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Announcements

• Homeworks: 
– HW1, HW2 due Thursday. Midterm dates coming

• Class roadmap: Thursday, Sept. 15 Linear Algebra and PCA

Tuesday, Sept. 20 PCA, Stats, Math Review

Thursday, Sept. 22 Introduction to Logic

Tuesday, Sept. 27 Natural Language 
Processing

Tuesday, Sept. 29 Machine Learning: 
Introduction

Fundam
entals



PCA Setup

• Inputs
– Data: 
– Can arrange into 

– Centered!

• Outputs
– Principal components 
– Orthogonal!

Victor Powell



PCA Goals

• Want directions/components (unit vectors) so that
– Projecting data maximizes variance
– What’s projection? 
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Let’s look at an example!



Projection: An Example
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Projection: An Example
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A random line that goes 
through the origin



Projection: An Example
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To quantify how good the 
line fits the data, PCA 
project data onto it…



Projection: An Example
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Goal of PCA: finding a line that 
maximizes the distance from the 
projected points to the origin
(sum over all points)



Projection: An Example
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For a fixed point, this distance gets 
larger as the line fits better 
(why? Pythagorean Theorem)

This orange line is called Principal 
Component 1



PCA First Step

• First component,

• Same as getting



PCA Goals

• Want directions/components (unit vectors) so that
– Projecting data maximizes variance

• Do this recursively
– Get orthogonal directions
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PCA Recursion

• Once we have k-1 components, next?

• Then do the same thing Deflation



Application: Image Compression

• Start with image; divide into 12x12 patches

– I.E., 144-D vector

– Original image:



Application: Image Compression

• 6 most important components (as an image)
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Application: Image Compression

• Project to 6D, 

Compressed Original



Application: Exploratory Data Analysis
• [Novembre et al. ’08]: Take top two singular vectors of 

people x SNP matrix (POPRES) 

16“Genes Mirror Geography in Europe” 



Readings
• Vast literature on linear algebra.
• Local class: Math 341.

• Suggested reading: 
– Lecture notes on PCA by Roughgarden and Valiant

https://web.stanford.edu/class/cs168/l/l7.pdf
– 760 notes by Zhu 

https://pages.cs.wisc.edu/~jerryzhu/cs760/PCA.pdf
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https://web.stanford.edu/class/cs168/l/l7.pdf
https://pages.cs.wisc.edu/~jerryzhu/cs760/PCA.pdf


Break & Quiz
Q 1.1: Are these statements true or false?
(A) The first principal component is found by minimizing the variation 
of the projected points.
(B) The dimension of original data representation is always higher than 
the dimension of transformed representation of PCA.

A. True, True
B. True, False
C. False, True
D. False, False
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Review: Bayesian Inference

• Conditional Prob. & Bayes: 

• H: some class we’d like to infer from evidence
– Need to plug in prior, likelihood, etc.
– How to estimate?



Samples and Estimation
• Usually, we don’t know the distribution (P)

– Instead, we see a bunch of samples

• Typical statistics problem: estimate 
parameters from samples
– Estimate probability P(H)
– Estimate the mean 
– Estimate parameters



Samples and Estimation
• Typical statistics problem: estimate 

parameters from samples
– Estimate probability P(H)
– Estimate the mean 
– Estimate parameters

• Example: Bernoulli with parameter p
– Mean           is p



Examples: Sample Mean

• Bernoulli with parameter p
• See samples 
– Estimate mean with sample mean

– No different from counting heads



Break & Quiz
Q 2.1: You see samples of X given by 
[0,1,1,2,2,0,1,2]. Empirically estimate E[X2]

A. 9/8
B. 15/8
C. 1.5
D. There aren’t enough samples to estimate E[X2]
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Break & Quiz
Q 2.2: You are empirically estimating P(X) for some random 
variable X that takes on 100 values. You see 50 samples. How 
many of your P(X=a) estimates might be 0?

A. None.
B. Between 5 and 50, exclusive.
C. Between 50 and 100, inclusive.
D. Between 50 and 99, inclusive.
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Estimating Multinomial Parameters

• k-sized die (special case: k=2 coin)
• Face i has probability pi, for i=1,...,k
• In n rolls, we observe face i showing up ni times

• Estimate (p1,…, pk) from this data (n1,…, nk) 

!
!"#
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𝑛! = 𝑛



Maximum Likelihood Estimate (MLE)

• The MLE of multinomial parameters 

• “frequency estimate” 

("𝑝!, … , "𝑝" )

!𝑝! =
𝑛!
𝑛



Regularized Estimate
• Equivalent to a specific Maximum A Posterori

(MAP) estimate, or smoothing
• Hyperparameter 

• Avoids zero when n is small 
• Biased, but has smaller variance

!𝑝! =
𝑛! + 𝜖
𝑛 + 𝑘𝜖

𝜖 > 0



Estimating 1D Gaussian Parameters
• Gaussian distribution 
• Observe n data points from this distribution

• Estimate           from this data 
𝑥#, … , 𝑥%

𝑁(𝜇, 𝜎#)

𝜇, 𝜎#



Estimating 1D Gaussian Parameters

• Mean estimate
• Variance estimates

– Unbiased

– MLE 

*𝜇 =
𝑥! +⋯+ 𝑥$

𝑛

𝑠# =
∑%&!$ 𝑥% − *𝜇 #

𝑛 − 1

*𝜎# =
∑%&!$ 𝑥% − *𝜇 #

𝑛



Estimation Theory

• How do we know that the sample mean is a good 
estimate of the true mean?
– Law of large numbers
– Central limit theorems
– Concentration inequalities

Wolfram Demo


