
CS 540 Introduction to Artificial Intelligence
Classification - KNN and Naive Bayes

University of Wisconsin-Madison
Fall 2022



Today’s outline

• K-Nearest Neighbors

• Maximum likelihood estimation

• Naive Bayes



Part I: K-nearest neighbors



(source: wiki)
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K-nearest neighbors for classification

• Input: Training data
Distance function 𝑑(𝐱!, 𝐱"); number of neighbors 𝑘; test data 𝐱∗

1. Find the 𝑘 training instances 𝐱!! , . . . , 𝐱!" closest to 𝐱∗ under 𝑑(𝐱!, 𝐱")
2. Output 𝑦∗ as the majority class of 𝑦!!, . . . , 𝑦!". Break ties randomly.

(𝐱$, 𝑦$), (𝐱%, 𝑦%), . . . , (𝐱&, 𝑦&)



Example 2: 1-NN for little green man
- Predict gender (M,F) from weight, height

- Predict age (adult, juvenile) from weight, height



The decision regions for 1-NN
Voronoi diagram: each polyhedron indicates the region of feature
space that is in the nearest neighborhood of each training instance



K-NN for regression
• What if we want regression?

• Instead of majority vote, take average of neighbors’ labels
- Given test point 𝐱∗, find its 𝑘 nearest neighbors

- Output the predicted label  
!
"
(𝑦#!+. . . +𝑦#")

𝐱!! , . . . , 𝐱!"



What distance function to use?



What distance function to use?

𝑑(𝐩, 𝐪) = ∑
!"#

$
(𝑝! − 𝑞!)%

𝑑(𝐩, 𝐪) = ∑
#$%

&
|𝑝# − 𝑞#|



What distance function to use?
• Be careful with scale
• Same feature but different units may change relative distance 

(fixing other features)

• Sometimes OK to normalize each feature dimension (z-score)   

• Other times not OK: e.g. dimension contains small random noise



Effect of 𝑘



How to pick the number of neighbors
• Split data into training and tuning sets

• Classify tuning set with different k

• Pick k that produces least tuning-set error



Quiz break
Q1-1: K-NN algorithms can be used for:

• A Only classification

• B Only regression

• C Both
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Quiz break
Q1-2: Which of the following distance measure do we use in 
case of categorical variables in k-NN? 
• A Hamming distance

• B Euclidean distance

• C Manhattan distance



Quiz break

• A Hamming distance

• B Euclidean distance

• C Manhattan distance

Q1-2: Which of the following distance measure do we use in 
case of categorical variables in k-NN? 



Quiz break
Q1-3: Consider binary classification in 2D where the intended 
label of a point x = (x1, x2) is positive if x1>x2 and negative 
otherwise. Let the training set be all points of the form x = [4a, 
3b] where a,b are integers. Each training item has the correct 
label that follows the rule above. With a 1NN classifier (Euclidean 
distance), which ones of the following points are labeled 
positive? Multiple answers.

• [5.52, 2.41]

• [8.47, 5.84]

• [7,8.17]

• [6.7,8.88]
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Quiz break



Part II: Maximum Likelihood Estimation



Supervised Machine Learning

Non-parametric
(e.g., KNN) Parametricvs.



Supervised Machine Learning
Statistical modeling approach

Labeled training 
data (n examples)

(𝐱$, 𝑦$), (𝐱%, 𝑦%), . . . , (𝐱&, 𝑦&)
drawn independently from 
a fixed underlying distribution 
(also called the i.i.d. assumption)



Supervised Machine Learning

Labeled training 
data (n examples)

(𝐱$, 𝑦$), (𝐱%, 𝑦%), . . . , (𝐱&, 𝑦&)
drawn independently from 
a fixed underlying distribution 
(also called the i.i.d. assumption)

Learning 
algorithm

Classifier
'𝑓

select !𝑓(𝜃) from a pool of models ℱ
that best describe the data observed

Statistical modeling approach



How to select !𝑓 ∈ ℱ?
• Maximum likelihood (best fits the data) 
• Maximum a posteriori (best fits the data but incorporates prior assumptions)
• Optimization of ‘loss’ criterion (best discriminates the labels)



Maximum Likelihood Estimation: An Example
Flip a coin 10 times, how can you estimate 𝜃 = 𝑝(Head)?

Intuitively, 𝜃 = 4/10 = 0.4



How good is 𝜃?
It depends on how likely it is to generate the observed data 
𝐱", 𝐱#, . . . , 𝐱$ (Let’s forget about label for a second)

Interpretation: How probable (or how likely) is the data given 
the probabilistic model 𝑝-?

𝐿(𝜃) = Π'𝑝(𝐱'|𝜃)Likelihood function

Under i.i.d assumption



How good is 𝜃?

𝐿(𝜃) = Π'𝑝(𝐱'|𝜃)Likelihood function

H,T, T, H, H 

Bernoulli distribution

It depends on how likely it is to generate the observed data 
𝐱", 𝐱#, . . . , 𝐱$ (Let’s forget about label for a second)



Log-likelihood function

= 𝜃%! ⋅ (1 − 𝜃)%"

Log-likelihood function

ℓ(𝜃) = log𝐿(𝜃)

= 𝑁!log𝜃 + 𝑁"log(1 − 𝜃)



Maximum Likelihood Estimation (MLE)
Find optimal 𝜃∗ to maximize the likelihood function (and log-likelihood)

𝜃∗ = argmax 𝑁!log𝜃 + 𝑁"log(1 − 𝜃)

𝜕𝑙(𝜃)
𝜕𝜃

=
𝑁&
𝜃
−

𝑁'
1 − 𝜃

= 0 𝜃∗ =
𝑁!

𝑁" + 𝑁!

which confirms your intuition!



Maximum Likelihood Estimation: Gaussian Model
Fitting a model to heights of females
Observed some data (in inches): 60, 62, 53, 58,…∈ ℝ

{𝑥", 𝑥#, . . . , 𝑥$}

So, what’s the MLE for the given data?

Model class: Gaussian model 



courses.d2l.ai/berkeley-stat-157

Estimating the parameters in a Gaussian

• Mean

• Variance

𝜇 = 𝐄 𝑥 hence )𝜇 =
1
𝑛
∑
!"#

$
𝑥!

𝜎% = 𝐄 (𝑥 − 𝜇)% hence )𝜎% =
1
𝑛
∑
!"#

$
(𝑥! − )𝜇)%

Why?



Maximum Likelihood Estimation: Gaussian Model



courses.d2l.ai/berkeley-stat-157

Maximum Likelihood

• Estimate parameters by finding ones that explain the data

• Decompose likelihood

∑
!"#

$ 1
2
log(2𝜋𝜎%) +

1
2𝜎%

(𝑥! − 𝜇)% =
𝑛
2
log(2𝜋𝜎%) +

1
2𝜎%

∑
!"#

$
(𝑥! − 𝜇)%

Minimized for     𝜇 =
1
𝑛
∑
!"#

$
𝑥!

argmax ∏
!'$

&
𝑝(𝑥!; 𝜇, 𝜎%) = argmin − log ∏

!'$

&
𝑝(𝑥!; 𝜇, 𝜎%)

𝜇, 𝜎% 𝜇, 𝜎%







Classification via MLE

Tempo

Intensity
𝑝(𝐱|𝑦 = 0) 𝑝(𝐱|𝑦 = 1)



Classification via MLE



Classification via MLE



Quiz break
Q2-2: True or False
Maximum likelihood estimation is the same regardless of whether 
we maximize the likelihood or log-likelihood function.

• A  True

• B  False



Quiz break

• A  True

• B  False

Q2-2: True or False
Maximum likelihood estimation is the same regardless of whether 
we maximize the likelihood or log-likelihood function.



Quiz break
Q2-3: Suppose the weights of randomly selected American female 
college students are normally distributed with unknown mean 𝜇 and 
standard deviation 𝜎. A random sample of 10 American female college 
students yielded the following weights in pounds: 
115 122 130 127 149 160 152 138 149 180. 
Find a maximum likelihood estimate of 𝜇.

• A  132.2

• B  142.2

• C  152.2

• D  162.2
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Part III: Naïve Bayes



Example 1: Play outside or not?
• If weather is sunny, would you likely to play outside?

Posterior probability p(Yes |       ) vs. p(No |       )
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• Weather = {Sunny, Rainy, Overcast}

• Play = {Yes, No}

• Observed data {Weather, play on day m}, m={1,2,…,N}



Example 1: Play outside or not?
• If weather is sunny, would you likely to play outside?

Posterior probability p(Yes |       ) vs. p(No |       )
• Weather = {Sunny, Rainy, Overcast}

• Play = {Yes, No}

• Observed data {Weather, play on day m}, m={1,2,…,N}

p(Play |       ) = 
p(        | Play) p(Play)

p(      )
Bayes rule



Example 1: Play outside or not?
• Step 1: Convert the data to a frequency table of Weather and Play



Example 1: Play outside or not?
• Step 1: Convert the data to a frequency table of Weather and Play

• Step 2: Based on the frequency table, calculate likelihoods and priors

p(Play = Yes) = 0.64
p(     | Yes) = 3/9 = 0.33



Example 1: Play outside or not?
• Step 3: Based on the likelihoods and priors, calculate posteriors

P(Yes|      )
=P(        |Yes)*P(Yes)/P(      )
=0.33*0.64/0.36
=0.6

P(No|      )
=P(        |No)*P(No)/P(      )
=0.4*0.36/0.36
=0.4

?

?



Example 1: Play outside or not?
• Step 3: Based on the likelihoods and priors, calculate posteriors

P(Yes|      )
=P(        |Yes)*P(Yes)/P(      )
=0.33*0.64/0.36
=0.6

P(No|      )
=P(        |No)*P(No)/P(      )
=0.4*0.36/0.36
=0.4

P(Yes|      ) > P(No|      ) go outside and play!



Bayesian classification

𝑦
̂
= arg𝑚𝑎𝑥𝑝(𝑦|𝐱)

= arg𝑚𝑎𝑥
𝑝(𝐱|𝑦) ⋅ 𝑝(𝑦)

𝑝(𝐱)

= arg𝑚𝑎𝑥𝑝(𝐱|𝑦)𝑝(𝑦)

(Posterior)

(by Bayes’ rule)

(Prediction)



Bayesian classification

𝑦
̂
= arg𝑚𝑎𝑥𝑝(𝑦|𝑋#, . . . , 𝑋$)

= arg𝑚𝑎𝑥
𝑝(𝑋", . . . , 𝑋#|𝑦) ⋅ 𝑝(𝑦)

𝑝(𝑋", . . . , 𝑋#)

= arg𝑚𝑎𝑥𝑝(𝑋", . . . , 𝑋#|𝑦)𝑝(𝑦)

(Posterior)

(by Bayes’ rule)

(Prediction)

What if x has multiple attributes 𝐱 = {𝑋", . . . , 𝑋.}

𝑦

𝑦

𝑦



Bayesian classification

𝑦
̂
= arg𝑚𝑎𝑥𝑝(𝑦|𝑋#, . . . , 𝑋$)

= arg𝑚𝑎𝑥
𝑝(𝑋", . . . , 𝑋#|𝑦) ⋅ 𝑝(𝑦)

𝑝(𝑋", . . . , 𝑋#)

= arg𝑚𝑎𝑥𝑝(𝑋", . . . , 𝑋#|𝑦)𝑝(𝑦)

(Posterior)

(by Bayes’ rule)

(Prediction)

What if x has multiple attributes 𝐱 = {𝑋", . . . , 𝑋.}

𝑦

𝑦

𝑦

Independent of y



Bayesian classification

𝑦
̂
= arg𝑚𝑎𝑥𝑝(𝑦|𝑋#, . . . , 𝑋$)

= arg𝑚𝑎𝑥
𝑝(𝑋", . . . , 𝑋#|𝑦) ⋅ 𝑝(𝑦)

𝑝(𝑋", . . . , 𝑋#)

= arg𝑚𝑎𝑥𝑝(𝑋", . . . , 𝑋#|𝑦)𝑝(𝑦)

(Posterior)

(by Bayes’ rule)

(Prediction)

What if x has multiple attributes 𝐱 = {𝑋", . . . , 𝑋.}

Class conditional
likelihood Class prior

𝑦

𝑦

𝑦



Naïve Bayes Assumption

𝑝(𝑋", . . . , 𝑋#|𝑦)𝑝(𝑦) = Π$%"# 𝑝(𝑋$|𝑦)𝑝(𝑦)

Conditional independence of feature attributes

Easier to estimate
(using MLE!)



Quiz break
Q3-1: Which of the following about Naive Bayes is incorrect?

• A  Attributes can be nominal or numeric

• B  Attributes are equally important

• C  Attributes are statistically dependent of one another given the class value

• D  Attributes are statistically independent of one another given the class value

• E  All of above
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• E  All of above



Quiz break
Q3-2: Consider a classification problem with two binary features, 
x1, x2 ∈ {0,1}. Suppose P(Y = y) = 1/32, P(x1 = 1| Y = y) = y/46,
P(x2 = 1 | Y = y) = y/62. Which class will naive Bayes classifier produce 
on a test item with x1 = 1 and x2 = 0?

• A  16

• B  26

• C  31

• D  32
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x1, x2 ∈ {0,1}. Suppose P(Y = y) = 1/32, P(x1 = 1| Y = y) = y/46,
P(x2 = 1 | Y = y) = y/62. Which class will naive Bayes classifier produce 
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Quiz break
Q3-3: Consider the following dataset showing the result whether 
a person has passed or failed the exam based on various factors. 
Suppose the factors are independent to each other. 
We want to classify a new instance with 
Confident=Yes, Studied=Yes, and Sick=No.

• A  Pass

• B  Fail

Confident Studied Sick Result

Yes No No Fail

Yes No Yes Pass
No Yes Yes Fail
No Yes No Pass
Yes Yes Yes Pass
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We want to classify a new instance with 
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• A  Pass
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Yes No No Fail

Yes No Yes Pass
No Yes Yes Fail
No Yes No Pass
Yes Yes Yes Pass



What we’ve learned today…

• K-Nearest Neighbors

• Maximum likelihood estimation

• Bernoulli model

• Gaussian model

• Naive Bayes

• Conditional independence assumption



Thanks!


