

# CS 540 Introduction to Artificial Intelligence Unsupervised Learning II 

## University of Wisconsin-Madison

Fall 2022

## Announcements

- Homeworks:
- HW4 out, HW2 grades released tonight
- Midterm: online
- Class roadmap:

| Thursday, Oct. 6 | ML Unsupervised II |
| :--- | :--- |
| Tuesday, Oct. 11 | ML Linear Regression |
| Thursday, Oct. 13 | Machine Learning: K - <br>  <br>  <br>  <br>  <br> Naive Bayes |
| Tuesday, Oct. 18 | Machine Learning: <br> Neural Networks I <br> (Perceptron) |

## Outline

- Finish up Other Clustering Types
- Graph-based, cuts, spectral clustering
- Unsupervised Learning: Visualization
- t-SNE, algorithm, example, vs. PCA
- Unsupervised Learning: Density Estimation
- Kernel density estimation: high-level intro


## Other Types of Clustering

Graph-based/proximity-based

- Recall: Graph $G=(V, E)$ has vertex set $V$, edge set $E$.
- Edges can be weighted or unweighted
- Encode similarity: $w_{i j}=\operatorname{sim}\left(v_{i}, v_{j}\right)$
- Don't need to KEEP vectors v
- Only keep the edges (possibly weighted)



## Graph-Based Clustering

Want: partition V into $\mathrm{V}_{1}$ and $\mathrm{V}_{2}$

- Implies a graph "cut"
- One idea: minimize the weight of the cut


$$
\begin{gathered}
W(A, B)=\sum_{i \in A, j \in B} w_{i j} \\
\operatorname{cut}\left(A_{1}, \ldots, A_{k}\right):=\frac{1}{2} \sum_{i=1}^{k} W\left(A_{i}, \bar{A}_{i}\right) .
\end{gathered}
$$

## Partition-Based Clustering

## How do we compute these?

- Hard problem $\rightarrow$ heuristics
- Greedy algorithm
- "Spectral" approaches
- Spectral clustering approach:
- Adjacency matrix

$A=\left[\begin{array}{lllll}0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0\end{array}\right]$


## Partition-Based Clustering

- Spectral clustering approach:
- Adjacency matrix
- Degree matrix


$$
D=\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right] \quad A=\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

## Spectral Clustering

- Spectral clustering approach:
- 1. Compute Laplacian L = D - A
(Important tool in graph theory)

$$
L=\underbrace{\left[\begin{array}{lllll}
2 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 \\
0 & 0 & 0 & 0 & 2
\end{array}\right]}_{\text {Degree Matrix }}-\underbrace{\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 & 0
\end{array}\right]}_{\text {Adjacency Matrix }}=\left[\begin{array}{ccccc}
\left.\begin{array}{ccccc}
2 & 0 & 0 & -1 & -1 \\
0 & 2 & -1 & -1 & 0 \\
0 & -1 & 1 & 0 & 0 \\
-1 & -1 & 0 & 3 & -1 \\
-1 & 0 & 0 & -1 & 2
\end{array}\right]
\end{array}\right.
$$

## Spectral Clustering

- Spectral clustering approach:
- 1. Compute Laplacian L = D - A
- 1a (optional): compute normalized Laplacian:

$$
L=I-D^{-1 / 2} A D^{-1 / 2} \text {, or } L=I-D^{-1} A
$$



- 2. Compute $k$ smallest eigenvectors of $L$
-3 . Set $U$ to be the $n \times k$ matrix with $u_{1}, \ldots, u_{k}$ as columns. Take the $n$ rows formed as points
-4. Run k-means on the representations


## Why normalized Laplacian?



Want: partition V into $\mathrm{V}_{1}$ and $\mathrm{V}_{2}$

- Implies a graph "cut"
- One idea: minimize the weight of the cut
- Downside: might just cut of one node
- Need: "balanced" cut



## Why Normalized Laplacian?

Want: partition $V$ into $V_{1}$ and $V_{2}$

- Just minimizing weight is not always a good idea.
- We want balance!

$$
\begin{gathered}
\operatorname{Ncut}\left(A_{1}, \ldots, A_{k}\right):=\frac{1}{2} \sum_{i=1}^{k} \frac{W\left(A_{i}, \bar{A}_{i}\right)}{\operatorname{vol}\left(A_{i}\right)} \\
\operatorname{vol}(A)=\sum_{i \in A} \operatorname{degree}(i)
\end{gathered}
$$

## Spectral Clustering

- Compare/contrast to PCA:
- Use an eigendecomposition / dimensionality reduction
- But, run on Laplacian (not covariance); use smallest eigenvectors, not largest
- Intuition: Laplacian encodes structure information
- "Lower" eigenvectors give partitioning information


## Spectral Clustering

## Q: Why do this?

- 1. No need for points or distances as input
- 2. Can handle intuitive separation (k-means can't!)

K-Means Circles


Spectral Circles


## Break \& Quiz

Q 1.1: We have two datasets: a social network dataset $S_{1}$ which shows which individuals are friends with each other along with image dataset $S_{2}$.
What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$
- B. graph-based on $S_{1}$ and k-means on $S_{2}$
- C. k-means on $\mathrm{S}_{1}$ and graph-based on $\mathrm{S}_{2}$
- D. hierarchical on $\mathrm{S}_{1}$ and graph-based on $\mathrm{S}_{2}$


## Break \& Quiz

Q 1.1: We have two datasets: a social network dataset $S_{1}$ which shows which individuals are friends with each other along with image dataset $S_{2}$.

What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both $\mathrm{S}_{1}$ and $\mathrm{S}_{2}$
- B. graph-based on $\mathrm{S}_{1}$ and k-means on $\mathrm{S}_{2}$
- C. k-means on $\mathrm{S}_{1}$ and graph-based on $\mathrm{S}_{2}$
- D. hierarchical on $\mathrm{S}_{1}$ and graph-based on $\mathrm{S}_{2}$


## Break \& Quiz

Q 1.1: We have two datasets: a social network dataset $S_{1}$ which shows which individuals are friends with each other along with image dataset $S_{2}$.
What kind of clustering can we do? Assume we do not make additional data transformations.

- A. k-means on both $S_{1}$ and $S_{2}$ (No: can't do k-means on graph)
- B. graph-based on $S_{1}$ and k-means on $S_{2}$
- C. k-means on $\mathrm{S}_{1}$ and graph-based on S (Same as A)
- D. hierarchical on $\mathrm{S}_{1}$ and graph-based on $\mathrm{S}_{2}$ (No: $\mathrm{S}_{2}$ is not a graph)


## Break \＆Quiz

Q 1．2：The CIFAR－10 dataset contains $32 \times 32$ images labeled with one of 10 classes．What could we use it for？
（i）Supervised learning（ii）PCA（iii）k－means clustering
－A．Only（i）
－B．Only（ii）and（iii）
－C．Only（i）and（ii）
－D．All of them

| $\substack{\text { airplane } \\ \text { automotio }}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | 룽서 | 318 |  | ⿵冂⿱一口刂土） |
| brid | 囯 | $1{ }^{1}$ |  | －31 |
| cat | F | 20． |  | 1 |
| doer |  | 3 －${ }^{\text {cosis }}$ |  | 70．0 |
| dog | 圂， | 0 Cl | 1 | caty |
| tog | ［10］ |  |  |  |
| norso | 부NN |  |  | W |
| stip | 줄N․ | $\mathrm{S}^{-1 / 1}$ |  | $\cdots$ |
| truek |  |  |  |  |

## Break \& Quiz

Q 1.2: The CIFAR-10 dataset contains $32 \times 32$ images labeled with one of 10 classes. What could we use it for?
(i) Supervised learning (ii) PCA (iii) k-means clustering

- A. Only (i)
- B. Only (ii) and (iii)
- C. Only (i) and (ii)
- D. All of them


## Break \& Quiz

Q 1.2: The CIFAR-10 dataset contains $32 \times 32$ images labeled with one of 10 classes. What could we use it for?
(i) Supervised learning (ii) PCA (iii) k-means clustering

- (i) Yes: train an image classifier; have labels)
- (ii) Yes: run PCA on image vectors to reduce dimensionality
- (iii) Yes: can cluster image vectors with k-means
- D. All of them


## Unsupervised Learning Beyond Clustering

Data analysis, dimensionality reduction, etc

- Already talked about PCA
- Note: PCA can be used for visualization, but not specifically designed for it
- Some algorithms specifically for visualization


Philip Slingerland

## Dimensionality Reduction \& Visualization

Typical dataset: MNIST

- Handwritten digits 0-9
- 60,000 images (small by ML standards)
- 28×28 pixel (784 dimensions) 0000000000000000
- Standard for image
experiments
- Dimensionality reduction?

| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
| 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 |
| 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 |
| 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 | 7 |
| 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
| 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 |

## Dimensionality Reduction \& Visualization

## Run PCA on MNIST

- PCA is a linear mapping, (can be restrictive)


## Visualization: T-SNE

## Typical dataset: MNIST

- T-SNE: project data into just 2 dimensions
- Try to maintain structure
- MNIST Example
- Input: $x_{1}, x_{2}, \ldots, x_{n}$
- Output: 2D/3D $y_{1}, \mathrm{y}_{2}, \ldots, \mathrm{y}_{\mathrm{n}}$



## T-SNE Algorithm: Step 1

How does it work? Two steps

- 1. Turn vectors into probability pairs
- 2. Turn pairs back into (lower-dim) vectors

Step 1:

$$
p_{j \mid i}=\frac{\exp \left(-\left\|x_{i}-x_{j}\right\|^{2} / 2 \sigma_{i}^{2}\right)}{\sum_{k \neq i} \exp \left(-\left\|x_{i}-x_{k}\right\|^{2} / 2 \sigma_{i}^{2}\right)} \quad p_{i j}=\frac{1}{2 n}\left(p_{j \mid i}+p_{i \mid j}\right)
$$

Intuition: probability that $x_{i}$ would pick $x_{j}$ as its neighbor under a Gaussian probability

## T-SNE Algorithm: Step 2

How does it work? Two steps

- 1. Turn vectors into probability pairs
- 2. Turn pairs back into (lower-dim) vectors


Step 2: set

$$
q_{i j}=\frac{\left(1+\left\|y_{i}-y_{j}\right\|^{2}\right)^{-1}}{\sum_{k \neq \ell}\left(1+\left\|y_{k}-y_{\ell}\right\|^{2}\right)^{-1}}
$$

and minimize

$$
\sum_{i, j} p_{i j} \log \frac{p_{i j}}{q_{i j}}<\stackrel{\substack{\text { KL Divergence } \\ \text { between } \mathrm{p} \text { and } \mathrm{q}}}{\substack{\text {. }}}
$$

## T-SNE Algorithm: Step 2

## More on step 2:

- We have two distributions $p, q . p$ is fixed
- $q$ is a function of the $y_{i}$ which we move around
- Move $y_{i}$ around until the KL divergence is small
- So we have a good representation!

KL Divergence between p and q

- Optimizing a loss function---we'll see more in supervised learning.


## T-SNE Examples

- Examples: (from Laurens van der Maaten)
- Movies:
https://Ivdmaaten.github.io/tsne/examples/netflix_tsne.jpg



## T-SNE Examples

- Examples: (from Laurens van der Maaten)
- NORB:
https://lvdmaaten.github.io/tsne/examples/norb_tsne.jpg



## Visualization: T-SNE

## t-SNE vs PCA?

- "Local" vs "Global"
- Lose information in t-SNE
- not a bad thing necessarily

- Downstream use

Good resource/credit:
https://www.thekerneltrip.com/statistics/tsne-vs-pca/


## Break \& Quiz

Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never
- B. Yes, after running PCA on them
- C. Yes, after mapping them into $\mathrm{R}^{d}$ (ie, embedding)
- D. Yes, after running hierarchical clustering on them


## Break \& Quiz

Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never
- B. Yes, after running PCA on them
- C. Yes, after mapping them into $\mathbf{R}^{d}$ (ie, embedding)
- D. Yes, after running hierarchical clustering on them


## Break \& Quiz

Q 2.1: Can we do t-SNE on NLP (words) or graph datasets?

- A. Never (No: too strong)
- B. Yes, after running PCA on them (No: can't run PCA on words or graphs directly. Need vectors)
- C. Yes, after mapping them into $R^{d}$ (ie, embedding)
- D. Yes, after running hierarchical clustering on them (No: hierarchical clustering gives us a graph)


## Short Intro to Density Estimation

Goal: given samples $x_{1}, \ldots, x_{\mathrm{n}}$ from some distribution $P$, estimate $P$.

- Compute statistics (mean, variance)
- Generate samples from P
- Run inference



## Simplest Idea: Histograms

Goal: given samples $x_{1}, \ldots, x_{\mathrm{n}}$ from some distribution $P$, estimate $P$.


Define bins; count \# of samples in each bin, normalize

## Simplest Idea: Histograms

Goal: given samples $x_{1}, \ldots, x_{\mathrm{n}}$ from some distribution $P$, estimate $P$.

## Downsides:

i) High-dimensions: most bins empty
ii) Not continuous
iii) How to choose bins?


## Kernel Density Estimation

Goal: given samples $x_{1}, \ldots, x_{\mathrm{n}}$ from some distribution $P$, estimate $P$.

Idea: represent density as combination of "kernels"

$$
\begin{array}{cl}
f(x)=\frac{1}{n h} \sum_{i=1}^{n} K\left(\frac{x-x_{i}}{h}\right) & \begin{array}{c}
\text { Center at } \\
\text { each point }
\end{array} \\
\text { Kernel function: often } & \text { Width } \\
\text { Gaussian } & \text { parameter }
\end{array}
$$

## Kernel Density Estimation

Idea: represent density as combination of kernels

- "Smooth" out the histogram



