
CS 540 Introduction to Artificial Intelligence
Reinforcement Learning II / Summary

University of Wisconsin-Madison

Fall 2022

Outline

• Review of reinforcement learning
– MDPs, value functions, Bellman Equation, value iteration

• Q-learning
– Q function, Q-learning

Building The Theoretical Model

Basic setup:
• Set of states, S
• Set of actions A
• Information: at time t, observe state st∈ S. Get reward rt
• Agent makes choice at∈ A. State changes to st+1, continue

Goal: find a map from states to actions maximize rewards.

World

Agent

Actions

Observations

A “policy”

Markov Decision Process (MDP)

The formal mathematical model:
• State set S. Initial state s0. Action set A
• State transition model:

– Markov assumption: transition probability only depends on st and at,
and not previous actions or states.

• Reward function: r(st)
• Policy: action to take at a particular state.

Defining the Optimal Policy

For policy p, expected utility over all possible state
sequences from 𝑠! produced by following that policy:

Called the value function (for p, 𝑠!)

𝑉! 𝑠" = %

#$%&$'($#
#)*+),'- .+/0 1!

𝑃 sequence 𝑈(sequence)

Discounting Rewards

One issue: these are infinite series. Convergence?
• Solution

• Discount factor g between 0 and 1
– Set according to how important present is VS future
– Note: has to be less than 1 for convergence

Example

A 10

B 20 C 20

G 100

Deterministic transition. 𝛾 = 0.8, policy shown in red arrow.

Values and Policies

Now that 𝑉" 𝑠! is defined what a should we take?
• First, set V*(s) to be expected utility for optimal policy from s
• What’s the expected utility of an action?
– Specifically, action a in state s?

All the states we
could go to

Transition probability Expected rewards

Obtaining the Optimal Policy

We know the expected utility of an action.
• So, to get the optimal policy, compute

All the states we
could go to

Transition
probability

Expected
rewards Credit L. Lazbenik

Bellman Equation

Let’s walk over one step for the value function:

Discounted expected
future rewards

Current state
reward

Credit L. Lazbenik

The Bellman equation
Agent receives reward 𝑟(𝑠)

Agent chooses action 𝑎

Environment returns 𝑠!~𝑃() |𝑠, 𝑎)

• Define state utility 𝑉∗ 𝑠 as the expected sum of
discounted rewards if the agent executes an
optimal policy starting in state s

Image source: L. Lazbenik

The Bellman equation
Agent receives reward 𝑟(𝑠)

Agent chooses action 𝑎

Environment returns 𝑠!~𝑃() |𝑠, 𝑎)

• What is the expected utility of taking action a in
state s?

2
!"

𝑃(𝑠′|𝑠, 𝑎)𝑉∗ 𝑠′

Image source: L. Lazbenik

The Bellman equation
Agent receives reward 𝑟(𝑠)

Agent chooses action 𝑎

Environment returns 𝑠!~𝑃() |𝑠, 𝑎)

• What is the recursive expression for 𝑉∗ 𝑠 in terms
of 𝑉∗ 𝑠′ - the utilities of its successors?

𝑉∗ 𝑠 = 𝑟 𝑠 + 𝛾2
!!
𝑃 𝑠" 𝑠, 𝜋∗(𝑠) 𝑉∗(𝑠")

Image source: L. Lazbenik

The Bellman equation
Agent receives reward 𝑟(𝑠)

Agent chooses action 𝑎

Environment returns 𝑠!~𝑃() |𝑠, 𝑎)

• How do we choose the action?

𝜋∗ 𝑠 = arg max$2
!!
𝑃 𝑠" 𝑠, 𝑎 𝑉∗(𝑠")

Image source: L. Lazbenik

The Bellman equation
Agent receives reward 𝑟(𝑠)

Agent chooses action 𝑎

Environment returns 𝑠!~𝑃() |𝑠, 𝑎)

• What is the recursive expression for 𝑉∗ 𝑠 in terms
of 𝑉∗ 𝑠′ - the utilities of its successors?

𝑉∗ 𝑠 = 𝑟 𝑠 + 𝛾 max$2
!!
𝑃 𝑠" 𝑠, 𝑎 𝑉∗(𝑠")

Image source: L. Lazbenik

The Bellman equation
Agent receives reward 𝑟(𝑠)

Agent chooses action 𝑎

Environment returns 𝑠!~𝑃() |𝑠, 𝑎)

• The same reasoning gives the Bellman equation for
a general policy:

𝑉% 𝑠 = 𝑟 𝑠 + 𝛾2
!!
𝑃 𝑠" 𝑠, 𝜋(𝑠) 𝑉%(𝑠")

Image source: L. Lazbenik

Example

A 10

B 20 C 20

G 100

Deterministic transition. 𝛾 = 0.8, policy shown in red arrow.

Value Iteration

Q: how do we find V*(s)?
• Why do we want it? Can use it to get the best policy
• Know: reward r(s), transition probability P(s’|s,a)
• Also know V*(s) satisfies Bellman equation (recursion above)

A: Use the property. Start with V0(s)=0. Then, update

Q-Learning

Our first reinforcement learning algorithm
• Don’t know the whole r and P. But can see interaction

trajectory (𝑠F, 𝑎F, 𝑟F, 𝑠FGH)
• Q-learning: get an action-utility function Q*(s,a) that tells us

the value of doing a in state s
• Note: V*(s) = maxa Q*(s,a)
• Now, we can just do 𝜋∗ 𝑠 = arg maxJ𝑄∗ 𝑠, 𝑎

– But need to estimate Q*!

The Q*(s,a) function
• Starting from state s, perform (perhaps

suboptimal) action a. THEN follow the
optimal policy

• Equivalent to
𝑄∗ 𝑠, 𝑎 = 𝑟 𝑠 + 𝛾 2

!!
𝑃 𝑠" 𝑠, 𝑎) 𝑉∗(𝑠′)

𝑄∗ 𝑠, 𝑎 = 𝑟 𝑠 + 𝛾 2
!!
𝑃 𝑠" 𝑠, 𝑎)max

&
𝑄∗(𝑠", 𝑏)

Q-Learning Iteration

How do we get Q(s,a)?
• Similar iterative procedure

Idea: combine old value and new estimate of future value.
Note: We are using a policy to take actions; based on the
estimated Q!

Learning rate

Estimate Q*(s,a) from data { 𝑠& , 𝑎& , 𝑟& , 𝑠&'(}:
1. Initialize Q(.,.) arbitrarily (eg all zeros)

1. Except terminal states Q(sterminal,.)=0

2. Iterate over data until Q(.,.) converges:

Offline Q-Learning

Learning rate

𝑄 𝑠' , 𝑎' ← 1 − 𝛼 𝑄 𝑠' , 𝑎' + 𝛼(𝑟' + 𝛾max& 𝑄(𝑠'(), 𝑏))

Online Q-Learning: Exploration Vs. Exploitation

General question!
• Exploration: take an action with unknown consequences

– Pros:
• Get a more accurate model of the environment
• Discover higher-reward states than the ones found so far

– Cons:
• When exploring, not maximizing your utility
• Something bad might happen

• Exploitation: go with the best strategy found so far
– Pros:

• Maximize reward as reflected in the current utility estimates
• Avoid bad stuff

– Cons:
• Might also prevent you from discovering the true optimal strategy

Online Q-Learning: Epsilon-Greedy Policy

How to explore?
• With some 0<ε<1 probability, take a random action at each

state, or else the action with highest Q(s,a) value.

Online Q-learning Algorithm
Input: step size 𝛼, greedy parameter 𝜖
1. Q(.,.)=0
2. for each episode
3. draw initial state 𝑠~𝜇
4. while (s not terminal)
5. perform 𝑎 = 𝜖-greedy(Q), receive r, s’
6. 𝑄 𝑠, 𝑎 = 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼(𝑟 + 𝛾max

"
𝑄 𝑠#, 𝑏)

7. 𝑠 ← 𝑠#
8. endwhile
9. endfor Note: step 5 can use any other

behavior policies

Online Q-learning Algorithm
• Step 5 can use any other behavior policies to choose action
𝑎, as long as all actions are chosen frequently enough

• The cumulative rewards during Q-learning may not be the
highest

• But after Q-learning converges, can extract an optimal
policy:

𝜋∗ 𝑠 ∈ argmaxJ 𝑄(𝑠, 𝑎)
𝑉∗ 𝑠 = max

J
𝑄∗(𝑠, 𝑎)

Q-Learning: SARSA

An alternative update rule:
• Just use the next action, no max over actions:

• Called state–action–reward–state–action (SARSA)
• Can use with epsilon-greedy policy

Learning rate

Deep Q-Learning

How do we get Q(s,a)?

Mnih et al, "Human-level control through deep reinforcement learning"

Summary of RL

• Reinforcement learning setup
• Mathematical formulation: MDP
• Value functions & the Bellman equation
• Value iteration
• Q-learning

Search and RL Review

• Search
– Uninformed vs Informed
– Optimization

• Games
– Minimax search

• Reinforcement Learning
– MDPs, value iteration, Q-learning

Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
• Path cost g(s) from start to node s
• Successors.

Informed search. Know:
• All uninformed search properties, plus
• Heuristic h(s) from s to goal (recall game heuristic)

start s
goal

g(s)

start s
goal

g(s) h(s)

Fractalsaco

Uninformed Search: Iterative Deepening DFS

Repeated limited DFS
• Search like BFS, fringe like DFS
• Properties:

– Complete
– Optimal (if edge cost 1)
– Time O(bd)
– Space O(bd)

A good option!

Informed Search: A* Search

A*: Expand best g(s) + h(s), with one requirement
• Demand that h(s) £ h*(s)

• If heuristic has this property, “admissible”
– Optimistic! Never over-estimates

• Still need h(s) ≥ 0
– Negative heuristics can lead to strange behavior

V. Batoćanin

Search vs. Optimization

Before: wanted a path from start state to goal state
• Uninformed search, informed search

New setting: optimization
• States s have values f(s)
• Want: s with optimal value f(s) (i.e, optimize over states)
• Challenging setting: too many states for previous search

approaches, but maybe not a continuous function for SGD.

Wiki TuringFin

Hill Climbing Algorithm

Pseudocode:

What could happen? Local optima!

1. Pick initial state s
2. Pick t in neighbors(s) with the largest f(t)
3. if f(t) ≤ f(s) THEN stop, return s
4. s← t. goto 2.

Hill Climbing: Local Optima

Note the local optima. How do we handle them?

Done?

state

f

state

f
Where do I go?

Simulated Annealing

A more sophisticated optimization approach.
• Idea: move quickly at first, then slow down
• Pseudocode:

Pick initial state s
For k = 0 through kmax:

T ← temperature((k+1)/kmax)
Pick a random neighbour, t ← neighbor(s)
If f(s) ≤ f(t), then s ← t
Else, with prob. P(f(s), f (t), T) then s ← t

Output: the final state s

The interesting bit

Games Setup

Games setup: multiple agents

– Now: interactions between agents
– Still want to maximize utility
– Strategic decision making.

World

Player 1

Player 2

Player 3

Minimax Search

Note that long games are yield huge computation
• To deal with this: limit d for the search depth
• Q: What to do at depth d, but no termination yet?

– A: Use a heuristic evaluation function e(x)

Credit: Dana Nau

Building The Theoretical Model

Basic setup:
• Set of states, S
• Set of actions A
• Information: at time t, observe state st∈ S. Get reward rt
• Agent makes choice at∈ A. State changes to st+1, continue

Goal: find a map from states to actions maximize rewards.

World

Agent

Actions

Observations

A “policy”

