

CS 540 Introduction to Artificial Intelligence Games I

University of Wisconsin-Madison Fall 2022

Outline

- Introduction to game theory
- Properties of games, mathematical formulation
- Simultaneous-Move Games
- Normal form, strategies, dominance, Nash equilibrium

So Far in The Course

We looked at techniques:

- Unsupervised: See data, do something with it. Unstructured.
- Supervised: Train a model to make predictions. More structure.
- Training: as taking actions to get a reward
- Games: Much more structure.

indoor

More General Model

Suppose we have an agent interacting with the world

Agent

- Agent receives a reward based on state of the world
- Goal: maximize reward / utility (\$\$)
- Note: now data consists of actions \& observations
- Setup for decision theory, reinforcement learning, planning

Games: Multiple Agents

Games setup: multiple agents

- Strategic decision making.

Modeling Games: Properties

Let's work through properties of games

- Number of agents/players
- Action space: finite or infinite
- Deterministic or random
- Zero-sum or general-sum
- Sequential or simultaneous moves

Property 1: Number of players

Pretty clear idea: 1 or more players

- Usually interested in ≥ 2 players
- Typically a finite number of players

Property 2: Action Space

Finite or infinite

- Rock-paper-scissors
- Tennis

Property 3: Deterministic or Random

- Is there chance in the game?
- Poker
- Scrabble
- Chess

Property 4: Sum of payoff

- Zero sum: one player's win is the other's loss
- Pure competition. E.g. rock-paper-scissors
- General sum
- Example: prisoner's dilemma

Property 5: Sequential or Simultaneous Moves

- Simultaneous: all players take action at the same time
- Sequential: take turns (but payoff only revealed at end of game)

Normal Form Game

Mathematical description of simultaneous games.

- n players \{1,2,...,n\}
- Player i strategy a_{i} from A_{i}.
- Strategy profile: $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
- Player i gets rewards $u_{i}(a)$
- Note: reward depends on other players!
- We consider the simple case where all reward functions are common knowledge.

Example of Normal Form Game

Ex: Prisoner's Dilemma

Player 2		
Player 1	Stay silent	Betray
Stay silent	$-1,-1$	$-3,0$
Betray	$0,-3$	$-2,-2$

- 2 players, 2 actions: yields 2×2 payoff matrix
- Strategy set: \{Stay silent, betray\}

Strictly Dominant Strategies

Let's analyze such games. Some strategies are better

- Strictly dominant strategy: if a_{i} strictly better than a_{i}^{\prime} regardless of what other players do, a_{i} is strictly dominant
- I.e., $u_{i}\left(a_{i}, a_{-i}\right)>u_{-} i\left(b, a_{-i}\right), \forall b \neq a_{i}, \forall a_{-i}$
- Doesn't always exist!

Strictly Dominant Strategies Example

Back to Prisoner's Dilemma

- Examine all the entries: betray strictly dominates
- Check:

Player 2		
Player 1	Stay silent	Betray
Stay silent	$-1,-1$	$-3,0$
Betray	$0,-3$	$-2,-2$

Dominant Strategy Equilibrium

a^{*} is a (strictly) dominant strategy equilibrium, if all players have a strictly dominant strategy a_{i}^{*}

- Rational players will play at DSE, if one exists.

Player 2		
Player 1	Stay silent	Betray
Stay silent	$-1,-1$	$-3,0$
Betray	$0,-3$	$-2,-2$

Dominant Strategy: Absolute Best Responses

Player i's best response to $a_{-i}: B R\left(a_{-i}\right)=$ $\arg \max _{a} u_{-} i\left(a, a_{-i}\right)$

BR(player2=silent)=betray BR(player2=betray)=betray

Player 2		
Player 1	Stay silent	Betray
Stay silent	$-1,-1$	$-3,0$
Betray	$0,-3$	$-2,-2$

a_{i}^{*} is the dominant strategy for player i , if $a_{i}^{*}=B R\left(a_{-i}\right), \forall a_{-i}$

Dominant Strategy Equilibrium

DSE does not always exist.

Player 2		
Player 1		R
T	2,1	0,0
B	0,0	1,2

Nash Equilibrium

a^{*} is a Nash equilibrium if no player has an incentive to unilaterally deviate

$$
u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(a_{i}, a_{-i}^{*}\right) \quad \forall a_{i} \in A_{i}
$$

Player 2		
Player 1		
T	2,1	0,0
B	0,0	1,2

Nash Equilibrium : Best Response to Each Other

 a^{*} is a Nash equilibrium:$$
\forall i, \forall b \in A_{i}: u_{i}\left(a_{i}^{*}, a_{-i}^{*}\right) \geq u_{i}\left(b, a_{-i}^{*}\right)
$$

(no player has an incentive to unilaterally deviate)

- Equivalently, for each player i:

$$
a_{i}^{*} \in B R\left(a_{-i}^{*}\right)=\operatorname{argmax}_{b} u_{i}\left(b, a_{-i}^{*}\right)
$$

- Compared to DSE (a DES is a NE, the other way is generally not true):

$$
a_{i}^{*}=B R\left(a_{-i}\right), \forall a_{-i}
$$

Finding (pure) Nash Equilibria by hand

- As player 1: For each column, find the best response, underscore it.

Player 2	L	R
Player 1		

Finding (pure) Nash Equilibria by hand

- As player 2: For each row, find the best response, upper-score it.

Player 2		
Player 1	L	R
T	$\overline{2,1}$	0,0
B	0,0	1,2

Finding (pure) Nash Equilibria by hand

- Entries with both lower and upper bars are pure NEs.

Player 2		
Player 1	L	R
T	$\overline{2,1}$	0,0
B	0,0	$\overline{1,2}$

Pure Nash Equilibrium may not exist

So far, pure strategy: each player picks a deterministic strategy. But:

Player 2 Player 1	rock	paper	scissors
rock	0,0	$\overline{-1,1}$	$\underline{\underline{1,-1}}$
paper	$\underline{1,-1}$	0,0	$\overline{-1,1}$
scissors	$\overline{-1,1}$	$\underline{1,-1}$	0,0

Mixed Strategies

Can also randomize actions: "mixed"

- Player i assigns probabilities x_{i} to each action

$$
x_{i}\left(a_{i}\right), \text { where } \sum_{a_{i} \in A_{i}} x_{i}\left(a_{i}\right)=1, x_{i}\left(a_{i}\right) \geq 0
$$

- Now consider expected rewards

$$
\begin{aligned}
& u_{i}\left(x_{i}, x_{-i}\right)=E_{a_{i} \sim x_{i} a_{-i} \sim x_{-i}} u_{i}\left(a_{i}, a_{-i}\right) \\
& =\sum_{a_{i}} \sum_{a_{-i}} x_{i}\left(a_{i}\right) x_{-i}\left(a_{-i}\right) u_{i}\left(a_{i}, a_{-i}\right)
\end{aligned}
$$

Mixed Strategy Nash Equilibrium

Consider the mixed strategy $x^{*}=\left(x_{1}{ }^{*}, \ldots, x_{n}{ }^{*}\right)$

- This is a Nash equilibrium if

$$
u_{i}\left(x_{i}^{*}, x_{-1}^{*}\right) \geq u_{i}\left(x_{i}, x_{-i}^{*}\right) \quad \forall x_{i} \in \Delta_{A_{i}}, \forall i \in\{1, \ldots, n\}
$$

Better than doing anything else, "best response"

Space of probability distributions

- Intuition: nobody can increase expected reward by changing only their own strategy.

Mixed Strategy Nash Equilibrium

Example: $\quad x_{1}()=.x_{2(.)}=\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$

Player 2 Player 1	rock	paper	scissors
rock	0,0	$-1,1$	$1,-1$
paper	$1,-1$	0,0	$-1,1$
scissors	$-1,1$	$1,-1$	0,0

Finding Mixed NE in 2-Player Zero-Sum Game

Example: Two Finger Morra. Show 1 or 2 fingers. The "even player" wins the sum if the sum is even, and vice versa.

odd	even	$f 1$
$f 1$	$2,-2$	$-3,3$
$f 2$	$-3,3$	$4,-4$

Finding Mixed NE in 2-Player 2-action Zero-Sum Game

Two Finger Morra. Two-player zero-sum game. No pure NE:

odd		
even	$f 1$	f2
$f 1$	$\underline{2,-2}$	$\overline{-3,3}$
$f 2$	$\overline{-3,3}$	$\underline{4,-4}$

Finding Mixed NE in 2-Player 2-action Zero-Sum Game

Suppose odd's mixed strategy at NE is ($q, 1-q$), and even's ($p, 1-p$) By definition, p is best response to $\mathrm{q}: u_{1}(p, q) \geq u_{1}\left(p^{\prime}, q\right) \forall p^{\prime}$.

But $u_{1}(p, q)=p u_{1}\left(f_{1}, q\right)+(1-p) u_{1}\left(f_{2}, q\right)$
Average is no greater than components
$\rightarrow u_{1}(p, q)=u_{1}\left(f_{1}, q\right)=u_{1}\left(f_{2}, q\right)$

p	q		$1-q$
	odd even	f1	f2
	$f 1$	$2,-2$	$-3,3$
1-p	f2	-3, 3	4, -4

Finding Mixed NE in 2-Player 2-action Zero-Sum Game

$$
\begin{aligned}
u_{1}\left(f_{1}, q\right) & =u_{1}\left(f_{2}, q\right) \\
2 q+(-3)(1-q) & =(-3) q+4(1-q) \\
q & =\frac{7}{12}
\end{aligned}
$$

Similarly, $u_{2}\left(p, f_{1}\right)=u_{2}\left(p, f_{2}\right)$

At this NE, even gets $-1 / 12$, odd gets $1 / 12$.

	$f 1$	$\underline{2,-2}$	$-3,3$
$1-\mathrm{p}$	f2	$\overline{-3,3}$	$\underline{4,-4}$

Properties of Nash Equilibrium

Major result: (Nash '51)

- Every finite (players, actions) game has at least one Nash equilibrium
- But not necessarily pure (i.e., deterministic strategy)
- Could be more than one
- Searching for Nash equilibria: computationally hard.
- Exception: two-player zero-sum games (linear program).

Pure NE in an Infinite game: The tragedy of the Commons

- Price per goat

Selling

Price
per
goat

- How many goats should one (out of n) rational farmer graze?
- How much would the farmer earn?

Continuous Action Game

- Each farmer has infinite number of strategies $g_{i} \in[0,36]$
- The value for farmer i, when the n farmers play at $\left(g_{1}, g_{2}\right.$, \ldots, g_{n}) is

$$
u_{i}\left(g_{1}, g_{2}, \ldots, g_{n}\right)=g_{i} \sqrt{36-\sum_{j \in[n]} g_{j}}
$$

- Assume a pure Nash equilibrium exists.
- Assume (by apparent symmetry) the NE is $\left(\mathrm{g}^{*}, \mathrm{~g}^{*}, \ldots, \mathrm{~g}^{*}\right)$.

Finding g^{*}

- $u_{i}\left(g_{1}, g_{2}, \ldots, g_{n}\right)=g_{i} \sqrt{36-\sum_{j} g_{j}}$
- g^{*} is the best response to others ($\mathrm{g}^{*}, \ldots, \mathrm{~g}^{*}$)

$$
\begin{aligned}
g^{*} & =\operatorname{argmax}_{h \in[0,36]} u_{i}\left(g^{*}, \ldots, h, \ldots, g^{*}\right) \\
& =\operatorname{argmax}_{h} h \sqrt{36-(n-1) g^{*}-h}
\end{aligned}
$$

Finding g^{*}

$$
g^{*}=\operatorname{argmax}_{h} h \sqrt{36-(n-1) g^{*}-h}
$$

- Taking derivative w.r.t. h of the RHS, setting to 0 :

$$
\begin{aligned}
& g^{*}=\frac{72-2(n-1) g^{*}}{3} \\
& g^{*}=\frac{72}{2 n+1} \quad \text { So what? }
\end{aligned}
$$

The tragedy of the Commons

- Say there are $\mathrm{n}=24$ farmers. Each would rationally graze $\mathrm{g}_{\mathrm{i}}{ }^{*}=72 /(2 * 24+1)=1.47$ goats
- Each would get $g_{i} \sqrt{36-\sum_{j=1}^{n} g_{j}}=1.25 \mathrm{C}$
- But if they cooperate and each graze only 1 goat, each would get 3.46¢

The tragedy of the Commons

If all 24 farmers agree on the same number of goals to raise, 1 goat per farmer would be optimal

The tragedy of the Commons

If all 24 farmers agree on the same number of goals to raise, 1 goat per farmer would be optimal

But this is not a N.E.! A farmer can benefit from cheating (other 23 play at

The tragedy

- Rational behaviors lead to sub-optimal solutions!
- Maximizing individual welfare not necessarily maximizes social welfare
- What went wrong?

Shouldn't have allowed free grazing?
It's not just the of pollutants.

Mechanism design: designing the rules of a game

Break \& Quiz

Q 2.1: Which of the following is true
(i) Rock/paper/scissors has a dominant pure strategy
(ii) There is no Nash equilibrium for rock/paper/scissors

- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- D. Both

Break \& Quiz

Q 2.1: Which of the following is false?
(i) Rock/paper/scissors has a dominant pure strategy
(ii) There is no Nash equilibrium for rock/paper/scissors

- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- D. Both

Break \& Quiz

Q 2.1: Which of the following is false?
(i) Rock/paper/scissors has a dominant pure strategy
(ii) There is no Nash equilibrium for rock/paper/scissors

- A. Neither (There is a mixed strategy Nash equilibrium)
- B. (i) but not (ii)
- C. (ii) but not (i) (i is indeed false: easy to check that there's no deterministic dominant strategy)
- D. Both (Same as A)

Break \& Quiz

Q 2.2: Which of the following is true
(i) Nash equilibria require each player to know other players' strategies
(ii) Nash equilibria require rational play

- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- D. Both

Break \& Quiz

Q 2.2: Which of the following is true
(i) Nash equilibria require each player to know other players' strategies
(ii) Nash equilibria require rational play

- A. Neither
- B. (i) but not (ii)
- C. (ii) but not (i)
- D. Both

Break \& Quiz

Q 2.2: Which of the following is true
(i) Nash equilibria require each player to know other players' strategies
(ii) Nash equilibria require rational play

- A. Neither (See below)
- B. (i) but not (ii) (Rational play required: i.e., what if prisoners desire longer jail sentences?)
- C. (ii) but not (i) (The basic assumption of Nash equilibria is knowing all of the strategies involved)
- D. Both

Summary

- Intro to game theory
- Characterize games by various properties
- Mathematical formulation for simultaneous games
- Normal form, dominance, Nash equilibria, mixed vs pure

