

CS540 Introduction to Artificial Intelligence Deep Learning I: Convolutional Neural Networks

University of Wisconsin-Madison

Outline

- Intro of convolutional computations
- 2D convolution
- Padding, stride
- Multiple input and output channels
- Pooling

Review: Deep Neural Networks

Output layer

Hidden layer

Hidden layer

Hidden layer

Input layer

$$
\begin{aligned}
\mathbf{h}_{1} & =\sigma\left(\mathbf{W}^{(1)} \mathbf{x}+\mathbf{b}^{(1)}\right) \\
\mathbf{h}_{2} & =\sigma\left(\mathbf{W}^{(2)} \mathbf{h}_{1}+\mathbf{b}^{(2)}\right) \\
\mathbf{h}_{3} & =\sigma\left(\mathbf{W}^{(3)} \mathbf{h}_{2}+\mathbf{b}^{(3)}\right) \\
\mathbf{f} & =\mathbf{W}^{(4)} \mathbf{h}_{3}+\mathbf{b}^{(4)} \\
\mathbf{p} & =\operatorname{softmax}(\mathbf{f})
\end{aligned} \quad \begin{aligned}
& \text { NNs are composition } \\
& \quad \begin{array}{l}
\text { of nonlinear } \\
\text { functions }
\end{array}
\end{aligned}
$$

How to classify

Cats vs. dogs?

36M floats in a RGB image!

Fully Connected Networks

Cats vs. dogs?

Input
Hidden layer 100 neurons

$\sim 36 \mathrm{M}$ elements $\times 100=\sim 3.6 \mathrm{~B}$ parameters!

Convolutions come to rescue!

Where is Waldo?

Why Convolution?

- Translation Invariance
- Locality

2-D Convolution

Input
Kernel
Output

0	1	2			
3	4	5			
6	7	8	$*$	0	1
:---	:---				
2	3	$=$	19	25	
:---	:---				
37	43				

$$
0 \times 0+1 \times 1+3 \times 2+4 \times 3=19
$$

2-D Convolution

(vdumoulin@ Github)

2-D Convolution

Input
Kernel
Output

0	1	2			
3	4	5			
6	7	8	$\quad *$	0	1
:---	:---				
2	3	$=$	19	25	
:---	:---				
37	43				

$$
1 \times 0+2 \times 1+4 \times 2+5 \times 3=25
$$

2-D Convolution

Input
Kernel
Output

0	1	2			
3	4	5			
6	7	8	$*$	0	1
:---	:---				
2	3	$\quad=$	19	25	
:---	:---				
37	43				

$$
3 x 0+4 x 1+6 x 2+7 x 3=37
$$

2-D Convolution

Input
Kernel
Output

0	1	2			
3	4	5			
6	7	8	$\quad *$	0	1
:---	:---				
2	3	$\quad=$	19	25	
:---	:---				
37	43				

$4 \times 0+5 \times 1+7 \times 2+8 \times 3=43$

2-D Convolution Layer

0	1	2			
3	4	5			
6	7	8	$*$	0	1
:---	:---				
2	3				
37	43				

- X: $n_{h} \times n_{w}$ input matrix
- W: $k_{h} \times k_{w}$ kernel matrix
- Y: $\left(n_{h}-k_{h}+1\right) \times\left(n_{w}-k_{w}+1\right)$ output matrix

$$
Y=X^{*} W
$$

2-D Convolution Layer

0	1	2			
3	4	5			
6	7	8	$*$	0	1
:---	:---				
2	3	$+1=$	20	26	
:---	:---				
38	44				

- X: $n_{h} \times n_{w}$ input matrix
- W: $k_{h} \times k_{w}$ kernel matrix
- b: scalar bias
- Y: $\left(n_{h}-k_{h}+1\right) \times\left(n_{w}-k_{w}+1\right)$ output matrix

$$
Y=X * W+b
$$

- W and b are learnable parameters

Examples

$$
\left[\begin{array}{rrr}
-1 & -1 & -1 \\
-1 & 8 & -1 \\
-1 & -1 & -1
\end{array}\right]
$$

Edge Detection

Sharpen
(wikipedia)

$$
\frac{1}{16}\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

Gaussian Blur

Convolutional Neural Networks

-Strong empirical application performance
-Convolutional networks: neural networks that use convolution in place of general matrix multiplication in at least one of their layers

Advantage: sparse interaction

Fully connected layer, $m \times n$ edges

m output nodes
n input nodes

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Advantage: sparse interaction

Convolutional layer, $\leq m \times k$ edges

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Q1. Suppose we want to perform convolution as follows. What's the output?

Q1. Suppose we want to perform convolution as follows. What's the output?

0	1	2
3	4	5
6	7	8

$0 \times 0+1 \times 1+3 \times 1+4 \times(-1)+1=1$
$1 \times 0+2 \times 1+4 \times 1+5 \times(-1)+1=2$
$3 \times 0+4 \times 1+6 \times 1+7 \times(-1)+1=4$
$4 \times 0+5 \times 1+7 \times 1+8 \times(-1)+1=5$

1	2
B.	3

1	3
3	5

B.

0	1
3	4

Padding

- Given a 32×32 input image
- Apply convolution with 5×5 kernel
- 28×28 output with 1 layer
- 4×4 output with 7 layers

国
\square

Padding

- Given a 32×32 input image
- Apply convolution with 5×5 kernel
- 28×28 output with 1 layer
- 4×4 output with 7 layers
- Shape decreases faster with larger kernels

- Shape reduces from $n_{h} \times n_{w}$ to

$$
\left(n_{h}-k_{h}+1\right) \times\left(n_{w}-k_{w}+1\right)
$$

Convolutional Layers: Padding

Padding adds rows/columns around input

Input

Kernel

Convolutional Layers: Padding

Padding adds rows/columns around input

- Why?

1. Keeps edge information
2. Preserves sizes / allows deep networks

- ie, for a 32×32 input image, 5×5 kernel, after 1 layer, get 28×28, after 7 layers, only 4×4

3. Can combine different filter sizes

Convolutional Layers: Padding

- Padding p_{h} rows and p_{w} columns, output shape is

$$
\left(n_{h}-k_{h}+p_{h}+1\right) \times\left(n_{w}-k_{w}+p_{w}+1\right)
$$

- Common choice is $p_{h}=k_{h}-1$ and $p_{w}=k_{w}-1$
- Odd $k_{h}:$ pad $p_{h} / 2$ on both sides
- Even k_{h} : pad ceil($p_{h} / 2$) on top, floor $\left(p_{h} / 2\right)$ on bottom

Stride

- Stride is the \#rows/\#columns per slide

Strides of 3 and 2 for height and width

Kernel
Output

Stride

- Stride is the \#rows/\#columns per slide

Strides of 3 and 2 for height and width

Input
Kernel
Output

Stride 2,2

$$
\begin{aligned}
& 0 \times 0+0 \times 1+1 \times 2+2 \times 3=8 \\
& 0 \times 0+6 \times 1+0 \times 2+0 \times 3=6
\end{aligned}
$$

Convolutional Layers: Stride

- Given stride s_{h} for the height and stride s_{w} for the width, the output shape is

$$
\left\lfloor\left(n_{h}-k_{h}+p_{h}+s_{h}\right) / s_{h}\right\rfloor \times\left\lfloor\left(n_{w}-k_{w}+p_{w}+s_{w}\right) / s_{w}\right\rfloor
$$

- Set $p_{h}=k_{h}-1, p_{w}=k_{w}-1$, then get

$$
\left\lfloor\left(n_{h}+s_{h}-1\right) / s_{h}\right\rfloor \times\left\lfloor\left(n_{w}+s_{w}-1\right) / s_{w}\right\rfloor
$$

Q2. Suppose we want to perform convolution on a single channel image of size 7×7 (no padding) with a kernel of size 3×3, and stride $=2$. What is the dimension of the output?

7
A. 3×3
B. 7×7
C. 5×5
D. 2×2

Q2. Suppose we want to perform convolution on a single channel image of size 7×7 (no padding) with a kernel of size 3×3, and stride $=2$. What is the dimension of the output?

7
A. 3×3
B. 7×7
C. 5×5
D. 2×2

$$
\left\lfloor\left(n_{h}-k_{h}+p_{h}+s_{h}\right) / s_{h}\right\rfloor \times\left[\left(n_{w}-k_{w}+p_{w}+s_{w}\right) / s_{w}\right\rfloor
$$

Multiple Input and Output Channels

Multiple Input Channels

- Color image may have three RGB channels
- Converting to grayscale loses information

Multiple Input Channels

- Color image may have three RGB channels
- Converting to grayscale loses information

Multiple Input Channels

- Have a kernel matrix for each channel, and then sum results over channels

Input

0	1	2	
3	4	5	1
6	7	8	

II

Convolutional Layers: Channels

- How to integrate multiple channels?
- Have a kernel for each channel, and then sum results over channels

$$
\begin{aligned}
& \mathbf{X}: c_{i} \times n_{h} \times n_{w} \\
& \mathbf{W}: c_{i} \times k_{h} \times k_{w} \\
& \mathbf{Y}: m_{h} \times m_{w}
\end{aligned}
$$

Multiple Output Channels

- No matter how many inputs channels, so far we always get single output channel
- We can have multiple 3-D kernels, each one generates an output channel

Multiple Output Channels

- No matter how many inputs channels, so far we always get single output channel
- We can have multiple 3-D kernels, each one generates an output channel
- Input $\quad \mathbf{x}: c_{i} \times n_{h} \times n_{w}$
- Kernels $\mathbf{W}: c_{o} \times c_{i} \times k_{h} \times k_{w}$
- Output $\mathbf{Y}: c_{o} \times m_{h} \times m_{w}$

$$
\begin{aligned}
& \mathbf{Y}_{i,,,:}=\mathbf{X} \star \mathbf{W}_{i,,,,:,:} \\
& \text { for } i=1, \ldots, c_{o}
\end{aligned}
$$

Multiple Input/Output Channels

- Each 3-D kernel may recognize a particular pattern

(Gabor filters)

Q3. Suppose we want to perform convolution on a RGB image of size 224×224 (no padding) with 64 kernels, each with height 3 and width 3 . Stride $=1$. Which is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?
A. $64 \times 3 \times 3 \times 222 \times 222$
B. $64 \times 3 \times 3 \times 222$
C. $3 \times 3 \times 222 \times 222$
D. $64 \times 3 \times 3 \times 3 \times 222 \times 222$

Q3. Suppose we want to perform convolution on a RGB image of size 224×224 (no padding) with 64 kernels, each with height 3 and width 3 . Stride $=1$. Which is a reasonable estimate of the total number of scalar multiplications involved in this operation (without considering any optimization in matrix multiplication)?
A. $64 \times 3 \times 3 \times 222 \times 222$
B. $64 \times 3 \times 3 \times 222$
C. $3 \times 3 \times 222 \times 222$
D. $64 \times 3 \times 3 \times 3 \times 222 \times 222$

Q4. Suppose we want to perform convolution on a RGB image of size 224×224 (no padding) with 64 kernels, each with height 3 and width 3 . Stride $=1$. The convolution layer has bias parameters. Which is a reasonable estimate of the total number of learnable parameters?
A. $64 \times 222 \times 222$
B. $64 \times 3 \times 3 \times 222$
C. $3 \times 3 \times 3 \times 64$
D. $(3 \times 3 \times 3+1) \times 64$

Q4. Suppose we want to perform convolution on a RGB image of size 224×224 (no padding) with 64 kernels, each with height 3 and width 3 . Stride $=1$. The convolution layer has bias parameters. Which is a reasonable estimate of the total number of learnable parameters?
A. $64 \times 222 \times 222$
B. $64 \times 3 \times 3 \times 222$
C. $3 \times 3 \times 3 \times 64$
D. $(3 \times 3 \times 3+1) \times 64$

Each kernel is 3D kernel across 3 input channels, so has $3 \times 3 \times 3$ parameters. Each kernel has 1 bias parameter. So in total $(3 \times 3 \times 3+1) \times 64$

Pooling

Pooling

Slides Credit: Deep Learning Tutorial by Marc'Aurelio Ranzato

2-D Max Pooling

- Returns the maximal value in the sliding window

Input

0	1	2
3	4	5
6	7	8

$\max (0.1 .3 .4)=$

2-D Max Pooling

- Returns the maximal value in the sliding window

Input
Output

0	1	2
3	4	5
6	7	8

4	5
7	8

$$
\max (0,1,3,4)=4
$$

Padding, Stride, and Multiple Channels

- Pooling layers have similar padding and stride as convolutional layers
- No learnable parameters
- Apply pooling for each input channel to obtain the corresponding output channel
\#output channels = \#input channels

Padding, Stride, and Multiple Channels

- Pooling layers have similar padding and stride as convolutional layers
- No learnable parameters
- Apply pooling for each input channel to obtain the corresponding output channel
\#output channels = \#input channels

Average Pooling

- Max pooling: the strongest pattern signal in a window
- Average pooling: replace max with mean in max pooling
- The average signal strength in a window

Max pooling

Average pooling

Q5. Suppose we want to perform 2×2 average pooling on the following single channel feature map of size 4×4 (no padding), and stride $=2$. What is the output?

C. | 20 | $\mathbf{3 0}$ |
| :--- | :--- |
| 20 | 25 |

D. | $\mathbf{1 2}$ | $\mathbf{2}$ |
| :--- | :--- |
| 70 | 5 |

Q5. Suppose we want to perform 2×2 average pooling on the following single channel feature map of size 4×4 (no padding), and stride $=2$. What is the output?

C. | $\mathbf{2 0}$ | $\mathbf{3 0}$ |
| :--- | :--- |
| 20 | 25 |

Q6. What is the output if we replace average pooling with 2×2 max pooling (other settings are the same)?

C. | 20 | $\mathbf{3 0}$ |
| :--- | :--- |
| 20 | 25 |

D. | $\mathbf{1 2}$ | 2 |
| :--- | :--- |
| 70 | 5 |

Q6. What is the output if we replace average pooling with 2×2 max pooling (other settings are the same)?

C. | $\mathbf{2 0}$ | $\mathbf{3 0}$ |
| :--- | :--- |
| 20 | 25 |

D. | $\mathbf{1 2}$ | 2 |
| :--- | :--- |
| 70 | 5 |

Summary

- Intro of convolutional computations
- 2D convolution
- Padding, stride
- Multiple input and output channels
- Pooling

Acknowledgement:

Some of the slides in these lectures have been adapted from materials developed by Alex Smola and Mu Li :
https://courses.d2l.ai/berkeley-stat-157/index.html

