

CS 540 Introduction to Artificial Intelligence Logic University of Wisconsin-Madison

Fall, 2022

Announcements

- Homeworks:
 - Good work on HW1, HW2! HW3 is next.
- Office hours
- Class roadmap:

Tuesday, Sept. 27	Natural Language Processing		
Thursday, Sept. 22	Introduction to Logic		:als
Tuesday, Sept. 20	PCA, Statistics and Math Review		ament
Thursday, Sept. 15	Linear Algebra and PCA		und
Tuesday, Sept. 13	Probability		T

Logic & Al

Why are we studying logic?

- Traditional approach to AI ('50s-'80s)
 - "Symbolic AI"
 - The Logic Theorist 1956
 - Proved a bunch of theorems!
- Logic also the language of:
 - Knowledge rep., databases, etc.

Symbolic Techniques in Al

Lots of systems based on symbolic approach:

- Ex: expert systems, planning, more
- Playing great chess

Less popular recently!

J. Gardner

Symbolic vs Connectionist

Rival approach: connectionist

- Probabilistic models
- Neural networks

years

• Extremely popular last 20

Connectionist Apple

.63

.73

.24

M. Minsky

Symbolic vs Connectionist

Analogy: Logic versus probability

- Which is better?
- Future: combination; best-of-bothworlds
 - Actually been worked on:
 - Example: Markov Logic Networks

Outline

• Introduction to logic

- Arguments, validity, soundness

- Propositional logic
 - Sentences, semantics, inference
- First order logic (FOL)
 - Predicates, objects, formulas, quantifiers

Basic Logic

- Arguments, premises, conclusions
 - Argument: a set of sentences (premises) + a sentence (a conclusion)
 - Validity: argument is valid iff it's necessary that if all premises are true, the conclusion is true
 - Soundness: argument is sound iff valid & premises true
 - Entailment: when valid arg., premises entail conclusion

Propositional Logic Basics

Logic Vocabulary:

- Sentences, symbols, connectives, parentheses
 - Symbols: P, Q, R, ... (atomic sentences)
 - Connectives:

∧ and
 ∨ or
 ⇒ implies
 ⇔ is equivalent
 ¬ not

[conjunction] [disjunction] [implication] [biconditional] [negation]

– Literal: P or negation $\neg P$

Propositional Logic Basics

Examples:

- $(P \lor Q) \Longrightarrow S$
 - "If it is cold or it is raining, then I need a jacket"
- $Q \Rightarrow P$
 - "If it is raining, then it is cold"
- ¬R
 - "It is not hot"

Propositional Logic Basics

Several rules in place

- Precedence: \neg , \land , \lor , \Rightarrow , \Leftrightarrow
- Use parentheses when needed
- Sentences: **well-formed** or not well-formed:
 - $P \Rightarrow Q \Rightarrow S$ not well-formed (not associative!)

Sentences & Semantics

- Think of symbols as defined by user
- Sentences: built up from symbols with connectives
 - Interpretation: assigning True / False to symbols
 - Semantics: interpretations for which sentence evaluates to True
 - Model: (of a set of sentences) interpretation for which all sentences are True

Evaluating a Sentence

• Example:

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

- Note:
 - If P is false, P⇒Q is true regardless of Q ("5 is even implies 6 is odd" is True!)
 - Causality unneeded: "5 is odd implies the Sun is a star" is True!)

Evaluating a Sentence: Truth Table

• Ex:

Ρ	Q	R	P	Q∧R	¬P∨Q∧R	¬P∨Q∧R⇒Q
0	0	0	1	0	1	0
0	0	1	1	0	1	0
0	1	0	1	0	1	1
0	1	1	1	1	1	1
1	0	0	0	0	0	1
1	0	1	0	0	0	1
1	1	0	0	0	0	1
1	1	1	0	1	1	1

• Satisfiable

- There exists some interpretation where sentence true

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy

- A. Both
- B. Neither
- C. Just (i)
- D. Just (ii)

Q 1.1: Suppose P is false, Q is true, and R is true. Does this assignment satisfy

- A. Both
- B. Neither
- C. Just (i)
- D. Just (ii)

Q 1.2: Let A = "Aldo is Italian" and B = "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. A V ($\neg A \rightarrow B$)
- b. A V B
- c. A V (A \rightarrow B)
- d. $A \rightarrow B$

Q 1.2: Let A = "Aldo is Italian" and B = "Bob is English". Formalize "Aldo is Italian or if Aldo isn't Italian then Bob is English".

- a. A \vee (\neg A \rightarrow B)
- b. A V B (equivalent!)
- c. A V (A \rightarrow B)
- d. A \rightarrow B

Q 1.3: How many different assignments can there be to $(x_1 \land y_1) \lor (x_2 \land y_2) \lor \ldots \lor (x_n \land y_n)$

- A. 2
- B. 2ⁿ
- C. 2²ⁿ
- D. 2n

Q 1.3: How many different assignments can there be to $(x_1 \land y_1) \lor (x_2 \land y_2) \lor \ldots \lor (x_n \land y_n)$

- A. 2
- B. 2ⁿ
- C. 2²ⁿ
- D. 2n

Knowledge Bases

- Knowledge Base (KB): A set of sentences
 - Like a long sentence, connect with conjunction

Model of a KB: interpretations where all sentences are True

Goal: inference to discover new sentences

Entailment

Entailment: a sentence logically follows from others

- Like from a KB. Write $A \models B$
- A ⊨ B iff in every interpretation where A is true, B is also true
 All interpretations

Inference

- Given a set of sentences (a KB), logical inference creates new sentences
 - Compare to prob. inference!
- Challenges:
 - Soundness
 - Completeness
 - Efficiency

Methods of Inference: 1. Enumeration

- Enumerate all interpretations; look at the truth table
 - "Model checking"
- Downside: 2ⁿ interpretations for n symbols

S. Leadley

Methods of Inference: 2. Using Rules

- *Modus Ponens*: $(A \Rightarrow B, A) \models B$
- And-elimination
- Many other rules
 - Commutativity, associativity, de Morgan's laws, distribution for conjunction/disjunction

Logical equivalences

 $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutativity of \wedge $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativity of \land $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$ associativity of \lor $\neg(\neg \alpha) \equiv \alpha$ double-negation elimination $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ implication elimination $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ de Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ de Morgan $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of \land over \lor $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of \lor over \land

You can use these equivalences to modify sentences.

Methods of Inference: 3. Resolution

- Convert to special form and use a single rule
- Conjunctive Normal Form (CNF)

$$(\underline{\neg A \lor B \lor C}) \land (\neg B \lor A) \land (\neg C \lor A)$$

a clause

Conjunction of clauses; each clause disjunction of literals

• Simple rules for converting to CNF

Conjunctive Normal Form (CNF)

$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1})$$

- Replace all ⇔ using biconditional elimination
- Replace all

 using implication elimination
- Move all negations inward using -double-negation elimination -de Morgan's rule
- Apply distributivity of $_{\rm \vee}$ over $_{\rm \wedge}$

Convert example sentence into CNF

$$\begin{split} \mathsf{B}_{1,1} &\Leftrightarrow (\mathsf{P}_{1,2} \lor \mathsf{P}_{2,1}) & \text{starting sentence} \\ (\mathsf{B}_{1,1} &\Rightarrow (\mathsf{P}_{1,2} \lor \mathsf{P}_{2,1})) \land ((\mathsf{P}_{1,2} \lor \mathsf{P}_{2,1}) \Rightarrow \mathsf{B}_{1,1}) \\ & \text{biconditional elimination} \\ (\neg \mathsf{B}_{1,1} \lor \mathsf{P}_{1,2} \lor \mathsf{P}_{2,1}) \land (\neg (\mathsf{P}_{1,2} \lor \mathsf{P}_{2,1}) \lor \mathsf{B}_{1,1}) \\ & \text{implication elimination} \\ (\neg \mathsf{B}_{1,1} \lor \mathsf{P}_{1,2} \lor \mathsf{P}_{2,1}) \land ((\neg \mathsf{P}_{1,2} \land \neg \mathsf{P}_{2,1}) \lor \mathsf{B}_{1,1}) \\ & \text{move negations inward} \\ (\neg \mathsf{B}_{1,1} \lor \mathsf{P}_{1,2} \lor \mathsf{P}_{2,1}) \land (\neg \mathsf{P}_{1,2} \lor \mathsf{B}_{1,1}) \land (\neg \mathsf{P}_{2,1} \lor \mathsf{B}_{1,1}) \\ & \text{distribute } \lor \text{over } \land \end{split}$$

Resolution Steps

- Given KB and β (query)
- Add ¬ β to KB, show this leads to empty (False. Proof by contradiction)
- Everything needs to be in CNF
- Example KB:
 - $B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$ - ¬B_{1,1}
- Example query: ¬P_{1,2}

Resolution Preprocessing

- Add $\neg \beta$ to KB, convert to CNF: a1: (¬B_{1.1} V P_{1.2} V P_{2,1}) a2: $(\neg P_{1,2} \lor B_{1,1})$ a3: (¬P_{2.1} V B_{1.1}) b: ¬B_{1.1} c: P_{1.2}
- Want to reach goal: *empty*

Resolution

- Take any two clauses where one contains some symbol, and the other contains its complement (negative)
 PVQVR -QVSVT
- Merge (resolve) them, throw away the symbol and its complement
 PVRVSVT
- If two clauses resolve and there's no symbol left, you have reached *empty* (False). KB |= β
- If no new clauses can be added, KB does not entail $\boldsymbol{\beta}$

Resolution Example

a1:
$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})$$

a2: $(\neg P_{1,2} \lor B_{1,1})$
a3: $(\neg P_{2,1} \lor B_{1,1})$
b: $\neg B_{1,1}$
c: $P_{1,2}$

Resolution Example
a1:
$$(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1})$$

a2: $(\neg P_{1,2} \lor B_{1,1})$
a3: $(\neg P_{2,1} \lor B_{1,1})$
b: $\neg B_{1,1}$
c: $P_{1,2}$

Step 1: resolve a2, c: $B_{1,1}$

Step 2: resolve above and b: *empty*

Q 2.1: Which has more rows: a truth table on *n* symbols, or a joint distribution table on *n* binary random variables?

- A. Truth table
- B. Distribution
- C. Same size
- D. It depends

Q 2.1: Which has more rows: a truth table on *n* symbols, or a joint distribution table on *n* binary random variables?

- A. Truth table
- B. Distribution
- C. Same size
- D. It depends

First Order Logic (FOL)

Propositional logic has some limitations

- Ex: how to say "all squares have four sides"
- No context, hard to generalize; express facts

FOL is a more expressive logic; works over

• Facts, Objects, Relations, Functions

First Order Logic Syntax

- **Term**: an object in the world
 - Constant: Alice, 2, Madison, Green, ...
 - Variables: x, y, a, b, c, ...
 - Function(term₁, ..., term_n)
 - Sqrt(9), Distance(Madison, Chicago)
 - Maps one or more objects to another object
 - Can refer to an unnamed object: LeftLeg(John)
 - Represents a user defined functional relation
- A ground term is a term without variables.

FOL Syntax

- Atom: smallest T/F expression
 - Predicate(term₁, ..., term_n)
 - Teacher(Jerry, you), Bigger(sqrt(2), x)
 - Convention: read "Jerry (is)Teacher(of) you"
 - Maps one or more objects to a truth value
 - Represents a user defined relation
 - term₁ = term₂
 - Radius(Earth)=6400km, 1=2
 - Represents the equality relation when two terms refer to the same object

FOL Syntax

- **Sentence**: T/F expression
 - Atom
 - Complex sentence using connectives: $\land \lor \neg \Rightarrow \Leftrightarrow$
 - Less(x,22) ∧ Less(y,33)
 - Complex sentence using quantifiers ∀, ∃
- Sentences are evaluated under an interpretation
 - Which objects are referred to by constant symbols
 - Which objects are referred to by function symbols
 - What subsets defines the predicates

FOL Quantifiers

- Universal quantifier: ∀
- Sentence is true **for all** values of x in the domain of variable x.
- Main connective typically is \Rightarrow
 - Forms if-then rules
 - "all humans are mammals"
 - $\forall x \text{ human}(x) \Rightarrow \text{mammal}(x)$
 - Means if x is a human, then x is a mammal

FOL Quantifiers

- Existential quantifier: **3**
- Sentence is true for some value of x in the domain of variable x.
- Main connective typically is A
 - -"some humans are male"

x human(x) \wedge male(x)

-Means there is an x who is a human and is a male