

CS 540 Introduction to Artificial Intelligence Reinforcement Learning I

University of Wisconsin-Madison

Fall 2022

Outline

- Introduction to reinforcement learning
 - Basic concepts, mathematical formulation, MDPs, policies
- Valuing policies
 - Value functions, Bellman equation, value iteration

Back to Our General Model

We have an **agent interacting** with the **world**

- Agent receives a reward based on state of the world
 - Goal: maximize reward / utility (\$\$\$)
 - Note: data consists of actions & observations
 - Compare to unsupervised learning and supervised learning

Examples: Gameplay Agents

AlphaZero:

https://deepmind.com/research/alphago/

Examples: Video Game Agents

Pong, Atari

Mnih et al, "Human-level control through deep reinforcement learning"

A. Nielsen

Examples: Video Game Agents

Minecraft, Quake, StarCraft, and more!

Shao et al, "A Survey of Deep Reinforcement Learning in Video Games"

Examples: Robotics

Training robots to perform tasks (e.g., grasp!)

Ibarz et al, " How to Train Your Robot with Deep Reinforcement Learning – Lessons We've Learned "

Building The Theoretical Model

Basic setup:

- Set of states, S
- Set of actions A

- Information: at time *t*, observe state $s_t \in S$. Get reward r_t
- Agent makes choice $a_t \in A$. State changes to s_{t+1} , continue

Goal: find a map from **states to actions** maximize rewards.

Markov Decision Process (MDP)

The formal mathematical model:

- State set S. Initial state s_{0.} Action set A
- Reward function: **r**(**s**_t)
- State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not earlier history (previous actions or states)
- More generally: $r(s_t, a_t)$, $P(r_t, s_{t+1}|s_t, a_t)$
- Policy: $\pi(s): S \to A$ action to take at a particular state

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

Example of MDP: Grid World

Robot on a grid; goal: find the best policy

Example of MDP: Grid World

Note: (i) Robot is unreliable (ii) Reach target fast

r(s) = -0.04 for every non-terminal state

Grid World Abstraction

Note: (i) Robot is unreliable (ii) Reach target fast

r(s) = -0.04 for every non-terminal state

Grid World Optimal Policy

Note: (i) Robot is unreliable (ii) Reach target fast

r(s) = -0.04 for every non-terminal state

Back to MDP Setup

The formal mathematical model:

- State set S. Initial state s_{0.} Action set A
- State transition model: $P(s_{t+1}|s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t , and not previous actions or states.
- Reward function: r(s_t)

How do we find the best policy?

• **Policy**: $\pi(s) : S \to A$ action to take at a particular state.

$$s_0 \xrightarrow{a_0} s_1 \xrightarrow{a_1} s_2 \xrightarrow{a_2} \dots$$

Q 1.1 Which of the following statement about MDP is **not** true?

- A. The reward function must output a scalar value
- B. The policy maps states to actions
- C. The probability of next state can depend on current and previous states
- D. The solution of MDP is to find a policy that maximizes the cumulative rewards

Q 1.1 Which of the following statement about MDP is **not** true?

- A. The reward function must output a scalar value
- B. The policy maps states to actions
- C. The probability of next state can depend on current and previous states
- D. The solution of MDP is to find a policy that maximizes the cumulative rewards

Q 1.1 Which of the following statement about MDP is **not** true?

- A. The reward function must output a scalar value (True: need to be able to compare)
- B. The policy maps states to actions (True: a policy tells you what action to take for each state).
- C. The probability of next state can depend on current and previous states (False: Markov assumption).
- D. The solution of MDP is to find a policy that maximizes the cumulative rewards (True: want to maximize rewards overall).

Defining the Optimal Policy

For policy π , **expected utility** over all possible state sequences from s_0 produced by following that policy:

$$V^{\pi}(s_0) =$$

P(sequence)*U*(sequence)

sequences starting from s_0

Called the value function (for π , s_0)

Discounting Rewards

One issue: these are infinite series. **Convergence**?

• Solution

$$U(s_0, s_1...) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + ... = \sum_{t \ge 0} \gamma^t r(s_t)$$

- Discount factor γ between 0 and 1
 - Set according to how important present is VS future
 - Note: has to be less than 1 for convergence

From Value to Policy

Now that $V^{\pi}(s_0)$ is defined what *a* should we take?

• First, let π^* be the **optimal** policy for $V^{\pi}(s_0)$, and V^* its expected utility

 $\sum P(s'|s, a) V^*(s')$

Expected rewards

- What's the expected utility of an action?
 - Specifically, action *a* in state *s*?

All the states we Transition probability could go to

Obtaining the Optimal Policy

We know the expected utility of an action

• So, to get the optimal policy, compute

$$\pi^{*}(s) = \operatorname{argmax}_{a} \sum_{s'} P(s'|s, a) V^{*}(s')$$
All the states we could go to probability Expected rewards

Slight Problem...

Now we can get the optimal policy by doing

$$\pi^*(s) = \operatorname{argmax}_{a} \sum_{s'} P(s'|s, a) V^*(s')$$

- So we need to know $V^*(s)$.
 - But it was defined in terms of the optimal policy!
 - So we need some other approach to get $V^*(s)$.
 - Need some other **property** of the value function!

Bellman Equation

Let's walk over one step for the value function:

$$V^{*}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V^{*}(s')$$
Current state reward
$$Discounted expected future rewards$$

• Bellman: inventor of dynamic programming

Bellman Equation

Let's walk over one step for the value function:

Value Iteration

Q: how do we find $V^*(s)$?

- Why do we want it? Can use it to get the best policy
- Know: reward **r**(**s**), transition probability P(**s**' | **s**,**a**)
 - Knowing r and P is the "planning" problem. In reality r and P must be estimated from interactions : "reinforcement learning"
- Also know V*(s) satisfies Bellman equation (recursion above)
- **A**: Use the property. Start with $V_0(s)=0$. Then, update

$$V_{i+1}(s) = r(s) + \gamma \max_{a} \sum_{s'} P(s'|s, a) V_i(s')$$

Value Iteration: Demo

Source: POMDPBGallery Julia Package

Q 2.1 Consider an MDP with 2 states $\{A, B\}$ and 2 actions: "stay" at current state and "move" to other state. Let **r** be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. Let π : $\pi(A) = \pi(B) =$ move (i.e., an "always move" policy). What is the value function $V^{\pi}(A)$?

- A. 0
- B. 1 / (1 -γ)
- C. 1 / (1 γ²)
- D. 1

Q 2.1 Consider an MDP with 2 states $\{A, B\}$ and 2 actions: "stay" at current state and "move" to other state. Let **r** be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. Let π : $\pi(A) = \pi(B) =$ move (i.e., an "always move" policy). What is the value function $V^{\pi}(A)$?

- A. 0
- B. 1/(1-γ)
- C. 1/(1-γ²)
- D. 1

Q 2.1 Consider an MDP with 2 states $\{A, B\}$ and 2 actions: "stay" at current state and "move" to other state. Let **r** be the reward function such that $\mathbf{r}(A) = 1$, $\mathbf{r}(B) = 0$. Let γ be the discounting factor. Let π : $\pi(A) = \pi(B) =$ move (i.e., an "always move" policy). What is the value function $V^{\pi}(A)$?

- A. 0
- B. 1/(1-γ)
- **C. 1/(1-\gamma^2) (States: A,B,A,B,... rewards 1,0, \gamma^2,0, \gamma^4,0, ...)**
- D. 1

Summary

- Reinforcement learning setup
- Mathematica formulation: MDP
- Value functions & the Bellman equation
- Value iteration