

CS 540 Introduction to Artificial Intelligence Natural Language Processing

University of Wisconsin-Madison

Fall 2022

Announcements

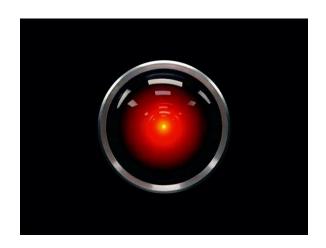
- Homeworks:
 - HW3 in progress.
- Class roadmap:

Tuesday, Sept. 27	NLP	
Thursday, Sept. 29	ML Intro	<u> </u>
Tuesday, Oct. 4	ML Unsupervised I	lachin
Thursday, Oct. 6	ML Unsupervised II	e Le
Tuesday, Oct. 11	ML Linear Regression	arning

What is **NLP**?

Combining computing with human language. Want to:

- Answer questions
- Summarize or extract information
- Translate between languages
- Generate dialogue/language
- Write stories automatically



Why is it **hard**?

Many reasons:

- Ambiguity: "We saw her duck". Several meanings.
- Non-standard use of language
- Segmentation challenges
- Understanding of the world
 - "Bob and Joe are brothers".
 - "Bob and Joe are fathers".

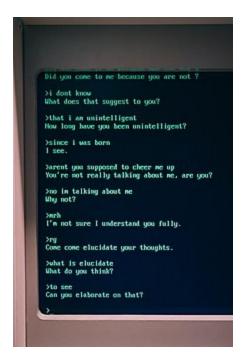
Approaches to NLP

A brief history

- Symbolic NLP: 50's to 90's
- Statistical/Probabilistic: 90's to present
 - Neural: 2010's to present

Lots of progress!

Lots more to work to do



ELIZA program

Outline

- Introduction to language models
 - n-grams, training, improving issues, evaluation
- Classic NLP tasks
 - Part-of-speech tagging, parsing, dependencies
- Word representations
 - One-hot, word embeddings, transformer-based

Language Models

Basic idea: use probabilistic models to assign a probability to a sentence

$$P(W) = P(w_1, w_2, \dots, w_n) \text{ or } P(w_{\text{next}} | w_1, w_2 \dots)$$

- Goes back to Shannon
 - Information theory: letters

	ALEON OF DAMAGE PROPERTY AT DAMAGE PROPERTY.		
	XFOML RXKHRJFFJUJ ALPWXFWJXYJ		
Zero-order approximation	FFJEYVJCQSGHYD		
	QPAAMKBZAACIBZLKJQD		
	OCRO HLO RGWR NMIELWIS EU LL		
First-order approximation	NBNESEBYA TH EEI ALHENHTTPA		
	OOBTTVA NAH BRL		
Second-order approximation	ON IE ANTSOUTINYS ARE T INCTORE		
	ST BE S DEAMY ACHIN D ILONASIVE		
	TUCOOWE AT TEASONARE FUSO TIZIN		
	ANDY TOBE SEACE CTISBE		
Third-order approximation	IN NO IST LAT WHEY CRATICT		
	FROURE BIRS GROCID PONDENOME		
	OF DEMONSTURES OF THE REPTAGIN		
	IS REGOACTIONA OF CRE		
	REPRESENTING AND SPEEDILY IS AN		
	GOOD APT OR COME CAN DIFFERENT		
	NATURAL HERE HE THE A IN CAME		
First-order word approximation	THE TO OF TO EVDEDT OP AV COME TO		

Training The Model

Recall the chain rule

$$P(w_1, w_2, \dots, w_n) = P(w_1)P(w_2|w_1)\dots P(w_n|w_{n-1}\dots w_1)$$

- How do we estimate these probabilities
 - Same thing as "training"
- From data?
 - Yes, but not directly: too many sentences.
 - Can't estimate reliably.

Training: Make Assumptions

Markov-type assumptions:

$$P(w_i|w_{i-1}w_{i-2}\dots w_1) = P(w_i|w_{i-1}w_{i-2}\dots w_{i-k})$$

- Present doesn't depend on whole past
 - Just recent past
 - Markov chains have k=1. (Present only depends on immediate past).
 - What's **k=0?**

k=0: **Uni**gram Model

- Full independence assumption:
 - (Present doesn't depend on the past)

$$P(w_1, w_2, \dots, w_n) = P(w_1)P(w_2)\dots P(w_n)$$

Example (from Dan Jurafsky's notes)

fifth, an, of, futures, the, an, incorporated, a, a, the, inflation, most, dollars, quarter, in, is, mass thrift, did, eighty, said, hard, 'm, july, bullish that, or, limited, the

k=1: **Bi**gram Model

Markov Assumption:

(Present depends on immediate past)

$$P(w_1, w_2, \dots, w_n) = P(w_1)P(w_2|w_1)P(w_3|w_2)\dots P(w_n|w_{n-1})$$

Example:

texaco, rose, one, in, this, issue, is, pursuing, growth, in, a, boiler, house, said, mr., gurria, mexico, 's, motion, control, proposal, without, permission, from, five, hundred, fifty, five, yen outside, new, car, parking, lot, of, the, agreement, reached this, would, be, a, record, november

k=n-1: **n-**gram Model

Can do trigrams, 4-grams, and so on

- More expressive as n goes up
- Harder to estimate

Training: just count? I.e, for bigram:

$$P(w_i|w_{i-1}) = \frac{\operatorname{count}(w_{i-1}, w_i)}{\operatorname{count}(w_{i-1})}$$

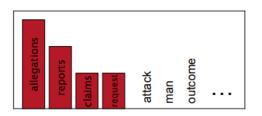
n-gram Training

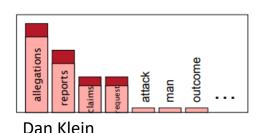
Issues:

$$P(w_i|w_{i-1}) = \frac{\text{count}(w_{i-1}, w_i)}{\text{count}(w_{i-1})}$$

- 1. Multiply tiny numbers?
 - Solution: use logs; add instead of multiply
- 2. n-grams with zero probability?
 - Solution: smoothing

$$P(w_i|w_{i-1}) = \frac{\text{count}(w_{i-1}, w_i) + 1}{\text{count}(w_{i-1}) + V}$$





Other Solutions: Backoff & Interpolation

For **issue 2**, back-off methods

 Use n-gram where there is lots of information, rgram (with r << n) elsewhere. (trigrams / bigrams)

Interpolation

Mix different models: (tri- + bi- + unigrams)

$$\hat{P}(w_i|w_{i-1},w_{i-2}) = \lambda_1 P(w_i|w_{i-1},w_{i-2}) + \lambda_2 P(w_i|w_{i-1}) + \lambda_3 P(w_i)$$

n-gram Training Issues

Issues:

- 1. Multiply tiny numbers?
 - Solution: use logs; add instead of multiply
- 2. Sparse n-grams
 - Solution: smoothing, backoff, interpolation
- 3. Vocabulary: open vs closed
 - Solution: use <UNK> unknown word token

Vocabulary: open vs closed

- Possible to estimate size of unknown vocabulary
 - Good-Turing estimator
- Originally developed to crack the Enigma machine



Evaluating Language Models

How do we know we've done a good job?

- Observation
- Train/test on separate data & measure metrics
- Metrics:
 - 1. Extrinsic evaluation
 - 2. Perplexity

Extrinsic Evaluation

How do we know we've done a good job?

- Pick a task and use the model to do the task
- For two models, M₁, M₂, compare the accuracy for each task
 - Ex: Q/A system: how many questions right. Translation: how many words translated correctly
- Downside: slow; may change relatively

Intrinsic Evaluation: Perplexity

Perplexity is a measure of uncertainty

$$PP(W) = P(w_1, w_2, \dots, w_n)^{-\frac{1}{n}}$$

Lower is better! Examples:

- WSJ corpus; 40 million words for training:
 - Unigram: 962, Bigram 170, Trigram 109

Further NLP Tasks

Language modeling is not the only task. Two further types:

1. Auxilliary tasks:

Part-of-speech tagging, parsing, etc.

2. Direct tasks:

Question-answering, translation, summarization, classification (e.g., sentiment analysis)

Part-of-speech Tagging

Tag words as nouns, verbs, adjectives, etc.

- Tough part: ambiguous, even for people.
- Needs:
 - Getting neighboring word parts right
 - Knowledge of words ("man" is used as a noun, rarely as

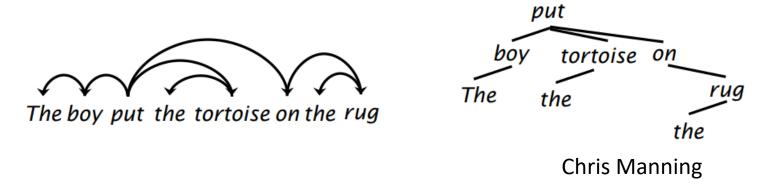
verb)

Model	Features	Token	Unknown	Sentence
Baseline	56,805	93.69%	82.61%	26.74%
3Words	239,767	96.57%	86.78%	48.27%

Chris Manning

Parsing

Get the grammatical structure of sentences



 Which words depend on each other? Note: input a sentence, output a tree (dependency parsing)

Representing Words

Remember value of random variables (RVs)

Easier to work with than objects like 'dog'

Traditional representation: one-hot vectors

$$dog = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

- Dimension: # of words in vocabulary
- Relationships between words?

Smarter Representations

Distributional semantics: account for relationships

 Reps should be close/similar to other words that appear in a similar context

Dense vectors:

$$dog = \begin{bmatrix} 0.13 & 0.87 & -0.23 & 0.46 & 0.87 & -0.31 \end{bmatrix}^{T}$$

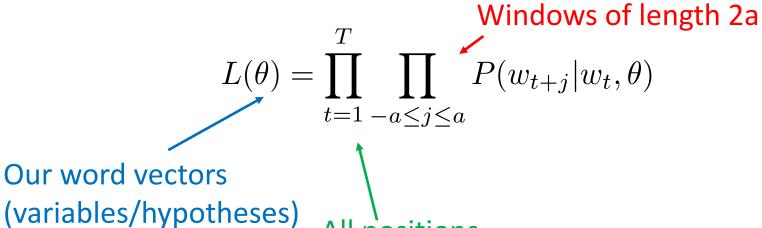
$$cat = \begin{bmatrix} 0.07 & 1.03 & -0.43 & -0.21 & 1.11 & -0.34 \end{bmatrix}^{T}$$

AKA word embeddings

Training Word Embeddings

Many approaches (super popular 2010-present)

- Word2vec: a famous approach
- What's our likelihood?



Training Word Embeddings

Word2vec likelihood

$$L(\theta) = \prod_{t=1}^{I} \prod_{-a < j < a} P(w_{t+j}|w_t, \theta)$$

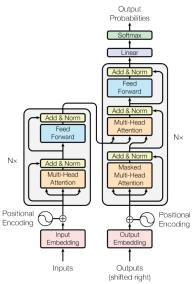
- Maximize this; what's the probability?
 - Two vectors per word. v_w , u_w for center/context (o is context word, c is center)

Similarity
$$P(o|c) = \frac{\exp(u_o^T v_c)}{\sum_{w \in V} \exp(u_w^T v_c)}$$

Beyond "Shallow" Embeddings

- Transformers: special model architectures based on attention
 - Sophisticated types of neural networks
- Pretrained models
 - Based on transformers: BERT
 - Include context!

• **Fine-tune** for desired task



Vaswani et al. 17

Reading

 Natural Language and Statistics, Notes by Zhu. https://pages.cs.wisc.edu/~jerryzhu/cs540/ha
 ndouts/NLP.pdf