Outline

• Review of reinforcement learning
 – MDPs, value functions, Bellman Equation, value iteration

• Q-learning
 – Q function, Q-learning
Building The Theoretical Model

Basic setup:
• Set of states, S
• Set of actions A
• Information: at time t, observe state $s_t \in S$. Get reward r_t
• Agent makes choice $a_t \in A$. State changes to s_{t+1}, continue

Goal: find a map from **states to actions** maximize rewards.

A “policy”
Markov Decision Process (MDP)

The formal mathematical model:

• **State set** S. Initial state s_0. **Action set** A

• **State transition model**: $P(s_{t+1} | s_t, a_t)$
 - Markov assumption: transition probability only depends on s_t and a_t, and not previous actions or states.

• **Reward function**: $r(s_t)$

• **Policy**: $\pi(s) : S \rightarrow A$ action to take at a particular state.
Defining the Optimal Policy

For policy π, expected utility over all possible state sequences from s_0 produced by following that policy:

$$V^\pi(s_0) = \sum \text{sequences starting from } s_0 \ P(\text{sequence})U(\text{sequence})$$

Called the value function (for π, s_0)
Discounting Rewards

One issue: these are infinite series. Convergence?

• Solution

\[U(s_0, s_1, \ldots) = r(s_0) + \gamma r(s_1) + \gamma^2 r(s_2) + \ldots = \sum_{t \geq 0} \gamma^t r(s_t) \]

• Discount factor \(\gamma \) between 0 and 1
 – Set according to how important present is VS future
 – Note: has to be less than 1 for convergence
Deterministic transition. $\gamma = 0.8$, policy shown in red arrow.
Values and Policies

Now that $V^\pi(s_0)$ is defined what a should we take?

• First, set $V^*(s)$ to be expected utility for \textbf{optimal} policy from s

• What’s the expected utility of an action?
 – Specifically, action a in state s?

$$\sum_{s'} P(s'|s, a) V^*(s')$$

All the states we could go to Transition probability Expected rewards
Obtaining the Optimal Policy

We know the expected utility of an action.

- So, to get the optimal policy, compute

\[\pi^*(s) = \arg\max_a \sum_{s'} P(s' | s, a) V^*(s') \]

All the states we could go to

Transition probability

Expected rewards

Credit: L. Lazbenik
Bellman Equation

Let’s walk over one step for the value function:

\[V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s, a) V^*(s') \]

Current state reward

Discounted expected future rewards

Credit: L. Lazbenik
The Bellman equation

Agent receives reward $r(s)$

Agent chooses action a

Environment returns $s' \sim P(\cdot | s, a)$

- Define state utility $V^*(s)$ as the expected sum of discounted rewards if the agent executes an \textit{optimal} policy starting in state s
The Bellman equation

Agent receives reward $r(s)$

Agent chooses action a

Environment returns $s' \sim P(\cdot | s, a)$

• What is the expected utility of taking action a in state s?

$$\sum_{s'} P(s'|s, a)V^*(s')$$
The Bellman equation

Agent receives reward \(r(s) \)

Agent chooses action \(a \)

Environment returns \(s' \sim P(\cdot | s, a) \)

- What is the recursive expression for \(V^*(s) \) in terms of \(V^*(s') \) - the utilities of its successors?

\[
V^*(s) = r(s) + \gamma \sum_{s'} P(s' | s, \pi^* (s)) V^*(s')
\]

Image source: L. Lazbenik
The Bellman equation

Agent receives reward $r(s)$

Environment returns $s' \sim P(\cdot|s, a)$

Agent chooses action a

• How do we choose the action?

$$\pi^*(s) = \arg \max_a \sum_{s'} P(s'|s, a)V^*(s')$$

Image source: L. Lazbenik
The Bellman equation

Agent receives reward $r(s)$

Agent chooses action a

Environment returns $s' \sim P(\cdot | s, a)$

• What is the recursive expression for $V^*(s)$ in terms of $V^*(s')$ - the utilities of its successors?

$$V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s, a)V^*(s')$$

Image source: L. Lazbenik
The Bellman equation

Agent chooses action a

Environment returns $s' \sim P(\cdot | s, a)$

$V^\pi(s) = r(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) V^\pi(s')$

• The same reasoning gives the Bellman equation for a general policy:
Example

Deterministic transition. $\gamma = 0.8$, policy shown in red arrow.
Value Iteration

Q: how do we find $V^*(s)$?

• Why do we want it? Can use it to get the best policy
• Know: reward $r(s)$, transition probability $P(s' | s, a)$
• Also know $V^*(s)$ satisfies Bellman equation (recursion above)

A: Use the property. Start with $V_0(s) = 0$. Then, update

$$V_{i+1}(s) = r(s) + \gamma \max_a \sum_{s'} P(s' | s, a) V_i(s')$$
Q-Learning

Our first reinforcement learning algorithm

- Don’t know the whole r and P. But can see interaction trajectory \((s_t, a_t, r_t, s_{t+1})\)
- **Q-learning**: get an action-utility function \(Q^*(s,a)\) that tells us the value of doing \(a\) in state \(s\)
- Note: \(V^*(s) = \max_a Q^*(s,a)\)
- Now, we can just do \(\pi^*(s) = \arg \max_a Q^*(s,a)\)
 - But need to estimate \(Q^*\)!
The $Q^*(s,a)$ function

- Starting from state s, perform (perhaps suboptimal) action a. THEN follow the optimal policy

\[
Q^*(s, a) = r(s) + \gamma \sum_{s'} P(s' | s, a) V^*(s')
\]

- Equivalent to

\[
Q^*(s, a) = r(s) + \gamma \sum_{s'} P(s' | s, a) \max_b Q^*(s', b)
\]
Q-Learning Iteration

How do we get $Q(s, a)$?

- Similar iterative procedure

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left[r(s_t) + \gamma \max_a Q(s_{t+1}, a) - Q(s_t, a_t) \right]$$

Learning rate

Idea: combine old value and new estimate of future value.

Note: We are using a policy to take actions; based on the estimated Q!
Offline Q-Learning

Estimate $Q^*(s,a)$ from data \{(s_t, a_t, r_t, s_{t+1})\}:

1. Initialize $Q(.,.)$ arbitrarily (e.g., all zeros)

 1. Except terminal states $Q(s_{\text{terminal}}, .) = 0$

2. Iterate over data until $Q(.,.)$ converges:

 $Q(s_t, a_t) \leftarrow (1 - \alpha)Q(s_t, a_t) + \alpha(r_t + \gamma \max_b Q(s_{t+1}, b))$

Learning rate
Online Q-Learning: Exploration Vs. Exploitation

General question!

- **Exploration:** take an action with unknown consequences
 - **Pros:**
 - Get a more accurate model of the environment
 - Discover higher-reward states than the ones found so far
 - **Cons:**
 - When exploring, not maximizing your utility
 - Something bad might happen

- **Exploitation:** go with the best strategy found so far
 - **Pros:**
 - Maximize reward as reflected in the current utility estimates
 - Avoid bad stuff
 - **Cons:**
 - Might also prevent you from discovering the true optimal strategy
Online Q-Learning: Epsilon-Greedy Policy

How to explore?

- With some $0 < \epsilon < 1$ probability, take a random action at each state, or else the action with highest $Q(s,a)$ value.

$$a = \begin{cases} \arg\max_{a \in A} Q(s, a) & \text{uniform}(0, 1) > \epsilon \\ \text{random } a \in A & \text{otherwise} \end{cases}$$
Online Q-learning Algorithm

Input: step size α, greedy parameter ϵ
1. $Q(.,.)=0$
2. for each episode
3. draw initial state $s \sim \mu$
4. while (s not terminal)
5. perform $a = \epsilon$-greedy(Q), receive r, s'
6. $Q(s, a) = (1 - \alpha)Q(s, a) + \alpha(r + \gamma \max_b Q(s', b))$
7. $s \leftarrow s'$
8. endwhile
9. endfor

Note: step 5 can use any other behavior policies
Online Q-learning Algorithm

• Step 5 can use any other behavior policies to choose action \(a \), as long as all actions are chosen frequently enough
• The cumulative rewards during Q-learning may not be the highest
• But after Q-learning converges, can extract an optimal policy:

\[
\pi^*(s) \in \arg\max_a Q(s, a) \\
V^*(s) = \max_a Q^*(s, a)
\]
Q-Learning: SARSA

An alternative update rule:

• Just use the next action, no max over actions:

\[Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha [r(s_t) + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)] \]

• Called state–action–reward–state–action (SARSA)
• Can use with epsilon-greedy policy
Deep Q-Learning

How do we get $Q(s, a)$?

Mnih et al, "Human-level control through deep reinforcement learning"
Summary of RL

• Reinforcement learning setup
• Mathematical formulation: MDP
• Value functions & the Bellman equation
• Value iteration
• Q-learning
Search and RL Review

• Search
 – Uninformed vs Informed
 – Optimization

• Games
 – Minimax search

• Reinforcement Learning
 – MDPs, value iteration, Q-learning
Uninformed vs Informed Search

Uninformed search (all of what we saw). Know:
- Path cost $g(s)$ from start to node s
- Successors.

Informed search. Know:
- All uninformed search properties, plus
- Heuristic $h(s)$ from s to goal (recall game heuristic)
Uninformed Search: Iterative Deepening DFS

Repeated limited DFS

- Search like BFS, fringe like DFS

- **Properties:**
 - Complete
 - Optimal (if edge cost 1)
 - Time $O(b^d)$
 - Space $O(bd)$

A good option!
Informed Search: A* Search

A*: Expand best $g(s) + h(s)$, with one requirement

- Demand that $h(s) \leq h^*(s)$

- If heuristic has this property, “admissible”
 - Optimistic! Never over-estimates

- Still need $h(s) \geq 0$
 - Negative heuristics can lead to strange behavior
Search vs. Optimization

Before: wanted a path from start state to goal state

- Uninformed search, informed search

New setting: optimization

- States s have values $f(s)$
- Want: s with optimal value $f(s)$ (i.e., optimize over states)
- Challenging setting: too many states for previous search approaches, but maybe not a continuous function for SGD.
Hill Climbing Algorithm

Pseudocode:

1. Pick initial state s
2. Pick t in $\text{neighbors}(s)$ with the largest $f(t)$
3. if $f(t) \leq f(s)$ THEN stop, return s
4. $s \leftarrow t$. goto 2.

What could happen? Local optima!
Hill Climbing: Local Optima

Note the **local optima**. How do we handle them?
Simulated Annealing

A more sophisticated optimization approach.

- **Idea**: move quickly at first, then slow down
- **Pseudocode**:

 Pick initial state s
 For $k = 0$ through k_{max}:
 - $T \leftarrow \text{temperature}((k+1)/k_{\text{max}})$
 - Pick a random neighbour, $t \leftarrow \text{neighbor}(s)$
 - If $f(s) \leq f(t)$, then $s \leftarrow t$
 - Else, with prob. $P(f(s), f(t), T)$ then $s \leftarrow t$

Output: the final state s
Games Setup

Games setup: **multiple** agents

- Now: interactions between agents
- Still want to maximize utility
- **Strategic** decision making.
Minimax Search

Note that long games are yield huge computation

• To deal with this: limit d for the search depth
• Q: What to do at depth d, but no termination yet?
 – A: Use a heuristic evaluation function $e(x)$

function $\text{MINIMAX}(x, d)$ returns an estimate of x’s utility value

inputs: x, current state in game

d, an upper bound on the search depth

if x is a terminal state then return Max’s payoff at x

else if $d = 0$ then return $e(x)$

else if it is Max's move at x then

 return $\max\{\text{MINIMAX}(y, d-1) : y \text{ is a child of } x\}$

else return $\min\{\text{MINIMAX}(y, d-1) : y \text{ is a child of } x\}$

Credit: Dana Nau
Building The Theoretical Model

Basic setup:
- Set of states, S
- Set of actions A
- Information: at time t, observe state $s_t \in S$. Get reward r_t
- Agent makes choice $a_t \in A$. State changes to s_{t+1}, continue

Goal: find a map from **states to actions** maximize rewards.

A “policy”