

CS540 Introduction to Artificial Intelligence Deep Learning II: Convolutional Neural Networks

University of Wisconsin-Madison

Outline

- Brief review of convolutional computations
- Convolutional Neural Networks
- LeNet (first conv nets)
- AlexNet
- ResNet

Review: 2-D Convolution

Input

0	1	2
3	4	5
6	7	8

Kernel

0	1
2	3

$=$| 19 | 25 |
| :--- | :--- |
| 37 | 43 |

$$
\begin{aligned}
& 0 \times 0+1 \times 1+3 \times 2+4 \times 3=19 \\
& 1 \times 0+2 \times 1+4 \times 2+5 \times 3=25 \\
& 3 \times 0+4 \times 1+6 \times 2+7 \times 3=37 \\
& 4 \times 0+5 \times 1+7 \times 2+8 \times 3=43
\end{aligned}
$$

Padding

Padding adds rows/columns around input
Input
Kernel
Output

$$
0 \times 0+0 \times 1+0 \times 2+0 \times 3=0
$$

Stride

- Stride is the \#rows/\#columns per slide

Strides of 3 and 2 for height and width
Input Kernel Output

0:0 0 0:0:0:																	
0	0	1	2	0	*	0		$=$	0 6	8							
							13										
0	3	4	5	0		2											
: 0	6	7	8	0													
$0: 0: 0: 0: 0$ 1																	
$0 \times 0+0 \times 1+1 \times 2+2 \times 3=8$																	
$0 \times 0+6 \times 1+0 \times 2+0 \times 3=6$																	

Output shape

Review: Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

Input

0	1	2	2
3	4	5	
6	7	8	

$=$

Review: Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

Review: Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

Review: Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

Review: 2-D Max Pooling

- Returns the maximal value in the sliding window

Input
Output

0	1	2
3	4	5
6	7	8

$$
\max (0,1,3,4)=4
$$

Q1: Consider a convolution layer with 16 filters. Each filter has a size of $11 \times 11 \times 3$, a stride of 2×2. Given an input image of size $22 \times 22 \times 3$, if we don't allow a filter to fall outside of the input (no padding), what is the output size?
A. $11 \times 11 \times 16$
B. $6 \times 6 \times 16$
C. $7 \times 7 \times 16$
D. $5 \times 5 \times 16$

Q1: Consider a convolution layer with 16 filters. Each filter has a size of $11 \times 11 \times 3$, a stride of 2×2. Given an input image of size $22 \times 22 \times 3$, if we don't allow a filter to fall outside of the input (no padding), what is the output size?
A. $11 \times 11 \times 16$
B. $6 \times 6 \times 16$
C. $7 \times 7 \times 16$
D. $5 \times 5 \times 16$

$$
\left\lfloor\left(n_{h}-k_{h}+p_{h}+s_{h}\right) / s_{h}\right\rfloor \times\left\lfloor\left(n_{w}-k_{w}+p_{w}+s_{w}\right) / s_{w}\right\rfloor
$$

Convolutional Neural Networks

Evolution of neural net architectures

Philip Marlowe portuanp gre 970 6381 Hollywood Bled * 615 los Angels, $C A$ 是

$$
\begin{aligned}
& \text { Dave Fennuid } \\
& \text { V letter, in e } \\
& 509 \text { Cascade Are, Suite H } \\
& \text { Hood Ricer, OR } 97031
\end{aligned}
$$

Handwritten Digit Recognition

MNIST

- Centered and scaled
- 50,000 training data
- 10,000 test data
- 28×28 images
- 10 classes

000000000000 111111111111

222 2 2 2 2 2 2
33333333 3333
444444444444
555555555555
666666666666
777777777777
888888888888
999999999999

ATET LeNet 5 RESEARCH answer: 0

Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, 1998

Gradient-based learning applied to document
recognition

LeNet Architecture
 (first conv nets)

LeNet(variant) in Pytorch
 convolution

def
\qquad (self):

> super(LeNet5, self).__init__()
\# Convolution (In LeNet-5, 32×32 images are given as input. Hence padding of 2 is done below) self.conv1 = torch.nn. Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2, bias=True)
\# Max-pooling
self.max_pool_1 = torch.nn.MaxPool2d(kernel_size=2)
\# Convolution
self.conv2 = torch.nn. Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0, bias=True)
\# Max-pooling
self.max_pool_2 = torch.nn.MaxPool2d(kernel_size=2)
\# Fully connected layer
self.fc1 = torch.nn. Linear $(16 * 5 * 5,120) \quad \#$ convert matrix with $16 * 5 * 5(=400)$ features to a matrix of 120 features (column
self.fc2 $=$ torch.nn. Linear $(120,84) \quad$ \# convert matrix with 120 features to a matrix of 84 features (columns)
self.fc3 $=$ torch.nn. Linear $(84,10) \quad$ \# convert matrix with 84 features to a matrix of 10 features (columns)
https://github.com/bollakarthikeya/LeNet-5-PyTorch/blob/master/lenet5_gpu.py
def forward(self, x):
\# convolve, then perform ReLU non-linearity
$x=$ torch.nn.functional. relu(self.conv1(x))
\# max-pooling with 2×2 grid
$\mathrm{x}=$ self.max_pool_1(x)
\# convolve, then perform ReLU non-linearity
$x=$ torch.nn.functional. relu(self.conv2(x))
\# max-pooling with 2×2 grid
$x=$ self.max_pool_2(x)
\# first flatten 'max_pool_2_out' to contain $16 * 5 * 5$ columns
\# read through https://stackoverflow.com/a/42482819/7551231
$x=x . v i e w(-1,16 * 5 * 5)$
\# FC-1, then perform ReLU non-linearity
$x=$ torch. nn.functional. relu(self.fc1(x))
\# FC-2, then perform ReLU non-linearity
$x=$ torch.nn.functional. relu(self.fc2(x))
LeNet(variant) in Pytorch
\# FC-3
$x=$ self.fc3(x)
return x

convolution
convolution

Deng et al. 2009

AlexNet

- AlexNet won ImageNet competition in 2012
- Deeper and bigger LeNet
- Paradigm shift for computer vision

AlexNet Architecture

AlexNet Architecture

AlexNet Architecture

More Differences...

- Change activation function from sigmoid to ReLu (no more vanishing gradient)
- Data augmentation

Q2: Which of the following are true about AlexNet? Select all that apply.
A. Let's view convolution+pooling as a composition convolutional layer. Then AlexNet contains 8 layers. The first five are (standard or composition)convolutional layers.
B. The last three layers are fully connected layers.
C. Some of the convolutional layers are followed by max-pooling (layers).
D. AlexNet achieved excellent performance in the 2012 ImageNet challenge.

Q2: Which of the following are true about AlexNet? Select all that apply.
A. Let's view convolution+pooling as a composition convolutional layer. Then AlexNet contains 8 layers. The first five are (standard or composition)convolutional layers.
B. The last three layers are fully connected layers.
C. Some of the convolutional layers are followed by max-pooling (layers).
D. AlexNet achieved excellent performance in the 2012 ImageNet challenge.

All options are true!

Q3: Which of the following is true about the success of deep learning models?
A. Better design of the neural networks
B. Large scale training dataset
C. Available computing power
D. All of the above

Q3: Which of the following is true about the success of deep learning models?
A. Better design of the neural networks
B. Large scale training dataset
C. Available computing power
D. All of the above

Simple Idea: Add More Layers

- VGG: 19 layers. ResNet: 152 layers. Add more layers sufficient?
- No! Some problems:
- Vanishing gradients: more layers more likely
- Instability: can't guarantee we learn identity maps

Reflected in training error:

He et al: "Deep Residual Learning for Image Recognition"

Depth Issues \& Learning Identity

- Why would more layers result in worse performance
- Same architecture, etc.
- If the A can learn f, then so can B, as long as top layers learn identity

Idea: if layers can learn identity, can't get worse.

Residual Connections

- Idea: identity might be hard to learn, but zero is easy!
- Make all the weights tiny, produces zero for output
- Can easily transform learning identity to learning zero:

Left: Conventional layer blocks Right: Residual layer blocks

To learn identity $f(x)=x$, layers now need to learn $f(x)=0 \rightarrow$ easier

ResNet Architecture

- Idea: Residual (skip) connections help make learning easier
- Example architecture:
- Note: residual connections
- Every two layers for ResNet34
- Vastly better performance
- No additional parameters!
- Records on many benchmarks

He et al: "Deep Residual Learning for Image Recognition"

Q4: Which of the following is NOT true?
-A. Adding more layers can improve the performance of a neural network.
-B. Residual connections help deal with vanishing gradients.
\cdot-C. CNN architectures use no more than ~20 layers to avoid problems such as vanishing gradients.
-D. It is usually easier to learn a zero mapping than the identity mapping.

Q4: Which of the following is NOT true?
-A. Adding more layers can improve the performance of a neural network. (Yes, as long as we're careful, e.g., ResNets.)
-B. Residual connections help deal with vanishing gradients. (Yes, this is an explicit consideration for residual connections.)
-C. CNN architectures use no more than ~20 layers to avoid problems such as vanishing gradients. (No, much deeper networks.)
\cdot D. It is usually easier to learn a zero mapping than the identity mapping. (Yes: simple way to learn zero is to make weights zero)

What we've learned today

- Brief review of convolutional computations
- Convolutional Neural Networks
- LeNet (first conv nets)
- AlexNet
- ResNet

Acknowledgement

Some of the slides in these lectures have been adapted/borrowed from materials developed by Yin Li (https://happyharrycn.github.io/CS540-Fall20/schedule/), Alex S https://courses.d21.ai/berkeley-stat-157/index.html

