

CS 540 Introduction to Artificial Intelligence Classification - KNN and Naive Bayes

University of Wisconsin-Madison Fall 2022

Today's outline

- K-Nearest Neighbors
- Maximum likelihood estimation
- Naive Bayes

Part I: K-nearest neighbors

WIKIPEDIA The Free Encyclopedia

Main page

Article Talk

k-nearest neighbors algorithm

From Wikipedia, the free encyclopedia

Not to be confused with k-means clustering.

(source: wiki)

Example 1: Predict whether a user likes a song or not

model

Example 1: Predict whether a user likes a song or not

User Sharon

Tempo

Example 1: Predict whether a user likes a song or not **1-NN**

Intensity

User Sharon

Example 1: Predict whether a user likes a song or not **1-NN**

Intensity

User Sharon

K-nearest neighbors for classification

- Input: Training data $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$ Distance function $d(\mathbf{x}_i, \mathbf{x}_i)$; number of neighbors k; test data \mathbf{x}^*
- 1. Find the k training instances $\mathbf{x}_{i_1}, \ldots, \mathbf{x}_{i_k}$ closest to \mathbf{x}^* under $d(\mathbf{x}_i, \mathbf{x}_i)$ 2. Output y^* as the majority class of y_{i_1}, \ldots, y_{i_k} . Break ties randomly.

Example 2: 1-NN for little green man

- Predict gender (M,F) from weight, height
- Predict age (adult, juvenile) from weight, height

Decision boundary

70 65 juvenile 60height (in.) 22 20 adult 45 40 80 110 90 100 weight (lbs.) (b) classification by age

The decision regions for 1-NN

Voronoi diagram: each polyhedron indicates the region of feature space that is in the nearest neighborhood of each training instance

K-NN for regression

- What if we want regression?
- Instead of majority vote, take average of neighbors' labels
 - Given test point \mathbf{X}^* , find its k nearest neighbors $\mathbf{X}_{i_1}, \ldots, \mathbf{X}_{i_k}$
 - Output the predicted label $\frac{1}{k}(y_{i_1}+\ldots+y_{i_k})$

What distance function to use?

- suppose all features are discrete
 - Hamming distance: count the number of features for which two instances differ

What distance function to use?

- suppose all features are discrete
 - Hamming distance: count the number of features for which two instances differ
- suppose all features are continuous
 - Euclidean distance: sum of squared differences

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{\sum_{i=1}^{d} (p_i - q_i)^2}$$

Manhattan distance:
$$d(\mathbf{p}, \mathbf{q}) = \sum_{i=1}^{d} |p_i - q_i|^2$$

What distance function to use?

- Be careful with scale
- Same feature but different units may change relative distance (fixing other features)
- Sometimes OK to normalize each feature dimension (z-score)
 Training set mean for dimension d

$$x'_{id} = \frac{x_{id} - \mu_d}{\sigma_d}, \forall i = \frac{\sigma_d}{\sigma_d}$$
Training

Other times not OK: e.g. dimension contains small random noise

- $= 1...n, \forall d$
- set standard deviation for dimension d

What's the predicted label for the black dot using 1 neighbor? 3 neighbors?

How to pick the number of neighbors

- Split data into training and tuning sets
- Classify tuning set with different k
- Pick k that produces least tuning-set error

(Shuffle whole dataset first) (x_1, y_1) ... Training set

Quiz break Q1-1: K-NN algorithms can be used for:

- A Only classification
- B Only regression
- C Both

Quiz break Q1-1: K-NN algorithms can be used for:

- A Only classification
- B Only regression
- C Both

case of categorical variables in k-NN?

- A Hamming distance
- B Euclidean distance
- C Manhattan distance

Q1-2: Which of the following distance measure do we use in

case of categorical variables in k-NN?

- A Hamming distance
- B Euclidean distance
- C Manhattan distance

Q1-2: Which of the following distance measure do we use in

label of a point x = (x1, x2) is positive if x1 > x2 and negative distance), which ones of the following points are labeled positive? Multiple answers.

- [5.52, 2.41]
- [8.47, 5.84]
- [7,8.17]
- [6.7,8.88]

Q1-3: Consider binary classification in 2D where the intended otherwise. Let the training set be all points of the form x = [4a,3b] where a,b are integers. Each training item has the correct label that follows the rule above. With a 1NN classifier (Euclidean

label of a point x = (x1, x2) is positive if x1 > x2 and negative distance), which ones of the following points are labeled positive? Multiple answers. • [5.52, 2.41]

- [8.47, 5.84]
- [7,8.17]
- [6.7,8.88]

Q1-3: Consider binary classification in 2D where the intended otherwise. Let the training set be all points of the form x = [4a,3b] where a,b are integers. Each training item has the correct label that follows the rule above. With a 1NN classifier (Euclidean

> Nearest neighbors are [4,3] => positive[8,6] => positive=> negative [8,9] [8,9] => negative Individually.

Part II: Maximum Likelihood Estimation

Supervised Machine Learning

Non-parametric (e.g., KNN)

VS.

Parametric

Supervised Machine Learning Statistical modeling approach

Labeled training data (n examples)

$$(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$$

drawn **independently** from a fixed underlying distribution (also called the i.i.d. assumption)

Supervised Machine Learning Statistical modeling approach

Labeled training data (n examples)

 $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$

drawn independently from a fixed underlying distribution (also called the i.i.d. assumption)

select $\hat{f}(\theta)$ from a pool of models \mathcal{F} that best describe the data observed

How to select $\hat{f} \in \mathcal{F}$?

- Maximum likelihood (best fits the data)
- Maximum a posteriori (best fits the data but incorporates prior assumptions) • Optimization of 'loss' criterion (best discriminates the labels)

Maximum Likelihood Estimation: An Example Flip a coin 10 times, how can you estimate $\theta = p(Head)$?

Intuitively, $\theta = 4/10 = 0.4$

How good is θ ? It depends on how likely it is to generate the observed data $X_1, X_2, ..., X_n$

Likelihood function $L(\theta) = \prod_i p(\mathbf{x}_i | \theta)$ Under i.i.d assumption

the probabilistic model p_{θ} ?

(Let's forget about label for a second)

- Interpretation: How probable (or how likely) is the data given

How good is θ ?

(Let's forget about label for a second)

$\boldsymbol{\theta} \cdot (1 - \boldsymbol{\theta}) \cdot (1 - \boldsymbol{\theta}) \cdot \boldsymbol{\theta} \cdot \boldsymbol{\theta}$

Bernoulli distribution

Log-likelihood function $L_{D}(\boldsymbol{\theta}) = \boldsymbol{\theta} \cdot (1 - \boldsymbol{\theta}) \cdot (1 - \boldsymbol{\theta}) \cdot \boldsymbol{\theta} \cdot \boldsymbol{\theta}$ $= \boldsymbol{\theta}^{N_{H}} \cdot (1 - \boldsymbol{\theta})^{N_{T}}$

Log-likelihood function

$\ell(\theta) = \log L(\theta)$ $= N_H \log \theta + N_T \log(1 - \theta)$

Maximum Likelihood Estimation (MLE) Find optimal θ^* to maximize the likelihood function (and log-likelihood)

 $\theta^* = \operatorname{argmax} N_H \log$

which confirms your intuition!

$$g\theta + N_T \log(1-\theta)$$

Maximum Likelihood Estimation: Gaussian Model Fitting a model to heights of females **Observed some data** (in inches): 60, 62, 53, 58,... $\in \mathbb{R}$

 $\{x_1, x_2, \dots, x_n\}$

Model class: Gaussian model

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x-x)}{2\sigma^2}\right)$$

So, what's the MLE for the given data?

Estimating the parameters in a Gaussian

• Mean

 $\mu = \mathbf{E}[x] \quad \mathbf{h}$

• Variance

$\sigma^2 = \mathbf{E}[(x - \mu)^2]$

courses.d2l.ai/berkeley-stat-157

nence
$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

hence
$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \hat{\mu})^2$$

Maximum Likelihood Estimation: Gaussian Model **Observe some data** (in inches): $x_1, x_2, \ldots, x_n \in \mathbb{R}$

Assume that the data is drawn from a Gaussian

$$L(\mu, \sigma^2 | X) = \prod_{i=1}^n p(x_i; \mu, \sigma^2) =$$

Fitting parameters is maximizing likelihood w.r.t μ, σ^2 (maximize likelihood that data was generated by model)

$$\int_{1}^{1} p(x_i; \mu, \sigma^2)$$

Maximum Likelihood

- Decompose likelihood

 $\sum_{i=1}^{n} \frac{1}{2} \log(2\pi\sigma^2) + \frac{1}{2\sigma^2} (x_i - \frac{1}{2\sigma^2}) + \frac{1}{2\sigma^2} (x_i - \frac{1}{2\sigma^2})$

courses.d2l.ai/berkeley-stat-157

Estimate parameters by finding ones that explain the data $\underset{\mu,\sigma^2}{\operatorname{argmax}} \prod_{i=1}^{n} p(x_i; \mu, \sigma^2) = \underset{\mu,\sigma^2}{\operatorname{argmin}} - \log \prod_{i=1}^{n} p(x_i; \mu, \sigma^2)$

$$\mu)^{2} = \frac{n}{2} \log(2\pi\sigma^{2}) + \frac{1}{2\sigma^{2}} \sum_{i=1}^{n} (x_{i} - \frac{1}{n}) \sum_{i=1}^{n} x_{i}$$
Minimized for $\mu = \frac{1}{n} \sum_{i=1}^{n} x_{i}$

Maximum Likelihood

Estimating the variance

Maximum Likelihood

Estimating the variance

$$\frac{n}{2}\log(2\pi\sigma)$$

Take derivatives with respect to it

$$\partial_{\sigma^2} [\cdot] = \frac{n}{2\sigma^2} - \frac{1}{2\sigma^4} \sum_{i=1}^n (x_i - \mu)^2 = 0$$
$$\implies \sigma^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \mu)^2$$

courses.d2l.ai/berkelev-stat-157

$(\sigma^2) + \frac{1}{2\sigma^2} \sum_{i=1}^{n} (x_i - \mu)^2$

Classification via MLE

Classification via MLE

$\hat{y} = \hat{f}(\mathbf{x}) = \arg \max p(y | \mathbf{x})$ (Posterior)

(Prediction)

Classification via MLE

$$\hat{y} = \hat{f}(\mathbf{x}) = \arg \max p(\mathbf{x})$$
(Prediction)
$$= \arg \max \frac{p(\mathbf{x} \mid y) \cdot p}{p(\mathbf{x})}$$

 $= \underset{v}{\operatorname{arg\,max}} p(\mathbf{x} | y) p(y)$

Using labelled training data, learn class priors and class conditionals

Q2-2: True or False we maximize the likelihood or log-likelihood function.

- A True
- B False

Maximum likelihood estimation is the same regardless of whether

Q2-2: True or False we maximize the likelihood or log-likelihood function.

- A True
- B False

Maximum likelihood estimation is the same regardless of whether

students yielded the following weights in pounds: 115 122 130 127 149 160 152 138 149 180. Find a maximum likelihood estimate of μ .

- A 132.2
- B 142.2
- C 152.2
- D 162.2

- Q2-3: Suppose the weights of randomly selected American female
- college students are normally distributed with unknown mean μ and
- standard deviation σ . A random sample of 10 American female college

students yielded the following weights in pounds: 115 122 130 127 149 160 152 138 149 180. Find a maximum likelihood estimate of μ .

- A 132.2
- B 142.2
- C 152.2
- D 162.2

- Q2-3: Suppose the weights of randomly selected American female
- college students are normally distributed with unknown mean μ and
- standard deviation σ . A random sample of 10 American female college

Part III: Naïve Bayes

- If weather is sunny, would you likely to play outside?
- Posterior probability p(Yes | 💓) vs. p(No | 💓)

- If weather is sunny, would you likely to play outside?
- Posterior probability p(Yes | 🔆) vs. p(No | 🌾)
- Weather = {Sunny, Rainy, Overcast}
- Play = {Yes, No}
- Observed data {Weather, play on day m}, m={1,2,...,N}

- If weather is sunny, would you likely to play outside?
- Posterior probability p(Yes | 💓) vs. p(No | 💓)
- Weather = {Sunny, Rainy, Overcast}
- $Play = {Yes, No}$
- Observed data {Weather, play on day m}, m={1,2,...,N}

- p(Play) p(Play)

Bayes rule

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

Frequency Table		e
Weather	No	
Overcast		
Rainy	3	
Sunny	2	
Grand Total	5	

Step 1: Convert the data to a frequency table of Weather and Play

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/

Step 1: Convert the data to a frequency table of Weather and Play

Step 2: Based on the frequency table, calculate likelihoods and priors

Weather	Play
Sunny	No
Overcast	Yes
Rainy	Yes
Sunny	Yes
Sunny	Yes
Overcast	Yes
Rainy	No
Rainy	No
Sunny	Yes
Rainy	Yes
Sunny	No
Overcast	Yes
Overcast	Yes
Rainy	No

Frequ	ency Tabl	e	Likelihood table				
Weather	No	Yes	Weather	No	Yes		
Overcast		4	Overcast		4	=4/14	
Rainy	3	2	Rainy	3	2	=5/14	
Sunny	2	3	Sunny	2	3	=5/14	
Grand Total	5	9	All	5	9		
				=5/14	=9/14		
				0.36	0.64		

p(Play = Yes) = 0.64p(4) = 3/9 = 0.33

https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/

Step 3: Based on the likelihoods and priors, calculate posteriors

Step 3: Based on the likelihoods and priors, calculate posteriors

P(Yes) =P(***** |Yes)*P(Yes)/P(*****) =0.33*0.64/0.36=0.6 P(No|) =P((No)*P(No)/P() =0.4*0.36/0.36 =0.4

P(Yes| .→ P(No| .→)

go outside and play!

Bayesian classification

$$\hat{y} = \arg \max p(y | \mathbf{x})$$
Prediction)
$$= \arg \max \frac{p(\mathbf{x} | y) \cdot p(\mathbf{x})}{p(\mathbf{x})}$$

 $= \arg \max p(\mathbf{x} | y)p(y)$

(Posterior)

Bayesian classification What if **x** has multiple attributes $\mathbf{x} = \{X_1, \ldots, X_k\}$ $\hat{y} = \arg \max_{v} p(y | X_1, \dots, X_k)$ (Posterior)

(Prediction)

Bayesian classification What if **x** has multiple attributes $\mathbf{x} = \{X_1, \ldots, X_k\}$

(by Bayes' rule) Independent of y

Naïve Bayes Assumption

Conditional independence of feature attributes

$p(X_1, \ldots, X_k | y) p(y) = \prod_{i=1}^k p(X_i | y) p(y)$ Easier to estimate (using MLE!)

Q3-1: Which of the following about Naive Bayes is incorrect?

- A Attributes can be nominal or numeric
- B Attributes are equally important
- C Attributes are statistically dependent of one another given the class value • D Attributes are statistically independent of one another given the class value
- E All of above

Q3-1: Which of the following about Naive Bayes is incorrect?

- A Attributes can be nominal or numeric
- B Attributes are equally important
- C Attributes are statistically dependent of one another given the class value • D Attributes are statistically independent of one another given the class value
- E All of above

Q3-2: Consider a classification problem with two binary features, $x_1, x_2 \in \{0, 1\}$. Suppose P(Y = y) = 1/32, $P(x_1 = 1 | Y = y) = y/46$, on a test item with $x_1 = 1$ and $x_2 = 0$?

- A 16
- B 26
- C 31
- D 32

- $P(x_2 = 1 | Y = y) = y/62$. Which class will naive Bayes classifier produce

Q3-2: Consider a classification problem with two binary features, $x_1, x_2 \in \{0, 1\}$. Suppose P(Y = y) = 1/32, $P(x_1 = 1 | Y = y) = y/46$, on a test item with $x_1 = 1$ and $x_2 = 0$?

- A 16
- B 26
- C 31
- D 32

- $P(x_2 = 1 | Y = y) = y/62$. Which class will naive Bayes classifier produce

Q3-3: Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident	Studied	Sick	R
Yes	No	No	
Yes	No	Yes	F
No	Yes	Yes	
No	Yes	No	F
Yes	Yes	Yes	F

esult
Fail
Pass
Fail
Pass
Pass

- A Pass
- B Fail

Q3-3: Consider the following dataset showing the result whether a person has passed or failed the exam based on various factors. Suppose the factors are independent to each other. We want to classify a new instance with Confident=Yes, Studied=Yes, and Sick=No.

Confident	Studied	Sick	R
Yes	No	No	
Yes	No	Yes	F
No	Yes	Yes	
No	Yes	No	F
Yes	Yes	Yes	F

esult
Fail
Pass
Fail
Pass
Pass

- A Pass
- B Fail

What we've learned today...

- K-Nearest Neighbors
- Maximum likelihood estimation
 - Bernoulli model
 - Gaussian model
- Naive Bayes
 - Conditional independence assumption

Thanks!