Outline

• Uninformed vs Informed Search
 – Review of uninformed strategies, adding heuristics

• A* Search
 – Heuristic properties, stopping rules, analysis

• Extensions: Beyond A*
 – Iterative deepening, beam search
Breadth-First Search

Recall: expand **shallowest** node first

- Data structure: queue

Properties:
- Complete
- Optimal (if edge cost 1)
- Time $O(b^d)$
- Space $O(b^d)$
Uniform Cost Search

Like BFS, but keeps track of cost

• Expand least cost node
• Data structure: priority queue
• **Properties:**
 – Complete
 – Optimal (if weight lower bounded by ε)
 – Time $O(b^{C*/\varepsilon})$
 – Space $O(b^{C*/\varepsilon})$

Optimal goal path cost
Recall: expand **deepest** node first

- Data structure: stack
- **Properties:**
 - Incomplete (stuck in infinite tree...)
 - Suboptimal
 - Time $O(b^m)$
 - Space $O(bm)$
Iterative Deepening DFS

Repeated limited DFS

• Search like BFS, fringe like DFS

• **Properties:**
 – Complete
 – Optimal (if edge cost 1)
 – Time $O(b^d)$
 – Space $O(bd)$

A good option!
Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost $g(s)$ from start to node s
• Successors.

Informed search. Know:
• All uninformed search properties, plus
• Heuristic $h(s)$ from s to goal (recall game heuristic)
Informed Search

Informed search. Know:

• All uninformed search properties, plus
• Heuristic $h(s)$ from s to goal (recall game heuristic)

• Goal: *speed up search.*
Using the Heuristic

Back to uniform-cost search
• We had the priority queue
• Expand the node with the smallest \(g(s) \)
 – \(g(s) \) “first-half-cost”
• Now let’s use the heuristic (“second-half-cost”)
 – Several possible approaches: let’s see what works
Attempt 1: Best-First Greedy

One approach: just use $h(s)$ alone

- Specifically, expand node with smallest $h(s)$
- This isn’t a good idea. Why?

- Not optimal! **Get** $A \rightarrow C \rightarrow G$. **Want**: $A \rightarrow B \rightarrow C \rightarrow G$
Attempt 2: A Search

Next approach: use both $g(s) + h(s)$ alone
- Specifically, expand node with smallest $g(s) + h(s)$
- Again, use a priority queue
- Called “A” search

- Still not optimal! (Does work for former example).
Attempt 3: A* Search

Same idea, use $g(s) + h(s)$, with one requirement

• Demand that $h(s) \leq h^*(s)$
• If heuristic has this property, “admissible”
 – Optimistic! Never over-estimates
• Still need $h(s) \geq 0$
 – Negative heuristics can lead to strange behavior
• This is A* search
Attempt 3: A* Search

Origins: robots and planning

Shakey the Robot, 1960’s

Credit: Wiki

Animation: finding a path around obstacle

Credit: Wiki
Admissible Heuristic Functions

Have to be careful to ensure admissibility (optimism!)

• Example: 8 Game

Example State

\[
\begin{array}{ccc}
1 & & 5 \\
2 & 6 & 3 \\
7 & 4 & 8 \\
\end{array}
\]

Goal State

\[
\begin{array}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & \text{(shaded)} \\
\end{array}
\]

• One useful approach: relax constraints
 – \(h(s) \) = number of tiles in wrong position
 • allows tiles to fly to destination in a single step
Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

• A. An admissible heuristic
• B. Not an admissible heuristic
Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

• A. An admissible heuristic
• **B. Not an admissible heuristic**
Q 1.1: Consider finding the fastest driving route from one US city to another. Measure cost as the number of hours driven when driving at the speed limit. Let $h(s)$ be the number of hours needed to ride a bike from city s to your destination. $h(s)$ is

- A. An admissible heuristic No: riding your bike takes longer.
- B. Not an admissible heuristic
Q 1.2: Which of the following are admissible heuristics?

(i) \(h(s) = h^*(s) \)
(ii) \(h(s) = \max(2, h^*(s)) \)
(iii) \(h(s) = \min(2, h^*(s)) \)
(iv) \(h(s) = h^*(s) - 2 \)
(v) \(h(s) = \sqrt{h^*(s)} \)

• A. All of the above
• B. (i), (iii), (iv)
• C. (i), (iii)
• D. (i), (iii), (v)
Q 1.2: Which of the following are admissible heuristics?

(i) \(h(s) = h^*(s) \)
(ii) \(h(s) = \max(2, h^*(s)) \)
(iii) \(h(s) = \min(2, h^*(s)) \)
(iv) \(h(s) = h^*(s) - 2 \)
(v) \(h(s) = \sqrt{h^*(s)} \)

• A. All of the above
• B. (i), (iii), (iv)
• C. (i), (iii)
• D. (i), (iii), (v)
Q 1.2: Which of the following are admissible heuristics?

(i) \(h(s) = h^*(s) \)
(ii) \(h(s) = \max(2, h^*(s)) \)
 No: \(h(s) \) might be too big
(iii) \(h(s) = \min(2, h^*(s)) \)
(iv) \(h(s) = h^*(s) - 2 \)
 No: \(h(s) \) might be negative
(v) \(h(s) = \sqrt{h^*(s)} \)
 No: if \(h^*(s) < 1 \) then \(h(s) \) is bigger

• A. All of the above
• B. (i), (iii), (iv)
• C. (i), (iii)
• D. (i), (iii), (v)
Heuristic Function Tradeoffs

Dominance: h_2 dominates h_1 if for all states s,

$$h_1(s) \leq h_2(s) \leq h^*(s)$$

- **Idea**: we want to be as close to h^* as possible
 - But not over!

- **Tradeoff**: being very close might require a very complex heuristic, expensive computation
 - Might be better off with cheaper heuristic & expand more nodes.
A* Termination

When should A* stop?

• One idea: as soon as we reach goal state?

 - h admissible, but note that we get $A \rightarrow B \rightarrow G$ (cost 1000)!
A* Termination

When should A* stop?

- **Rule**: terminate **when a goal is popped** from queue.

- Note: taking $h = 0$ reduces to uniform cost search rule.
A* Revisiting Expanded States

Possible to revisit an expanded state, get a shorter path:

- Put D back into priority queue, smaller $g+h$
A* Full Algorithm

1. Put the start node S on the priority queue, called OPEN
2. If OPEN is empty, exit with failure
3. Remove from OPEN and place on CLOSED a node n for which $f(n)$ is minimum (note that $f(n) = g(n) + h(n)$)
4. If n is a goal node, exit (trace back pointers from n to S)
5. Expand n, generating all successors and attach to pointers back to n. For each successor n' of n
 1. If n' is not already on OPEN or CLOSED estimate $h(n')$, $g(n') = g(n) + c(n,n')$, $f(n') = g(n') + h(n')$, and place it on OPEN.
 2. If n' is already on OPEN or CLOSED, then check if $g(n')$ is lower for the new version of n'. If so, then:
 1. Redirect pointers backward from n' along path yielding lower $g(n')$.
 2. Put n' on OPEN.
 3. If $g(n')$ is not lower for the new version, do nothing.
A* Analysis

Some properties:

• Terminates!
• A* can use **lots of memory**: $O(\# \text{ states})$.
• Will run out on large problems.
• Next, we will consider some alternatives to deal with this.
Q 2.1: Consider two heuristics for the 8 puzzle problem. \(h_1 \) is the number of tiles in wrong position. \(h_2 \) is the \(l_1 \)/Manhattan distance between the tiles and the goal location. How do \(h_1 \) and \(h_2 \) relate?

- A. \(h_2 \) dominates \(h_1 \)
- B. \(h_1 \) dominates \(h_2 \)
- C. Neither dominates the other
Q 2.1: Consider two heuristics for the 8 puzzle problem. h_1 is the number of tiles in wrong position. h_2 is the l_1/Manhattan distance between the tiles and the goal location. How do h_1 and h_2 relate?

• A. h_2 dominates h_1
• B. h_1 dominates h_2
• C. Neither dominates the other
Q 2.1: Consider two heuristics for the 8 puzzle problem. h_1 is the number of tiles in wrong position. h_2 is the l_1/Manhattan distance between the tiles and the goal location. How do h_1 and h_2 relate?

- A. h_2 dominates h_1
- B. h_1 dominates h_2 (No: h_1 is a distance where each entry is at most 1, h_2 can be greater)
- C. Neither dominates the other
Q 2.2: Consider the state space graph below. Goal states have bold borders. $h(s)$ is show next to each node. What node will be expanded by A* after the initial state I?

- A. A
- B. B
- C. C
Q 2.2: Consider the state space graph below. Goal states have bold borders. $h(s)$ is shown next to each node. What node will be expanded by A* after the initial state I?

- A. A
- B. B
- C. C
IDA*: Iterative Deepening A*

Similar idea to our earlier iterative deepening.

- Bound the memory in search.
- At each phase, don’t expand any node with $g(s) + h(s) > k$,
 - Assuming integer costs, do this for $k=0$, then $k=1$, then $k=2$, and so on

- Complete + optimal, might be costly time-wise
 - Revisit many nodes
- Lower memory use than A*
IDA*: Properties

How many restarts do we expect?
• With integer costs, optimal solution C^*, at most C^*

What about non-integer costs?
• Initial threshold k. Use the same rule for non-expansion
• Set new k to be the min $g(s) + h(s)$ for non-expanded nodes
• Worst case: restarted for each state
Beam Search

General approach (beyond A* too)
• Priority queue with fixed size k; beyond k nodes, discard!
• **Upside**: good memory efficiency
• **Downside**: not complete or optimal

Variation:
• Priority queue with nodes that are at most ε worse than best node.
Recap and Examples

Example for A*:

Initial state

Goal state

h=0

h=inf

h=inf

h=inf
Example for A*:

- OPEN
 - S(0+8)
 - A(1+7) B(5+4) C(8+3)
- CLOSED
 - S(0+8)
 - B(5+4) C(8+3) D(4+inf) E(8+inf) G(10+0) S(0+8) A(1+7)
- h=8
- h=7
- h=4
- h=3
- G → B → S

Goal state: G

Initial state: S
Recap and Examples

Example for IDA*:
Threshold = 8

PREFIX
- S
S A H F
S A D

OPEN
- S(0+8)
S A H F D(4+4)
S A D F D(4+4)

Example:
Threshold = 8

Initial state

Goal state

h=0

h=8

h=7

h=4

h=3

h=2

h=inf

h=inf

h=inf

h=2

h=4

h=1

h=1

h=1
Recap and Examples

Example for IDA*: Threshold = 9

- OPEN
 - S(0+8)
 - A(1+7) B(5+4)
 - B(5+4) H(2+2) D(4+4)
 - B(5+4) D(4+4) F(6+1)
 - B(5+4) D(4+4)
 - B(5+4)
 - G(9+0)
 - S B G

PREFIX

Initial state

Goal state
Recap and Examples

Example for Beam Search: $k=2$

- CURRENT
- OPEN
 - S(0+8)
 - A(1+7) B(5+4)
 - H(2+2) D(4+4)
 - D(4+4) F(6+1)
 - D(4+4) G(10+0)
- Goal state
- Initial state

h=8 h=7 h=4 h=3
S A B C

h=1
F

h=0
G

h=2
H

h=inf
I

h=inf
J

h=inf
K

h=inf
L

h=inf
D

h=4
E

h=8
S

1 7 5 3 2 3
H I J K L D

4

4

5

8
Summary

• Informed search: introduce heuristics
 – Not all approaches work: best-first greedy is bad

• A* algorithm
 – Properties of A*, idea of admissible heuristics

• Beyond A*
 – IDA*, beam search. Ways to deal with space requirements.
Acknowledgements: Adapted from materials by Jerry Zhu (University of Wisconsin).