CS540 Introduction to Artificial Intelligence Neural Networks: Review University of Wisconsin-Madison

Spring 2022

How to classify

Cats vs. dogs?

Inspiration from neuroscience

- Inspirations from human brains
- Networks of simple and homogenous units (a.k.a neuron)

Perceptron

- Given input \mathbf{x}, weight \mathbf{w} and bias b, perceptron outputs:

$$
o=\sigma\left(\mathbf{w}^{\top} \mathbf{x}+b\right)
$$

$$
\sigma(x)=\left\{\begin{array}{ll}
1 & \text { if } x>0 \\
0 & \text { otherwise }
\end{array}\right. \text { Activation function }
$$

Cats vs. dogs?

Perceptron

- Goal: learn parameters $\mathbf{w}=\left\{w_{1}, w_{2}, \ldots, w_{d}\right\}$ and b to minimize the classification error

Cats vs. dogs?

Example 2: Predict whether a user likes a song or not

Example 2: Predict whether a user likes a song or not Using Perceptron

- DisLike
- Like

Learning logic functions using perceptron

The perceptron can learn an AND function

$$
\begin{aligned}
& x_{1}=1, x_{2}=1, y=1 \\
& x_{1}=1, x_{2}=0, y=0 \\
& x_{1}=0, x_{2}=1, y=0 \\
& x_{1}=0, x_{2}=0, y=0
\end{aligned}
$$

Learning logic functions using perceptron

The perceptron can learn an AND function

Output $\sigma\left(x_{1} w_{1}+x_{2} w_{2}+b\right)$

$$
\sigma(x)= \begin{cases}1 & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

$$
w_{1}=1, w_{2}=1, b=-1.5
$$

Learning OR function using perceptron

The perceptron can learn an OR function

Output $\sigma\left(x_{1} w_{1}+x_{2} w_{2}+b\right)$

$$
\sigma(x)= \begin{cases}1 & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

$$
w_{1}=1, w_{2}=1, b=-0.5
$$

XOR Problem (Minsky \& Papert, 1969)

The perceptron cannot learn an XOR function (neurons can only generate linear separators)

$$
\begin{aligned}
& x_{1}=1, x_{2}=1, y=0 \\
& x_{1}=1, x_{2}=0, y=1 \\
& x_{1}=0, x_{2}=1, y=1 \\
& x_{1}=0, x_{2}=0, y=0
\end{aligned}
$$

This contributed to the first Al winter

Quiz break

Which one of the following is NOT true about perceptron?
A. Perceptron only works if the data is linearly separable.
B. Perceptron can learn AND function
C. Perceptron can learn XOR function
D. Perceptron is a supervised learning algorithm

Quiz break

Which one of the following is NOT true about perceptron?
A. Perceptron only works if the data is linearly separable.
B. Perceptron can learn AND function
C. Perceptron can learn XOR function
D. Perceptron is a supervised learning algorithm

Multilayer Perceptron

Single Hidden Layer

How to classify

Cats vs. dogs?

Hidden layer
m neurons
Input

Output

Single Hidden Layer

- Input $\mathbf{x} \in \mathbb{R}^{d}$
- Hidden $\mathbf{W} \in \mathbb{R}^{m \times d}, \mathbf{b} \in \mathbb{R}^{m}$

Hidden layer
m neurons

- Intermediate output
$\mathbf{h}=\sigma(\mathbf{W} \mathbf{x}+\mathbf{b})$
σ is an element-wise activation function

Neural networks with one hidden layer

$m \times d$

```
\(d \times 1\)
```


W

Neural networks with one hidden layer

Key elements: linear operations + Nonlinear activations

Single Hidden Layer

- Output $f=\mathbf{w}_{2}^{\top} \mathbf{h}+b_{2}$

Hidden layer
m neurons

- Normalize the output into probability using sigmoid $p(y=1 \mid \mathbf{x})=\frac{1}{1+e^{-f}}$

Input \square

Sigmoid

Multi-class classification

Turns outputs f into k probabilities (sum up to 1 across k classes)

$$
\begin{aligned}
p(y \mid \mathbf{x}) & =\operatorname{softmax}(\mathbf{f}) \\
& =\frac{\exp f_{y}(x)}{\sum_{i}^{k} \exp f_{i}(x)}
\end{aligned}
$$

Deep neural networks (DNNs)

$$
\begin{aligned}
\mathbf{h}_{1} & =\sigma\left(\mathbf{W}_{1} \mathbf{x}+\mathbf{b}_{1}\right) \\
\mathbf{h}_{2} & =\sigma\left(\mathbf{W}_{2} \mathbf{h}_{1}+\mathbf{b}_{2}\right) \\
\mathbf{h}_{3} & =\sigma\left(\mathbf{W}_{3} \mathbf{h}_{2}+\mathbf{b}_{3}\right) \\
\mathbf{f} & =\mathbf{W}_{4} \mathbf{h}_{3}+\mathbf{b}_{4} \\
\mathbf{y} & =\operatorname{softmax}(\mathbf{f})
\end{aligned}
$$

NNs are composition of nonlinear functions

How to train a neural network?

Loss function: $\frac{1}{|D|} \sum_{i} \ell\left(\mathbf{x}_{i}, y_{i}\right)$
Per-sample loss:
Hidden layer
m neurons

$$
\ell(\mathbf{x}, y)=\sum_{j=1}^{K}-y_{j} \log p_{j}
$$

Also known as cross-entropy loss or softmax loss

Cross-Entropy Loss

How to train a neural network?

Update the weights W to minimize the loss function

$$
L=\frac{1}{|D|} \sum_{i} \ell\left(\mathbf{x}_{i}, y_{i}\right)
$$

Hidden layer m neurons
Input

Use gradient descent!

Gradient Descent

- Choose a learning rate $\alpha>0$
- Initialize the model parameters w_{0}
- For $t=1,2, \ldots$
- Update parameters:

$$
\begin{aligned}
\mathbf{w}_{t} & =\mathbf{w}_{t-1}-\alpha \frac{\partial L}{\partial \mathbf{w}_{t-1}} \quad \begin{array}{c}
\begin{array}{c}
\text { D can } \\
\text { be very larg } \\
\text { Expensive }
\end{array} \\
\\
\end{array}=\mathbf{w}_{t-1}-\alpha \frac{1}{|D|} \sum_{\mathbf{x} \in D} \frac{\partial \ell\left(\mathbf{x}_{i}, y_{i}\right)}{\partial \mathbf{w}_{t-1}}
\end{aligned}
$$

- Repeat until converges

Minibatch Stochastic Gradient Descent

- Choose a learning rate $\alpha>0$
- Initialize the model parameters w_{0}
- For $t=1,2, \ldots$
- Randomly sample a subset (mini-batch) $B \subset D$ Update parameters:

$$
\mathbf{w}_{t}=\mathbf{w}_{t-1}-\alpha \frac{1}{|B|} \sum_{\mathbf{x} \in B} \frac{\partial \ell\left(\mathbf{x}_{i}, y_{i}\right)}{\partial \mathbf{w}_{t-1}}
$$

- Repeat

Calculate gradient: backpropagation with chain rule

- Define a loss function L
- Gradient to a variable =
gradient on the top \mathbf{x} gradient from the current operation

$$
\frac{\partial L}{\partial \boldsymbol{W}}=\frac{\partial L}{\partial z_{1}} \frac{\partial z_{1}}{\partial W}
$$

Non-convex Optimization

[Gao and Li et al., 2018]

Using SGD in PyTorch (code demo)

Classify MNIST handwritten digits

Brief history of neural networks

How to classify

Cats vs. dogs?

Dual 12MP
wide-angle and telephoto cameras

36M floats in a RGB image!

Fully Connected Networks

Convolutions come to rescue!

Where is Waldo?

Why Convolution?

- Translation Invariance
- Locality

2-D Convolution

Input		Kernel				
0 1 2 3 4 5 6 7 8$*$0 1 2 3				$\quad=$	19	25
:---	:---					
37	43					

$$
\begin{aligned}
& 0 \times 0+1 \times 1+3 \times 2+4 \times 3=19 \\
& 1 \times 0+2 \times 1+4 \times 2+5 \times 3=25 \\
& 3 \times 0+4 \times 1+6 \times 2+7 \times 3=37 \\
& 4 \times 0+5 \times 1+7 \times 2+8 \times 3=43
\end{aligned}
$$

2-D Convolution Layer

0	1	2
3	4	5
6	7	8

0	1			
2	3	$=$	19	25
:---	:---			
37	43			

- X: $n_{h} \times n_{w}$ input matrix
- $\mathbf{W}: k_{h} \times k_{w}$ kernel matrix
- b: scalar bias
- Y: $\left(n_{h}-k_{h}+1\right) \times\left(n_{w}-k_{w}+1\right)$ output matrix

$$
\mathbf{Y}=\mathbf{X} \star \mathbf{W}+b
$$

- W and b are learnable parameters

2-D Convolution Layer with Stride and Padding

- Stride is the \#rows/\#columns per slide
- Padding adds rows/columns around input
- Output shape

Kernel/filter size

0	0	0	0	0
0	0	1	2	0
0	3	4	5	0
0	6	7	8	0
0	0	0	0	0

*

$\left\lfloor\left(n_{h}-k_{h}+p_{h}+s_{h}\right) / s_{h}\right\rfloor \times\left\lfloor\left(n_{w}-k_{w}+p_{w}+s_{w}\right) / s_{w}\right\rfloor$

4

Input size
Pad
Stride

Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a kernel for each channel, and then sum results over channels

Input
Kernel

Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Have a 2D kernel for each channel, and then sum results over channels

Multiple Input Channels

- Input and kernel can be 3D, e.g., an RGB image have 3 channels
- Also call each 3D kernel a "filter", which produce only one output channel (due to summation over channels)

Multiple filters (in one layer)

- Apply multiple filters on the input
- Each filter may learn different features about the input
- Each filter (3D kernel) produces one output channel

RGB (3 input channels)

Conv1 Filters in AlexNet

- 96 filters (each of size 11x11x3)
- Gabor filters

Figures from Visualizing and Understanding Convolutional Networks by M. Zeiler and R. Fergus

Multiple Output Channels

- The \# of output channels = \# of filters
- Input $\mathbf{X}: c_{i} \times n_{h} \times n_{w}$
- Kernel W: $c_{o} \times c_{i} \times k_{h} \times k_{w}$
- Output Y: $c_{o} \times m_{h} \times m_{w}$

$$
\begin{aligned}
& \mathbf{Y}_{i,, ;}=\mathbf{X} \star \mathbf{W}_{i,, ;, ;} \\
& \text { for } i=1, \ldots, c_{o}
\end{aligned}
$$

Convolutional Neural Networks

LeNet Architecture

ATET LeNet 5 RESEARCH $^{\text {LIN }}$ answer: 0

LeNet in Pytorch (HW7)

Connect theory and practice

```
def __init__(self):
    super(LeNet5, self).__init__()
    # Convolution (In LeNet-5, 32\times32 images are given as input. Hence padding of 2 is done below)
    self.conv1 = torch.nn.Conv2d(in_channels=1, out_channels=6, kernel_size=5, stride=1, padding=2, bias=True)
    # Max-pooling
    self.max_pool_1 = torch.nn.MaxPool2d(kernel_size=2)
    # Convolution
    self.conv2 = torch.nn.Conv2d(in_channels=6, out_channels=16, kernel_size=5, stride=1, padding=0, bias=True)
    # Max-pooling
    self.max_pool_2 = torch.nn.MaxPool2d(kernel_size=2)
    # Fully connected layer
    self.fc1 = torch.nn.Linear(16*5*5, 120) # convert matrix with 16*5*5 (= 400) features to a matrix of 120 features (co)
    self.fc2 = torch.nn.Linear(120, 84) # convert matrix with }120\mathrm{ features to a matrix of }84\mathrm{ features (columns)
    self.fc3 = torch.nn.Linear(84, 10) # convert matrix with 84 features to a matrix of 10 features (columns)
```


Quiz break

Which one of the following is NOT true?
A. LeNet has two convolutional layers
B. The first convolutional layer in LeNet has $5 \times 5 \times 6 \times 3$ parameters, in case of RGB input
C. Pooling is performed right after convolution
D. Pooling layer does not have learnable parameters

Quiz break

Which one of the following is NOT true?
A. LeNet has two convolutional layers
B. The first convolutional layer in LeNet has $5 \times 5 \times 6 \times 3$ parameters, in case of RGB input
C. Pooling is performed right after convolution
D. Pooling layer does not have learnable parameters

Pooling is performed after ReLU: conv->relu->pooling

Evolution of neural net architectures

Deng et al. 2009

AlexNet

[Krizhevsky et al. 2012]

AlexNet vs LeNet Architecture

AlexNet Architecture

ResNet: Going deeper in depth

[He et al. 2015]

Full ResNet Architecture

[He et al. 2015]

- Stack residual blocks
- Every residual block has two 3×3 conv layers
- Periodically, double \# of filters and downsample spatially using stride of 2 (/2 in each dimension)

Brief history of neural networks

What we've learned today...

- Modeling a single neuron
- Linear perceptron
- Limited power of a single neuron
- Multi-layer perceptron
- Training of neural networks
- Loss function (cross entropy)
- Backpropagation and SGD
- Convolutional neural networks
- Convolution, pooling, stride, padding
- Basic architectures (LeNet etc.)
- More advanced architectures (AlexNet, ResNet etc)

Thank you!

Some of the slides in these lectures have been adapted from materials developed by Alex Smola and Mu Li : https://courses.d2l.ai/berkeley-stat-157/index.html

