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Outline

• Introduction to reinforcement learning
– Basic concepts, mathematical formulation, MDPs, policies

• Valuing policies
– Value functions, Bellman equation, value iteration 



Back to Our General Model

We have an agent interacting with the world

• Agent receives a reward based on state of the world
– Goal: maximize reward / utility
– Note: data consists of actions & observations

• Compare to unsupervised learning and supervised learning
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Examples: Gameplay Agents

AlphaZero:

https://deepmind.com/research/alphago/

https://deepmind.com/research/alphago/


Examples: Video Game Agents

Pong, Atari

Mnih et al, “Human-level control through deep reinforcement learning”

A. Nielsen

https://holmdk.github.io/


Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more! 

Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"



Examples: Robotics

Training robots to perform tasks (e.g., grasp!)

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning – Lessons We’ve Learned "



Building The Theoretical Model

Basic setup:
• Set of states, S
• Set of actions A
• Information: at time t, observe state st∈ S. Get reward rt
• Agent makes choice at∈ A. State changes to st+1, continue

Goal: find a map from states to actions maximize rewards.
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Markov Decision Process (MDP)

The formal mathematical model:
• State set S. Initial state s0. Action set A
• Reward function: r(st)
• State transition model:

– Markov assumption: transition probability only depends on st and at, 
and not earlier history (previous actions or states)

• More generally: 𝑟 𝑠!, 𝑎! , 𝑃(𝑟!, 𝑠!"#|𝑠!, 𝑎!)
• Policy:                            action to take at a particular state 



Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Source: P. Abbeel and D. Klein 



Example of MDP: Grid World

Note: (i) Robot is unreliable    (ii) Reach target fast

𝒓(𝑠) = −0.04 for every 
non-terminal state



Grid World Abstraction

Note: (i) Robot is unreliable    (ii) Reach target fast

𝒓(𝑠) = −0.04 for every 
non-terminal state



Grid World Optimal Policy

Note: (i) Robot is unreliable    (ii) Reach target fast

𝒓(𝑠) = −0.04 for every 
non-terminal state



Back to MDP Setup

The formal mathematical model:
• State set S. Initial state s0. Action set A
• State transition model:

– Markov assumption: transition probability only depends on st and at, 
and not previous actions or states. 

• Reward function: r(st)
• Policy:                            action to take at a particular state. 

How do we find 
the best policy?



Break & Quiz

Q 1.1 Which of the following statement about MDP is not true?

• A. The reward function must output a scalar value
• B. The policy maps states to actions
• C. The probability of next state can depend on current and 

previous states
• D. The solution of MDP is to find a policy that maximizes the 

cumulative rewards
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Break & Quiz
Q 1.1 Which of the following statement about MDP is not true?

• A. The reward function must output a scalar value (True: need to be 
able to compare)

• B. The policy maps states to actions (True: a policy tells you what 
action to take for each state).

• C. The probability of next state can depend on current and 
previous states (False: Markov assumption).

• D. The solution of MDP is to find a policy that maximizes the 
cumulative rewards (True: want to maximize rewards overall).



Defining the Optimal Policy

For policy p, expected utility over all possible state 
sequences from 𝑠! produced by following that policy:

Called the value function (for p, 𝑠!)

𝑉$ 𝑠% = 1

&'()'*+'&
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𝑃 sequence 𝑈(sequence)



Discounting Rewards

One issue: these are infinite series. Convergence?
• Solution

• Discount factor g between 0 and 1
– Set according to how important present is VS future
– Note: has to be less than 1 for convergence



From Value to Policy

Now that 𝑉" 𝑠! is defined what 𝑎 should we take? 
• First, let 𝜋∗ be the optimal policy for 𝑉$(𝑠%), and 𝑉∗ its 

expected utility
• What’s the expected utility of an action?
– Specifically, action 𝑎 in state 𝑠?

All the states we 
could go to

Transition probability Expected rewards



Obtaining the Optimal Policy

We know the expected utility of an action
• So, to get the optimal policy, compute

All the states we 
could go to

Transition 
probability 

Expected 
rewards Credit L. Lazbenik



Slight Problem…

Now we can get the optimal policy by doing

• So we need to know V*(s).
– But it was defined in terms of the optimal policy!
– So we need some other approach to get V*(s).
– Need some other property of the value function!



Bellman Equation

Let’s walk over one step for the value function:

• Bellman: inventor of dynamic programming

Discounted expected 
future rewards

Current state 
reward



Bellman Equation

Let’s walk over one step for the value function:

Discounted expected 
future rewards

Current state 
reward

Credit L. Lazbenik



Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy
• Know: reward r(s), transition probability P(s’|s,a)

– Knowing r and P is the “planning” problem. In reality r and P must be 
estimated from interactions : “reinforcement learning”

• Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V0(s)=0. Then, update



Value Iteration: Demo

Source: POMDPBGallery Julia Package



Break & Quiz
Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current 
state and “move” to  other state. Let r be the reward function such that r(A) = 
1, r(B) = 0. Let 𝛾 be the discounting factor. Let π: π(A) = π(B) = move (i.e., an 
“always move” policy). What is the value function 𝑉𝜋(𝐴)?

• A. 0
• B. 1 / (1 -𝛾)
• C. 1 / (1 -𝛾2)
• D. 1
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Break & Quiz
Q 2.1 Consider an MDP with 2 states {A, B} and 2 actions: “stay” at current 
state and “move” to  other state. Let r be the reward function such that r(A) = 
1, r(B) = 0. Let 𝛾be the discounting factor. Let π: π(A) = π(B) = move (i.e., an 
“always move” policy). What is the value function 𝑉𝜋(𝐴)?

• A. 0
• B. 1/(1-𝛾)
• C. 1/(1-𝛾2) (States: A,B,A,B,… rewards 1,0, 𝛾2,0, 𝛾4,0, …)
• D. 1



Summary

• Reinforcement learning setup
• Mathematica formulation: MDP
• Value functions & the Bellman equation
• Value iteration 


