

#### CS 540 Introduction to Artificial Intelligence Games I

University of Wisconsin-Madison Fall 2022

# Outline

- Introduction to game theory
  - Properties of games, mathematical formulation
- Simultaneous-Move Games
  - Normal form, strategies, dominance, Nash equilibrium

# So Far in The Course

We looked at techniques:

- Unsupervised: See data, do something with it. Unstructured.
- **Supervised:** Train a model to make predictions. More structure.
  - Training: as taking actions to get a reward
- **Games**: Much more structure.

indoor







outdoor

## More General Model

#### Suppose we have an **agent interacting** with the **world**



- Agent receives a reward based on state of the world
  - Goal: maximize reward / utility (\$\$\$)
  - Note: now data consists of actions & observations
  - Setup for decision theory, reinforcement learning, planning

#### Games: Multiple Agents

#### Games setup: multiple agents



- Strategic decision making.

# **Modeling Games: Properties**

Let's work through **properties** of games

- Number of agents/players
- Action space: finite or infinite
- Deterministic or random
- Zero-sum or general-sum
- Sequential or simultaneous moves



# Property 1: Number of players

Pretty clear idea: 1 or more players

- Usually interested in  $\geq$  2 players
- Typically a finite number of players





## **Property 2: Action Space**

#### Finite or infinite

- Rock-paper-scissors
- Tennis

# Property 3: Deterministic or Random

- Is there **chance** in the game?
  - Poker
  - Scrabble
  - Chess



# Property 4: Sum of payoff

- Zero sum: one player's win is the other's loss
  - Pure competition. E.g. rock-paper-scissors

- General sum
  - Example: prisoner's dilemma

#### Property 5: Sequential or Simultaneous Moves

- Simultaneous: all players take action at the same time
- Sequential: take turns (but payoff only revealed at end of game)

## Normal Form Game

Mathematical description of simultaneous games.

- *n* players {1,2,...,*n*}
- Player *i* strategy *a<sub>i</sub>* from *A<sub>i</sub>*.
- Strategy profile:  $a = (a_1, a_2, ..., a_n)$
- Player *i* gets rewards  $u_i(a)$ 
  - Note: reward depends on other players!
- We consider the simple case where all reward functions are common knowledge.

## Example of Normal Form Game

#### Ex: Prisoner's Dilemma

| Player 2    | Stay silent | Betray |
|-------------|-------------|--------|
| Player 1    |             |        |
| Stay silent | -1, -1      | -3, 0  |
| Betray      | 0, -3       | -2, -2 |

- 2 players, 2 actions: yields 2x2 payoff matrix
- Strategy set: {Stay silent, betray}

## Strictly Dominant Strategies

Let's analyze such games. Some strategies are better

- Strictly dominant strategy: if a<sub>i</sub> strictly better than a<sub>i</sub>' regardless of what other players do, a<sub>i</sub> is strictly dominant
- I.e.,  $u_i(a_i, a_{-i}) > u_i(b, a_{-i}), \forall b \neq a_i, \forall a_{-i}$

All of the other entries of *a* excluding *i* 

• Doesn't always exist!

# Strictly Dominant Strategies Example

#### Back to Prisoner's Dilemma

• Examine all the entries: betray strictly dominates

• Check:

| Player 2    |             | _      |
|-------------|-------------|--------|
|             | Stay silent | Betray |
| Player 1    |             |        |
| Stay silent | -1, -1      | -3, 0  |
| Betray      | 0, -3       | -2, -2 |

## Dominant Strategy Equilibrium

 $a^*$  is a (strictly) dominant strategy equilibrium, if all players have a strictly dominant strategy  $a_i^*$ 

• Rational players will play at DSE, if one exists.

| Player 2    | Stay silent | Betray |
|-------------|-------------|--------|
| Player 1    |             |        |
| Stay silent | -1, -1      | -3, 0  |
| Betray      | 0, -3       | -2, -2 |

#### **Dominant Strategy: Absolute Best Responses**

Player i's best response to  $a_{-i}$ :  $BR(a_{-i}) = \arg \max_{a} u_{-i}(a, a_{-i})$ 

BR(player2=silent)=betray
BR(player2=betray)=betray

| Player 2    | Channelland | Determ |
|-------------|-------------|--------|
| Player 1    | Stay silent | Betray |
| Stay silent | -1, -1      | -3, 0  |
| Betray      | 0, -3       | -2, -2 |

 $a_i^*$  is the dominant strategy for player i, if  $a_i^* = BR(a_{-i}), \forall a_{-i}$ 

#### **Dominant Strategy Equilibrium**

DSE does not always exist.

| Player 2<br>Player 1 | L    | R    |
|----------------------|------|------|
| Т                    | 2, 1 | 0, 0 |
| В                    | 0, 0 | 1, 2 |

### Nash Equilibrium

*a*\* is a Nash equilibrium if no player has an incentive to **unilaterally deviate** 

$$u_i(a_i^*, a_{-i}^*) \ge u_i(a_i, a_{-i}^*) \quad \forall a_i \in A_i$$



#### Nash Equilibrium : Best Response to Each Other

*a*\* is a Nash equilibrium:

$$\forall i, \forall b \in A_i: u_i(a_i^*, a_{-i}^*) \ge u_i(b, a_{-i}^*)$$

(no player has an incentive to unilaterally deviate)

- Equivalently, for each player i:  $a_i^* \in BR(a_{-i}^*) = argmax_b u_i(b, a_{-i}^*)$
- Compared to DSE (a DES is a NE, the other way is generally not true):

$$a_i^* = BR(a_{-i}), \forall a_{-i}$$

# Finding (pure) Nash Equilibria by hand

• As player 1: For each column, find the best response, underscore it.

| Player 2<br>Player 1 | L    | R    |
|----------------------|------|------|
| Т                    | 2, 1 | 0, 0 |
| В                    | 0, 0 | 1, 2 |

# Finding (pure) Nash Equilibria by hand

• As player 2: For each row, find the best response, upper-score it.

| Player 2<br>Player 1 | L    | R    |
|----------------------|------|------|
| Т                    | 2, 1 | 0, 0 |
| В                    | 0, 0 | 1, 2 |

# Finding (pure) Nash Equilibria by hand

• Entries with both lower and upper bars are pure NEs.

| Player 2<br>Player 1 | L    | R    |
|----------------------|------|------|
| Т                    | 2, 1 | 0, 0 |
| В                    | 0, 0 | 1, 2 |

### Pure Nash Equilibrium may not exist

# So far, pure strategy: each player picks a deterministic strategy. But:

| Player 2 | rock  | paper | scissors     |
|----------|-------|-------|--------------|
| Player 1 | rock  | paper | 50135013     |
| rock     | 0, 0  | -1, 1 | <u>1, -1</u> |
| paper    | 1, -1 | 0, 0  | -1, 1        |
| scissors | -1, 1 | 1, -1 | 0, 0         |

## **Mixed Strategies**

Can also randomize actions: "mixed"

• Player i assigns probabilities x<sub>i</sub> to each action

$$x_i(a_i)$$
, where  $\sum_{a_i \in A_i} x_i(a_i) = 1, x_i(a_i) \ge 0$ 

• Now consider **expected rewards** 

$$u_{i}(x_{i}, x_{-i}) = E_{a_{i} \sim x_{i}, a_{-i} \sim x_{-i}} u_{i}(a_{i}, a_{-i})$$
$$= \sum_{a_{i}} \sum_{a_{-i}} x_{i}(a_{i}) x_{-i}(a_{-i}) u_{i}(a_{i}, a_{-i})$$

#### Mixed Strategy Nash Equilibrium

Consider the mixed strategy  $x^* = (x_1^*, ..., x_n^*)$ 

• This is a Nash equilibrium if



 Intuition: nobody can increase expected reward by changing only their own strategy.

# Mixed Strategy Nash Equilibrium

Example: 
$$x_1(.) = x_{2(.)} = (\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$$

| Player 2 | rock  | paper | scissors |
|----------|-------|-------|----------|
| Player 1 | rock  | paper | 50135013 |
| rock     | 0, 0  | -1, 1 | 1, -1    |
| paper    | 1, -1 | 0, 0  | -1, 1    |
| scissors | -1, 1 | 1, -1 | 0, 0     |

#### Finding Mixed NE in 2-Player Zero-Sum Game

Example: Two Finger Morra. Show 1 or 2 fingers. The "even player" wins the sum if the sum is even, and vice versa.

| odd<br>even | f1    | f2    |
|-------------|-------|-------|
| f1          | 2, -2 | -3, 3 |
| f2          | -3, 3 | 4, -4 |

#### Finding Mixed NE in 2-Player 2-action Zero-Sum Game

# Two Finger Morra. Two-player zero-sum game. No pure NE:

| odd<br>even | f1    | f2    |
|-------------|-------|-------|
| f1          | 2, -2 | -3, 3 |
| f2          | -3, 3 | 4, -4 |

#### Finding Mixed NE in 2-Player 2-action Zero-Sum Game

Suppose odd's mixed strategy at NE is (q, 1-q), and even's (p, 1-p) By definition, p is best response to q:  $u_1(p,q) \ge u_1(p',q) \forall p'$ .

But 
$$u_1(p,q) = pu_1(f_1,q) + (1-p)u_1(f_2,q)$$
  
Average is no greater than components  
 $\rightarrow u_1(p,q) = u_1(f_1,q) = u_1(f_2,q)$ 



#### Finding Mixed NE in 2-Player 2-action Zero-Sum Game

$$u_{1}(f_{1},q) = u_{1}(f_{2},q)$$

$$2q + (-3)(1-q) = (-3)q + 4(1-q)$$

$$q = \frac{7}{12}$$
Similarly,  $u_{2}(p, f_{1}) = u_{2}(p, f_{2})$ 

$$p = \frac{7}{12}$$
At this NE, even gets -1/12, odd gets 1/12. p
$$f_{1} = \frac{2, -2}{1-2} = \frac{-3, 3}{1-p}$$

## Properties of Nash Equilibrium

#### Major result: (Nash '51)

- Every finite (players, actions) game has at least one Nash equilibrium
  - But not necessarily pure (i.e., deterministic strategy)
- Could be more than one
- Searching for Nash equilibria: computationally **hard**.
  - Exception: two-player zero-sum games (linear program).



- How many goats should one (out of n) rational farmer graze?
- How much would the farmer earn?

# **Continuous Action Game**

- Each farmer has infinite number of strategies  $g_i \in [0,36]$
- The value for farmer *i*, when the *n* farmers play at (g<sub>1</sub>, g<sub>2</sub>, ..., g<sub>n</sub>) is

$$u_i(g_1, g_2, \dots, g_n) = g_i \sqrt{36 - \sum_{j \in [n]} g_j}$$

- Assume a pure Nash equilibrium exists.
- Assume (by apparent symmetry) the NE is  $(g^*, g^*, ..., g^*)$ .

# Finding g\*

• 
$$u_i(g_1, g_2, \dots, g_n) = g_i \sqrt{36 - \sum_j g_j}$$

• g\* is the best response to others (g\*,..., g\*)

$$g^* = argmax_{h \in [0,36]} u_i(g^*, \dots, h, \dots, g^*)$$
  
=  $argmax_h h \sqrt{36 - (n-1)g^* - h}$  i-th argument

# Finding g\*

$$g^* = argmax_h h \sqrt{36 - (n-1)g^* - h}$$

• Taking derivative w.r.t. h of the RHS, setting to 0:

$$g^* = \frac{72 - 2(n-1)g^*}{3}$$

$$g^* = \frac{72}{2n+1}$$
 So what?

#### The tragedy of the Commons

 Say there are n=24 farmers. Each would rationally graze g<sub>i</sub>\* = 72/(2\*24+1) = <u>1.47 goats</u>

• Each would get 
$$g_i \sqrt{36 - \sum_{j=1}^n g_j} = 1.25$$
¢

 But if they cooperate and each graze only 1 goat, each would get 3.46¢

#### The tragedy of the Commons

If all 24 farmers agree on the same number of goals to raise, 1 goat per farmer would be optimal





#### The tragedy of the Commons



#### The tragedy

- Rational behaviors lead to sub-optimal solutions!
- Maximizing individual welfare not necessarily maximizes social welfare
- What went wrong?

Shouldn't have allowed free grazing?

# It's not just the real is the use of the atmosphere and the oceans for dumping of pollutants.

Mechanism design: designing the rules of a game

- **Q 2.1**: Which of the following is true
- (i) Rock/paper/scissors has a dominant pure strategy
- (ii) There is no Nash equilibrium for rock/paper/scissors
- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- D. Both

- **Q 2.1**: Which of the following is **false**?
- (i) Rock/paper/scissors has a dominant pure strategy
- (ii) There is no Nash equilibrium for rock/paper/scissors
- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- D. Both

- **Q 2.1**: Which of the following is **false**?
- (i) Rock/paper/scissors has a dominant pure strategy
- (ii) There is no Nash equilibrium for rock/paper/scissors
- A. Neither (There is a mixed strategy Nash equilibrium)
- B. (i) but not (ii)
- C. (ii) but not (i) (i is indeed false: easy to check that there's no deterministic dominant strategy)
- D. Both (Same as A)

- **Q 2.2**: Which of the following is true
- (i) Nash equilibria require each player to know other players' strategies
- (ii) Nash equilibria require rational play
- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- D. Both

- **Q 2.2**: Which of the following is **true**
- (i) Nash equilibria require each player to know other players' strategies
- (ii) Nash equilibria require rational play
- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- D. Both

- **Q 2.2**: Which of the following is true
- (i) Nash equilibria require each player to know other players' strategies
- (ii) Nash equilibria require rational play
- A. Neither (See below)
- B. (i) but not (ii) (Rational play required: i.e., what if prisoners desire longer jail sentences?)
- C. (ii) but not (i) (The basic assumption of Nash equilibria is knowing all of the strategies involved)
- D. Both

# Summary

• Intro to game theory

- Characterize games by various properties

• Mathematical formulation for simultaneous games

- Normal form, dominance, Nash equilibria, mixed vs pure