A A TSN T

CS 540 Introduction to Artificial Intelligence
Reinforcement Learning Il / Summary

University of Wisconsin-Madison

Fall 2022

Outline

* Review of reinforcement learning
— MDPs, value functions, Bellman Equation, value iteration
* Q-learning

— Q function, Q-learning

Building The Theoretical Model

Basic setup: © >
Actions
* Set of states, S < m
. Observations
e Set of actions A Agent

* Information: at time t, observe state s, € S. Get reward r,
* Agent makes choice a, € A. State changes to s;,; continue

Goal: find a map from states to actions maximize rewards.

t

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:

* State set S. Initial state s, Action set A
* State transition model: P(s;1|s;, a;)

— Markov assumption: transition probability only depends on s, and a,,
and not previous actions or states.

* Reward function: r(s,)
* Policy: 7T(8) 5 — A action to take at a particular state.

ao a a9
Sop —>S1 —=> 89 —> ...

Defining the Optimal Policy

For policy i, expected utility over all possible state
sequences from s, produced by following that policy:

VT(sg) = 2 P(sequence)U(sequence)

sequences
starting from s

¥

Called the value function (for =, s;)

Discounting Rewards

One issue: these are infinite series. Convergence?
e Solution
U(sg,51...)=7(s0) +77(s1) + 77 (Z'y (s¢)
t>0

* Discount factor y between 0 and 1
— Set according to how important present is VS future
— Note: has to be less than 1 for convergence

Example

Deterministic transition. y = 0.8, policy shown in red arrow.

Values and Policies

Now that V™ (s,) is defined what a should we take?

* First, set V*(s) to be expected utility for optimal policy from s
 What's the expected utility of an action?
— Specifically, action a in state s?

ZP(S"S,&)V*(S/)

. A BN

All the states we Transition probability Expected rewards

could go to

Obtaining the Optimal Policy

We know the expected utility of an action.

* So, to get the optimal policy, compute

7 (s) = argmax,, Z P(s's,a)V*(s")

o/ 7

All the states we Transition Expected " A S:\A
could go to probability rewards

Credit L. Lazbenik

Bellman Equation

Let’s walk over one step for the value function:

=7(s) + vmgxz P(s's,a)V*(s")

— }
I

Current state Discounted expected
reward future rewards

A

A s

Credit L. Lazbenik

The Bellman equation

S Agent receives reward 7(s)

Environment returns s'~ P(: |s, a) A S’

* Define state utility V*(s) as the expected sum of
discounted rewards if the agent executes an
optimal policy starting in state s

Image source: L. Lazbenik

The Bellman equation

S Agent receives reward 7(s)

Environment returns s'~ P(: |s, a) A S’

 What is the expected utility of taking action a in
state s?

z P(s'|s,a)V*(s")

Image source: L. Lazbenik

The Bellman equation

S Agent receives reward 7(s)

Environment returns s'~ P(: |s, a) A S’

e What is the recursive expression for V*(s) in terms
of V*(s") - the utilities of its successors?

Vi) =r(s) +y) Ps'ls,m ()Y ()

Image source: L. Lazbenik

The Bellman equation

S Agent receives reward 7(s)

Environment returns s'~ P(: |s, a) A S’

e How do we choose the action?

m*(s) = arg max, z P(s'|s,a)V*(s")
Sl

Image source: L. Lazbenik

The Bellman equation

S Agent receives reward 7(s)

Environment returns s'~ P(: |s, a) A S’

e What is the recursive expression for V*(s) in terms
of V*(s") - the utilities of its successors?

V*(s) = r(s) + y max, Z P(s'|s,a)V*(s")

Image source: L. Lazbenik

The Bellman equation

S Agent receives reward 7(s)

Environment returns s'~ P(: |s, a) A S’

e The same reasoning gives the Bellman equation for
a general policy:

V() = 7(5) +7) P(s'ls,m(s) V(s

Image source: L. Lazbenik

Example

Deterministic transition. y = 0.8, policy shown in red arrow.

Value Iteration

Q: how do we find V*(s)?

* Why do we want it? Can use it to get the best policy

* Know: reward r(s), transition probability P(s’|s,a)

e Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V,(s)=0. Then, update

Vigi(s) =1 (s) +7m3XZP(3/\SaG)W(3/>

Q-Learning

Our first reinforcement learning algorithm

e Don’t know the whole r and P. But can see interaction
trajectory (s¢, a¢, 1t Sg+1)

* Q-learning: get an action-utility function Q*(s,a) that tells us
the value of doing a in state s

* Note: V*(s) = max, Q*(s,a)
* Now, we can just do m*(s) = arg max,Q"(s, a)
— But need to estimate Q*!

The Q*(s,a) function

e Starting from state s, perform (perhaps
suboptimal) action a. THEN follow the
optimal policy

VG =r+y) PGSV ()

* Equivalent to ’

Q') =) +y) P(s'ls,0)maxQ*(s',b)

Q-Learning lteration

How do we get Q(s,a)?

e Similar iterative procedure
Q(8¢, ar) < Q(s¢,a¢) + afr(se) + ’YmC?JXQ<5t—I—17 a) — Q(st,at)]

Learning rate

Idea: combine old value and new estimate of future value.

Note: We are using a policy to take actions; based on the
estimated Q!

Offline Q-Learning

Estimate Q*(s,a) from data {(s;, a;, 1, S¢+1) }:

1. Initialize Q(.,.) arbitrarily (eg all zeros)

1. Except terminal states Q(Serminats-)=0

2. lterate over data until Q(.,.) converges:

Q(se,ar) « (1 —a)Q(sg, ar) + a(ry + Yy max Q(St+1, b))

/

Learning rate

Online Q-Learning: Exploration Vs. Exploitation

General question!
* Exploration: take an action with unknown consequences
— Pros:

e Get a more accurate model of the environment
* Discover higher-reward states than the ones found so far

— Cons:
* When exploring, not maximizing your utility
* Something bad might happen

* Exploitation: go with the best strategy found so far

— Pros:
* Maximize reward as reflected in the current utility estimates
* Avoid bad stuff

— Cons:
* Might also prevent you from discovering the true optimal strategy

Online Q-Learning: Epsilon-Greedy Policy

How to explore?

* With some 0<e<1 probability, take a random action at each
state, or else the action with highest Q(s,a) value.

argmax,c 4 Q(s,a) uniform(0,1) > €
a =
random a € A otherwise

1
2
3
4.
5.
6
7
3
9

Online Q-learning Algorithm

Input: step size a, greedy parameter €

Qf.,.)=0
for each episode
draw initial state s~u
while (s not terminal)
perform a = e-greedy(Q), receiver, s’

Q(s,a) =(1—a)Q(s,a) + a(r + ymlgaxQ(s’, b))

s« s’
endwhile
endfor

Note: step 5 can use any other
behavior policies

Online Q-learning Algorithm

e Step 5 can use any other behavior policies to choose action
a, as long as all actions are chosen frequently enough

 The cumulative rewards during Q-learning may not be the
highest
* But after Q-learning converges, can extract an optimal
policy:
n*(s) € argmax, Q(s,a)
V*(s) = maxQ*(s,a)
a

Q-Learning: SARSA

An alternative update rule:

e Just use the next action, no max over actions:

Q(st,a1) + Q(s4,a¢) + alr(ss) +7Q(St41, ap41) — Q8¢ ay)]

Learning rate

e C(Called state—action—reward—state—action (SARSA)

e (Can use with epsilon-greedy policy

Deep Q-Learning

How do we get Q(s,a)?

Convolution Convolution Fully connected
%, w v

-n
c
=
8
‘3
=
@
Q
g

=

oo |
B e

oo |

oo |

B EEEE
a
e
CEELEEERE 1]
OJOJOJOJOJO OO g

Mnih et al, "Human-level control through deep reinforcement learning"

Summary of RL

Reinforcement learning setup
Mathematical formulation: MDP
Value functions & the Bellman equation

Value iteration

Q-learning

Search and RL Review

e Search

— Uninformed vs Informed
— Optimization
* Games

— Minimax search

* Reinforcement Learning
— MDPs, value iteration, Q-learning

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:

e Path cost g(s) from start to node s

* Successors. @
anuun®® .goal
gls) .

Informed search. Know:
* All uninformed search properties, plus
* Heuristic h(s) from s to goal (recall game heuristic)

(»)@h” oG

Uninformed Search: Iterative Deepening DFS

Repeated limited DFS
e Search like BFS, fringe like DFS,
* Properties: |
— Complete
— Optimal (if edge cost 1)
— Time O(b9)
— Space O(bd)

A good option!

Fractalsaco

Informed Search: A* Search

A*: Expand best g(s) + h(s), with one requirement
 Demand that h(s) < h*(s)

* If heuristic has this property, “admissible”

— Optimistic! Never over-estimates

e Still need h(s) >0

— Negative heuristics can lead to strange behavior

V. Batocdanin

Search vs. Optimization

Before: wanted a path from start state to goal state

New setting: optimization & ®

Uninformed search, informed search

1\,:‘

AN

2) (3) (4

S
/i 7r\s — -

V2 Sl

Wiki

TuringFin

States s have values f{(s)
Want: s with optimal value f(s) (i.e, optimize over states)

Challenging setting: too many states for previous search
approaches, but maybe not a continuous function for SGD.

Hill Climbing Algorithm
Pseudocode:

Pick initial state s

Pick t in neighbors(s) with the largest f(t)
if f(t) < f(s) THEN stop, return s

s «— t. goto 2.

h W

What could happen? Local optimal

Hill Climbing: Local Optima

Note the local optima. How do we handle them?

\ \ Where do | go?

state state

Simulated Annealing

A more sophisticated optimization approach.

* ldea: move quickly at first, then slow down
 Pseudocode:

Pick initial state s
For k = 0 through k;.,:
T & temperature((k+1)/Kmax)
_ o Pick a random neighbour, t & neighbor(s)
The interesting bit

\Iff(s) <f(t), thens & t
Else, with prob. P(f(s), f(t), T) then s & t
Output: the final state s

Games Setup

Games setup: multiple agents

et

Player 3
Player 1 @
— Now: interactions between agents %
— Still want to maximize utility Player 2

— Strategic decision making.

Minimax Search

Note that long games are yield huge computation

* To deal with this: limit d for the search depth
* Q: What to do at depth d, but no termination yet?

— A: Use a heuristic evaluation function e(x)

function MINIMAX(x, d) returns an estimate of x’s utility value
inputs: x, current state in game
d, an upper bound on the search depth

if 7 is a terminal state then return Max’s payoff at =
else if ¢ = 0 then return ¢(x)
else if it is Max’s move at x then

return max{MINIMAX(y,d—1) : y is a child of x}
else return min{ MINIMAX(y,d—1) : y is a child of x}

Credit: Dana Nau

Building The Theoretical Model

Basic setup:) >
Actions
* Set of states, S < m
. Observations
e Set of actions A Agent

* Information: at time t, observe state s, € S. Get reward r,
* Agent makes choice a, € A. State changes to s;,; continue

Goal: find a map from states to actions maximize rewards.

t

A “policy”

