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In this lecture, we first introduce a simple example of the Empirical Rademacher Complexity (ERM).
Then, we introduce the Rademacher Complexity, which can be applied to derive an upper bound for

ES

[
suph∈H(R̂S(h)−R(h))

]
. After that, we will state a bound for PAC learning. Finally, we will introduce

the growth function.

1 Rademacher Complexity

Before introducing Rademacher complexity, we first give a simple example to recap the Empirical Rademacher
Complexity (ERM).
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Figure 1: Two example threshold functions, where the hypothesis is either h(x) = I(x ≥ a) or h(x) = I(x ≤ a)

Consider the dataset S = {(x1 = 0, y1 = 0), (x2 = 1, y2 = 1)} and two hypothesis classes:

H1 = {ha(x) = 1{x≥a} | ∀a ∈ R} “one-sided threshold”

H2 = H1 ∪ {h′
a(x) = 1{x<a} | ∀a ∈ R} “two-sided threshold”

In this example, we have two data in our dataset. Therefore, σ is a two-dimensional vector, which can take
4 different possible values: (1, 1), (1,−1), (−1, 1), (−1,−1). Then, we can calculate the ERM by calculating
the supremum under each of the four possible values and taking the expectation. Finally, we obtain

R̂ad(S,H1) =
1

4
(
1

2
+

1

2
+

1

2
+ 0) =

3

8

R̂ad(S,H2) =
1

4
(1 +

1

2
+

1

2
+ 0) =

1

2
.

Next, we introduce the definition for Rademacher complexity.

1



Definition 1. Given a hypothesis class H and n ∈ N, the Rademacher complexity of H is defined as follows:

Radn(H) = ES∼Pn
xy

[
R̂ad(S,H)

]
= ES,σ

[
sup
h∈H

1

n

n∑
i=1

σiℓ(h(xi), yi)

]
Lemma 1. Given a hypothesis class H and n ∈ N, we have

ES∼Pn
xy

[
sup
h∈H

(R̂S(h)−R(h))

]
≤ 2Radn(H)

Lemma 1 can be used to derive the PAC learning bound for ERM, which is showed in the next section.
The proof of Lemma 1 is given below.
Proof

LHS = ES

[
sup
h∈H

(R̂S(h)− ES′ [R̂S′(h)]

]
∵ S′drawn from Pn

xy and independent with S

= ES

[
sup
h∈H

ES′ [R̂S(h)− R̂S′(h)]

]
≤ ES,S′

[
sup
h∈H

[R̂S(h)− R̂S′(h)]

]
∵ supE ≤ E sup (subadditivity)

= ES,S′

[
sup
h∈H

1

n

n∑
i=1

[ℓ(h(xi), yi)− ℓ(h(x′
i), y

′
i)]

]

= ES,S′,σ

[
sup
h∈H

1

n

n∑
i=1

[σiℓ(h(xi), yi)− σiℓ(h(x
′
i), y

′
i)]

]
∵ the symmetry of the two datasets S, S′

= ES,S′,σ

[
sup
h∈H

1

n

n∑
i=1

[σiℓ(h(xi), yi)] +
1

n

n∑
i=1

[−σiℓ(h(x
′
i), y

′
i)]

]

≤ ES,σ

[
sup
h∈H

1

n

n∑
i=1

[σiℓ(h(xi), yi)]

]
+ ES′,σ

[
sup
h∈H

1

n

n∑
i=1

[−σiℓ(h(x
′
i), y

′
i)]

]
∵ sup(a+ b) ≤ sup a+ sup b

= ES,σ

[
sup
h∈H

1

n

n∑
i=1

[σiℓ(h(xi), yi)]

]
+ ES′,σ

[
sup
h∈H

1

n

n∑
i=1

[σiℓ(h(x
′
i), y

′
i)]

]
∵ σ is distributed symmetrically

= 2Radn(H)

2 PAC Learning Bound for ERM

Theorem 1. Let H be a hypothesis calss with finite Radn(H). Let ĥ be obtained via ERM using an i.i.d
dataset of n samples. Let ϵ > 0. Then, there exist universal constants c1, c2 such that with probability at
least 1− 2e−2nϵ2

R(ĥ) ≤ inf
h∈H

R(h) + c1Radn(H) + c2ϵ

We will prove this theorem in the next homework. The following ideas may be helpful in this proof.
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• For the case that ∃h∗ ∈ H such that R(h∗) = infh∈H R(h). We can do the following decomposition:

R(ĥ)−R(h∗) = R(ĥ)− R̂(ĥ) + R̂(ĥ)−R(h∗) ≤ R(ĥ)− R̂(ĥ)︸ ︷︷ ︸
T1

+ R̂(h∗)−R(h∗)︸ ︷︷ ︸
T2

By McDiarmid’s inequality, we can bound both T1 and T2.

• We also need to carefully deal with the case that ∄h∗ ∈ H such that R(h∗) = infh∈H R(h), which will
not be showed here.

3 Growth Function

While the above bound in useful, computing Radn(H) can be difficult for general hypothesis classes. Hence,
we will relate the Radamacher complexity to the VC dimension, which is easier to bound. For this, we will
first define the growth function.

Definition 2. Restriction of H to S

Given a sample S = {(x1, y1), . . . , (xn, yn)}, and a hypothesis space H, define

L(S,H) = {[ℓ(h(x1), y1), ..., ℓ(h(xn), yn)] | h ∈ H}

to be the set of all possible loss vectors of S given H, i.e. all possible loss vectors we can generate from
S by iterating over all h ∈ H.

For 0−1 loss, each datapoint in the sample can take on one of two values since ℓ(h(xi), yi) ∈ {0, 1}. This
allows us to easily bound the cardinality of L for 0− 1 loss as

| L(S,H)| ≤ 2n

Now, let us go through a few examples of L.

Example 2. Let S = {(x1 = −1, y1 = 0), (x2 = 1, y2 = 1)} and Hone−sided = {ha(x) = 1{x≥a} | ∀a ∈ R}

x

a

Figure 2: An example of a h ∈ Hone−sided that gives us a [0, 0] loss vector.

be the set of all ”one-sided threshold functions.” Then

L(S,Hone−sided) = {[0, 1], [1, 0], [0, 0]}

Since we can either misclassify a single point or no points, but it is not possible to misclassify both points
with this hypothesis class.

Example 3.
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Figure 3: An example of a h ∈ Htwo−sided that gives us a [0, 0] loss vector

Let S = {(x1 = −1, y1 = 0), (x2 = 1, y2 = 1)} and Htwo−sided = Hone−sided ∪ {h′
a(x) = 1{x<a} | ∀a ∈ R}

be the set of all ”two-sided threshold functions.” Then

L(S,Htwo−sided) = {[0, 1], [1, 0], [0, 0], [1, 1]}

Example 4.
Let S = {(x1 = 0, y1 = 0), (x2 = 0, y2 = 1)} and H = Hone−sided. Then

L(S,Hone−sided) = {[0, 1], [1, 0]}

because we can only classify one of the two points correctly at the same time.

In all of these examples we have that | L(S,H)| ≤ 2n as expected.

Definition 3 (Growth Function). Given n ∈ N and a hypothesis space H, the growth function is defined as

g(n,H) = max
S;|S|=n

| L(S,H)| ≤ 2n

which corresponds to the maximum number of loss vectors that can be constructed from a sample of n
data points.

Let’s go through a few more examples to show how the growth function behaves under various conditions.

Example 5. Let H = Hone−sided. Starting with n = 1, we can see that

L(S,Hone−sided) = {[1], [0]}

and

g(1,Hone−sided) = | L(S,Hone−sided)| = 2 ≤ 21

For n = 2 we can draw on our work from 3 to show that

g(2,Hone−sided) = | L(S,Hone−sided)|
= |{[0, 1], [1, 0], [0, 0]}|
= 2

≤ 22

And for n = 3
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g(3,Hone−sided) = |{[0, 0, 1], [0, 1, 0], [1, 1, 0], [0, 0, 0]}|
= 4

≤ 23

Example 6.
Running through these steps again for Htwo−sided we get

g(1,Htwo−sided) = 2 ≤ 21

g(2,Htwo−sided) = |{[0, 1], [1, 0], [0, 0], [1, 1]]}| = 4 ≤ 22

g(3,Htwo−sided) = |{[0, 0, 1], [0, 1, 0], [1, 1, 0], [1, 0, 1], [0, 0, 0], [1, 1, 1]}| = 6 ≤ 23

Example 7.
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Figure 4: An example h ∈ H2D linear

Now, let us briefly consider the hypothesis space of 2D linear classifiersH2D linear = {2D linear classifiers}.
For this class it can be shown that

g(1,H2D linear) = 2

g(2,H2D linear) = 4

g(3,H2D linear) = 8

g(4,H2D linear) = 14

which is notable greater than the growth function values for the other spaces.
This is because the hypothesis class H2D linear is more flexible than the two threshold function spaces we

have previously examined. In fact, the different space have 1, 2, and 3 degrees of freedom respectively.

• Hone−sided : where we place the threshold a

• Htwo−sided : where we place the threshold a, and which side of the threshold corresponds to each class
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• H2D linear: the slope, the intercept, and which class will be on either side of the boundary

Interestingly enough, these degrees of freedom correspond to the n at which g(n,H) stops hitting the
upper bound of 2n.
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