

CS 540 Introduction to Artificial Intelligence Unsupervised Learning I

Fall 2022

Announcements

- Homeworks:
 - HW3 due
- Class roadmap:

Tuesday, Oct. 4	ML Unsupervised I
Thursday, Oct. 6	ML Unsupervised II
Tuesday, Oct. 11	ML Linear Regression
Thursday, Oct. 13	Machine Learning: K - Nearest Neighbors & Naive Bayes

Machine Learning

Recap of Supervised/Unsupervised

Supervised learning:

- Make predictions, classify data, perform regression
- Dataset: $(\mathbf{x}_1, y_1), (\mathbf{x}_2, y_2), \dots, (\mathbf{x}_n, y_n)$

Features / Covariates / Input

Labels / Outputs

• Goal: find function $f: X \to Y$ to predict label on **new** data

indoor

outdoor

Recap of Supervised/Unsupervised

Unsupervised learning:

- No labels; generally won't be making predictions
- Dataset: $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$
- Goal: find patterns & structures that help better understand data.

Mulvey and Gingold

Recap of Supervised/Unsupervised

Note that there are **other kinds** of ML:

- Mixtures: semi-supervised learning, self-supervised
 - Idea: different types of "signal"
- Reinforcement learning
 - Learn how to act in order to maximize rewards
 - Later on in course...

Outline

- Intro to Clustering
 - Clustering Types, Centroid-based, k-means review
- Hierarchical Clustering
 - Divisive, agglomerative, linkage strategies

Unsupervised Learning & Clustering

- Note that clustering is just one type of unsupervised learning (UL)
 - PCA is another unsupervised algorithm
- Estimating probability distributions also UL (GANs)
- Clustering is popular & useful!

StyleGAN2 (Kerras et al '20)

Clustering Types

Several types of clustering

Partitional

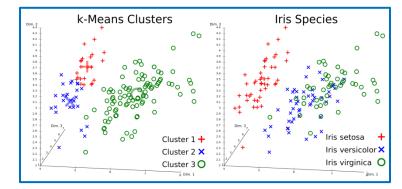
- Center-based
- Graph-theoretic
- Spectral

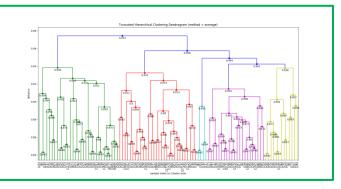
Hierarchical

- Agglomerative
- Divisive

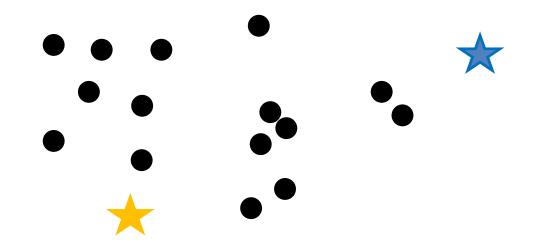
Bayesian

- Decision-based
- Nonparametric





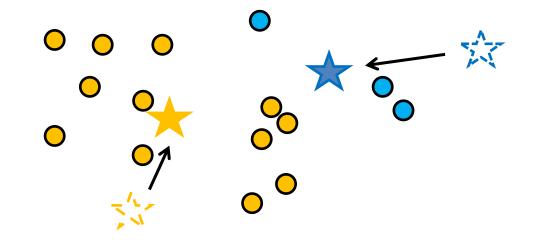
- k-means is an example of partitional **center-based**
- Recall steps: **1.** Randomly pick k cluster centers



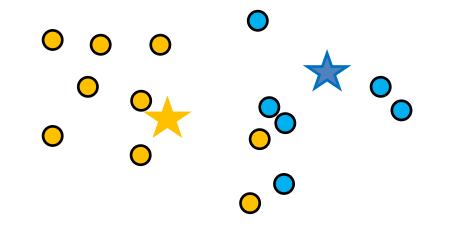
• 2. Find closest center for each point



• 3. Update cluster centers by computing centroids



• Repeat Steps 2 & 3 until convergence



K-means algorithm

- Input: $x_1, x_2, ..., x_n, k$
- Step 1: select k cluster centers c_1, c_2, \dots, c_k
- Step 2: for each point x_i , assign it to the closest center in Euclidean distance:

$$y(x_i) = \operatorname{argmin}_j ||x_i - c_j||$$

• Step 3: update all cluster centers as the centroids:

$$c_j = \frac{\sum_{x:y(x)=j} x}{\sum_{x:y(x)=j} 1}$$

• Repeat Step 2 and 3 until cluster centers no longer change

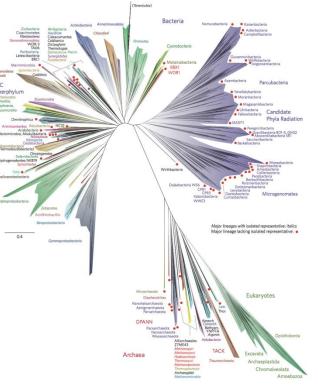
Questions on k-means

- What is k-means trying to optimize?
- Will k-means stop (converge)?
- Will it find a global or local optimum?
- How to pick starting cluster centers?
- How many clusters should we use?

Hierarchical Clustering

Basic idea: build a "hierarchy"

- Want: arrangements from specific to general
- One advantage: no need for k, number of clusters.
- Input: points. Output: a hierarchy
 - A binary tree

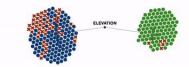


Credit: Wikipedia

Agglomerative vs Divisive

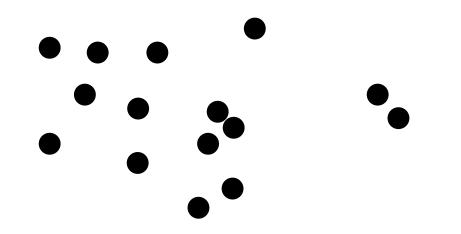
Two ways to go:

- Agglomerative: bottom up.
 - Start: each point a cluster. Progressively merge clusters
- **Divisive**: top down
 - Start: all points in one cluster. Progressively split clusters

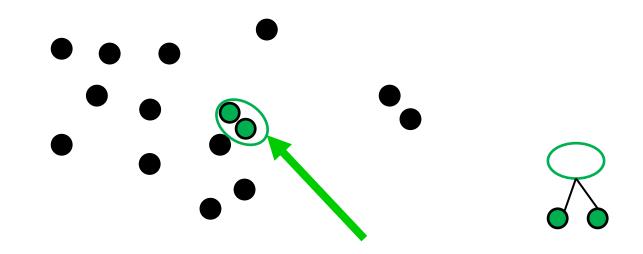


Credit: r2d3.us

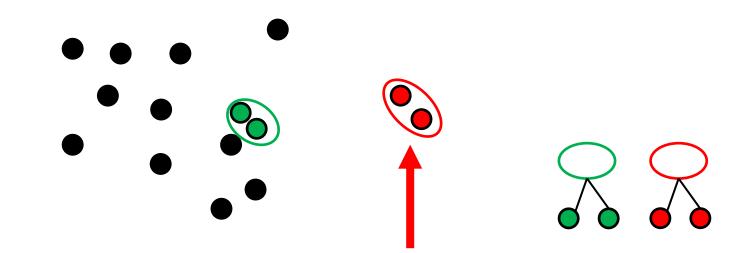
Agglomerative. Start: every point is its own cluster



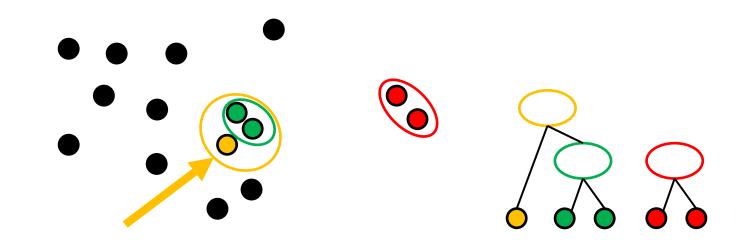
Get pair of clusters that are closest and merge



Repeat: Get pair of clusters that are closest and merge



Repeat: Get pair of clusters that are closest and merge



Merging Criteria

Merge: use closest clusters. Define closest?

• Single-linkage

$$d(A, B) = \min_{x_1 \in A, x_2 \in B} d(x_1, x_2)$$

• Complete-linkage

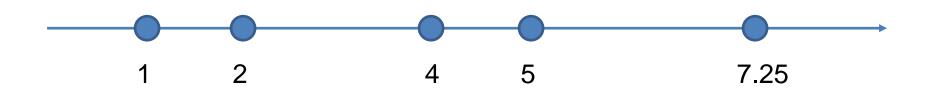
$$d(A, B) = \max_{x_1 \in A, x_2 \in B} d(x_1, x_2)$$

• Average-linkage

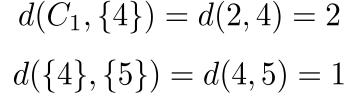
$$d(A,B) = \frac{1}{|A||B|} \sum_{x_1 \in A, x_2 \in B} d(x_1, x_2)$$

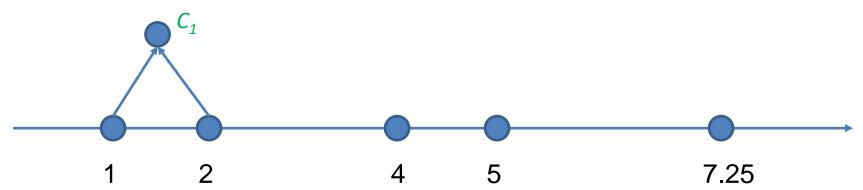
We'll merge using single-linkage

- 1-dimensional vectors.
- Initial: all points are clusters



We'll merge using single-linkage

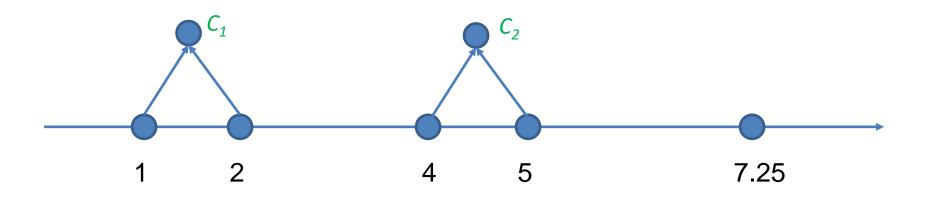




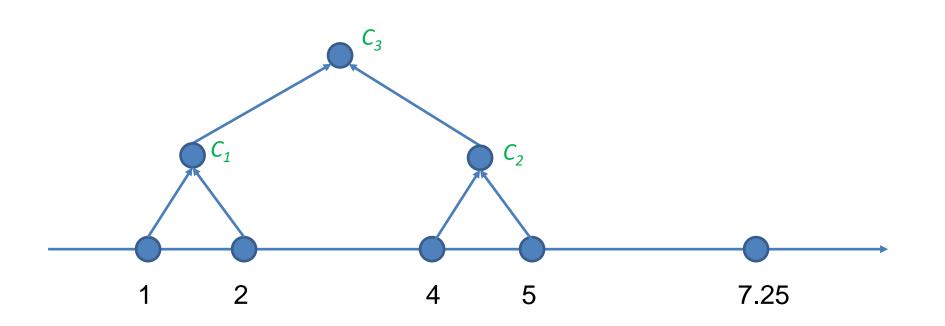
Continue...

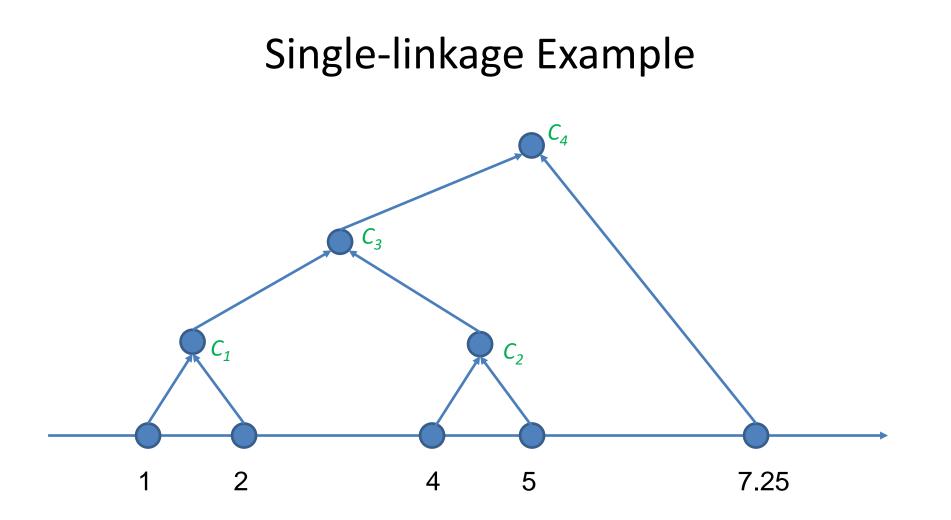
$$d(C_1, C_2) = d(2, 4) = 2$$

 $d(C_2, \{7.25\}) = d(5, 7.25) = 2.25$



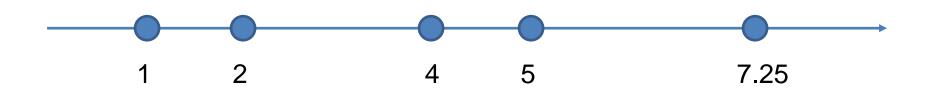
Continue...



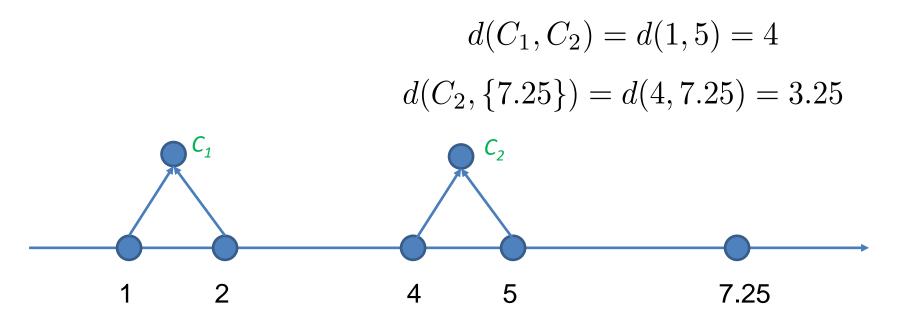


We'll merge using complete-linkage

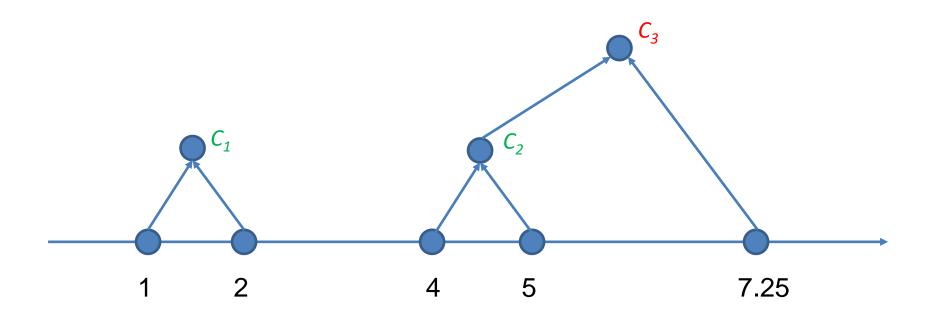
- 1-dimensional vectors.
- Initial: all points are clusters

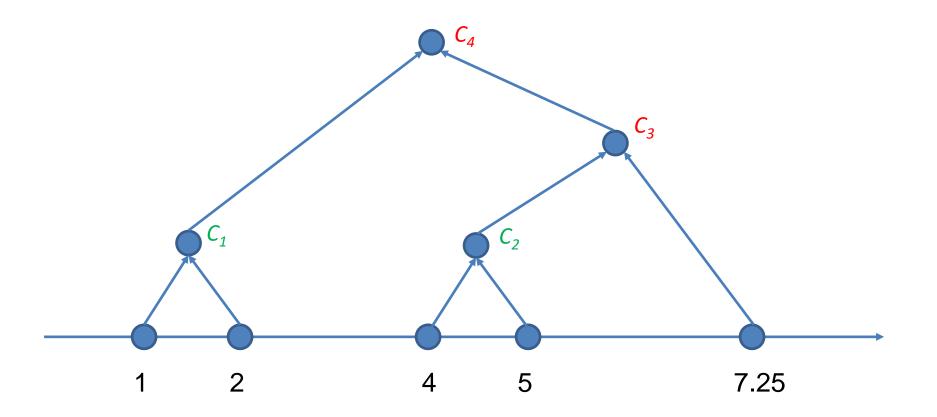


Beginning is the same...



Now we diverge:





When to Stop?

No simple answer:

Use the binary tree (a dendogram)

• Cut at different levels (g different heights/depth:

