors

Vectors

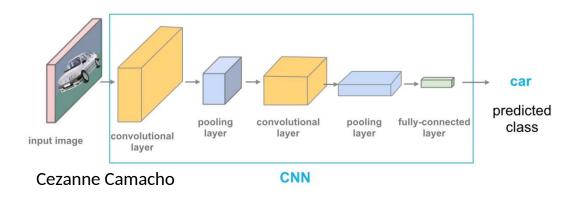
- Many interpretations
 - Physics: magnitude + direction

– Point in a space



Basics: Vectors

- Dimension
 - Number of values $x \in \mathbb{R}^d$
 - Higher dimensions: richer but more complex
- AI/ML: often use **very high dimensions**:
 - Ex: images!



Basics: Matrices

- Again, many interpretations
 - Represent linear transformations
 - Apply to a vector, get another vector
 - Also, list of vectors

- Not necessarily square
 - Indexing! $A \in \mathbb{R}^{c \times d}$
 - Dimensions: #rows x #columns

$$\mathbf{A} = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \\ A_{31} & A_{32} & A_{33} \end{bmatrix}$$

Basics: Transposition

- Transposes: flip rows and columns
 - Vector: standard is a column. Transpose: row
 - Matrix: go from *m x n* to *n x m*

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \begin{array}{c} x^T = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix}$$
$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix} \begin{array}{c} A^T = \begin{bmatrix} A_{11} & A_{21} \\ A_{12} & A_{22} \\ A_{13} & A_{23} \end{bmatrix}$$

- Vectors
 - Addition: component-wise
 - Commutative
 - Associative

 $x + y = \begin{bmatrix} x_1 + y_1 \\ x_2 + y_2 \\ x_3 + y_3 \end{bmatrix}$

- Scalar Multiplication
 - Uniform stretch / scaling

 $cx = \begin{bmatrix} cx_1 \\ cx_2 \\ cx_2 \end{bmatrix}$

- Vector products.
 - Inner product (e.g., dot product) _ _

$$\langle x, y \rangle := x^T y = \begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = x_1 y_1 + x_2 y_2 + x_3 y_3$$

– Outer product

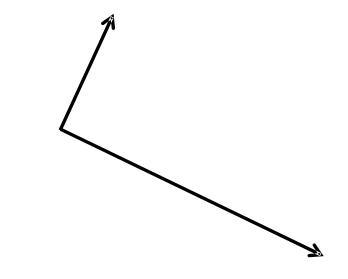
$$xy^{T} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & y_{3} \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & x_{1}y_{3} \\ x_{2}y_{1} & x_{2}y_{2} & x_{2}y_{3} \\ x_{3}y_{1} & x_{3}y_{2} & x_{3}y_{3} \end{bmatrix}$$

Inner product defines "orthogonality"

$$- \operatorname{If} \langle x, y \rangle = 0$$

• Vector norms: "size"

$$||x||_2 = \sqrt{\sum_{i=1}^{n} x_i^2}$$



- Matrices:
 - Addition: Component-wise
 - Commutative! + Associative

$$A + B = \begin{bmatrix} A_{11} + B_{11} & A_{12} + B_{12} \\ A_{21} + B_{21} & A_{22} + B_{22} \\ A_{31} + B_{31} & A_{32} + B_{32} \end{bmatrix}$$

- Scalar Multiplication
- "Stretching" the linear transformation

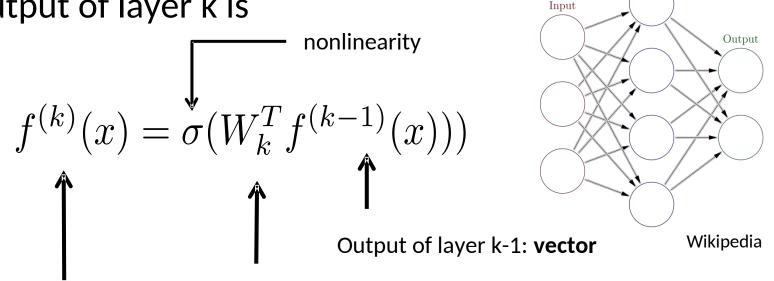
$$cA = \begin{bmatrix} cA_{11} & cA_{12} \\ cA_{21} & cA_{22} \\ cA_{31} & cA_{32} \end{bmatrix}$$

- Matrix-Vector multiply
 - I.e., linear transformation; plug in vector, get another vector
 - Each entry in Ax is the inner product of a row of A with x

$$Ax = \begin{bmatrix} A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n \\ A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n \\ \vdots \\ A_{n1}x_1 + A_{n2}x_2 + \dots + A_{nn}x_n \end{bmatrix}$$

Ex: feedforward neural networks. Input x.

• Output of layer k is



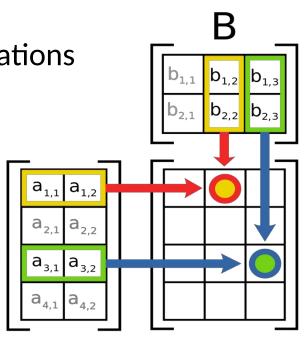
Hidden

Output of layer k: vector

Weight **matrix** for layer k: Note: linear transformation!

- Matrix multiplication
 - "Composition" of linear transformations
 - Not commutative (in general)!

Lots of interpretations

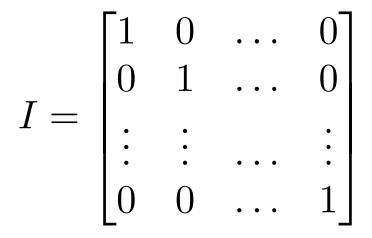


Wikipedia

More on Matrix Operations

- Identity matrix:
 - Like "1"
 - Multiplying by it gets back the same matrix or vector

– Rows & columns are the "standard basis vectors" e_i



More on Matrices: Inverses

- If for A there is a B such that AB = BA = I
 - Then A is invertible/nonsingular, B is its inverse
 - Some matrices are **not** invertible!

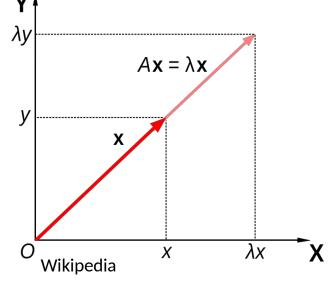
– Usual notation: A^{-1}

$$\begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix} \times \begin{bmatrix} 3 & -1 \\ -2 & 1 \end{bmatrix} = I$$

Eigenvalues & Eigenvectors

- For a square matrix A, solutions to $Av=\lambda v$
 - v (nonzero) is a vector: eigenvector
 - $-\lambda$ is a scalar: **eigenvalue**

- Intuition: A is a linear transformation;
- Can stretch/rotate vectors;
- E-vectors: only stretched (by e-vals)



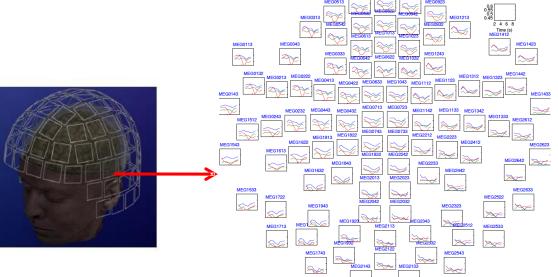
Dimensionality Reduction

- Vectors used to store features
 - Lots of data -> lots of features!
- Document classification
 - Each doc: thousands of words/millions of bigrams, etc
- Netflix surveys: 480189 users x 17770 movies

	movie 1	movie 2	movie 3	movie 4	movie 5	movie 6
Tom	5	?	?	1	3	?
George	?	?	3	1	2	5
Susan	4	3	1	?	5	1
Beth	4	3	?	2	4	2

Dimensionality Reduction

- Ex: MEG Brain Imaging: 120 locations x 500 time points x 20 objects
- Or any image



Dimensionality Reduction

Reduce dimensions

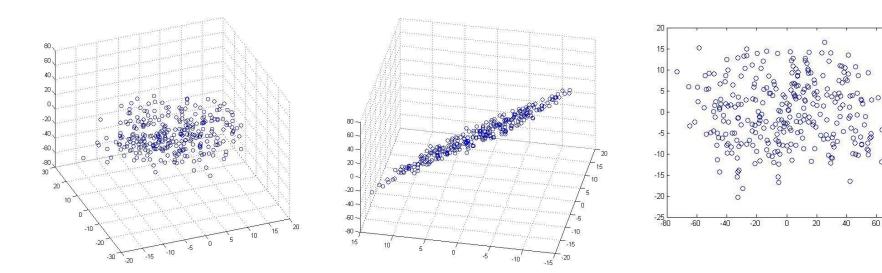
- Why?
 - Lots of features redundant
 - Storage & computation costs

• Goal: take
$$x \in \mathbb{R}^d \to x \in \mathbb{R}^r$$
 for $r << d$

– But, minimize information loss

Compression

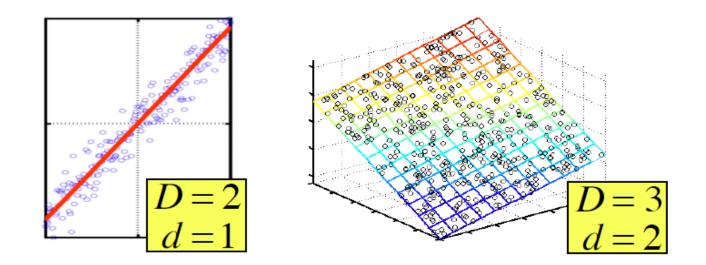
Examples: 3D to 2D



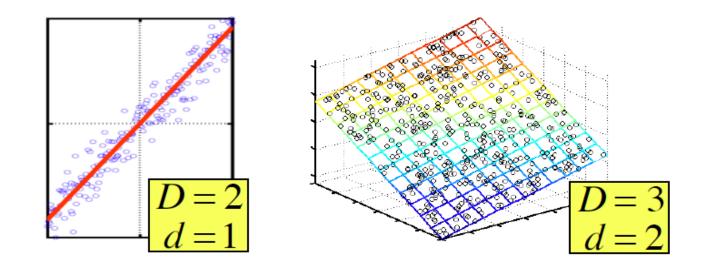
80

Andrew Ng

- A type of dimensionality reduction approach
 - For when data is **approximately lower dimensional**

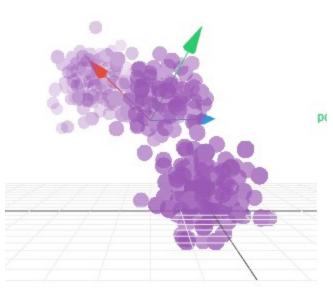


- Goal: find **axes** of a subspace
 - Will project to this subspace; want to preserve data



- From 2D to 1D: – Find a $v_1 \in \mathbb{R}^d$ so that we maximize "variability" – IE,
 - New representations are along this vector (1D!)

- From *d* dimensions to *r* dimensions
 - Sequentially get $v_1, v_2, \ldots, v_r \in \mathbb{R}^d$
 - Orthogonal!
 - Still minimize the projection error
 - Equivalent to "maximizing variability"
 - The vectors are the principal components



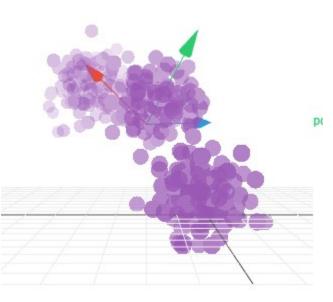
Victor Powell

PCA Setup

- Inputs
 - Data: $x_1, x_2, \ldots, x_n, x_i \in \mathbb{R}^d$
 - Can arrange into $X \in \mathbb{R}^{n \times d}$
 - Centered!

Outputs

$$\frac{1}{n}\sum_{i=1}^{n}x_i = 0$$



Victor Powell

- Principal components $v_1, v_2, \ldots, v_r \in \mathbb{R}^d$
- Orthogonal!

PCA Goals

- Want directions/components (unit vectors) so that
 - Projecting data maximizes variance
 - What's projection?

$$\sum_{i=1}^{n} \langle x_i, v \rangle = \|Xv\|^2$$

• Do this **recursively**

- Get orthogonal directions $v_1, v_2, \ldots, v_r \in \mathbb{R}^d$

PCA First Step

• First component,

$$v_1 = \arg \max_{\|v\|=1} \sum_{i=1}^n \langle v, x_i \rangle^2$$

 \mathbf{n}

• Same as getting

$$v_1 = \arg \max_{\|v\|=1} \|Xv\|^2$$

PCA Recursion

• Once we have *k*-1 components, next?

$$\hat{X}_k = X - \sum_{i=1}^{k-1} X v_i v_i^T$$

• Then do the same thing

$$v_k = \arg \max_{\|v\|=1} \|\hat{X}_k w\|^2$$

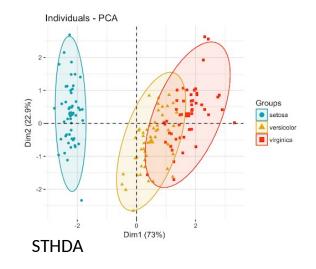
PCA Interpretations

- The v's are eigenvectors of $X^T X$ (Gram matrix)
 - Show via Rayleigh quotient
- $X^T X$ (proportional to) sample covariance matrix
 - When data is 0 mean!
 - I.e., PCA is eigendecomposition of sample covariance

Nested subspaces span(v1), span(v1,v2),...,

Lots of Variations

- PCA, Kernel PCA, ICA, CCA
 - Unsupervised techniques to extract structure from high dimensional dataset
- Uses:
 - Visualization
 - Efficiency
 - Noise removal
 - Downstream machine learning use



Application: Image Compression

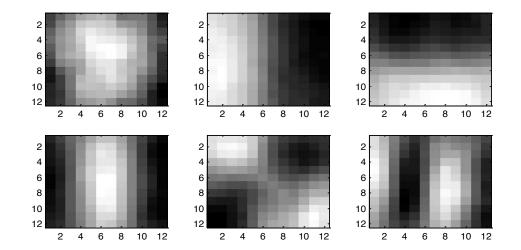
• Start with image; divide into 12x12 patches

- I.E., 144-D vector

- Original image:

Application: Image Compression

• 6 most important components (as an image)



Application: Image Compression

• Project to 6D,

Compressed

Original