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In this lecture, we will first bound the Radamacher complexity using the growth function. Then, we will
introduce the VC dimension and provide some examples.

1 Bounding Rademacher Complexity Using the Growth Function

First, we will prove Massart’s lemma which upper bounds the empirical Radamacher complexity.

Lemma 1 (Massart’s Lemma). Let S = {(x1, y1), ..., (xn, yn)} ∈ {X × Y}n, and H be a hypothesis class.
Then,

R̂ad(S,H) ≤ 1

n

(
max

v∈L(S,H)
∥v∥2

)√
2 log(|L(S,H)|),
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Next, let s > 0, whose value we will specify later.
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The inequality (i) holds because σ = (σ1, . . . , σn) and σi is 1-subgaussian. Then,
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Equation (2) holds for all s, we can choose

s =

√
2 log |L(S,H)|

maxv∈L(S,H) ∥v∥22
. (3)

Equation (1), (2) and (3) imply

ˆ
Radn(S,H) ≤ 1

n

(
max

v∈L(S,H)
||v||

)√
2 log(|L(S,H)|).

Corollary 1. ∀S such that |S| = n, we have

R̂ad(S,H) ≤
√

2 log(g(n,H))

n
.

Moreover,

Radn(H) ≤
√

2 log(g(n,H))

n
.

Proof ∥v∥2 ≤
√
n and |L(S,H)| ≤ g(n,H) by definition of g(n,H). The second statement follows by

taking the expectation over S of the LHS of the first statement.

To motivate the ensuing discussion about the VC dimension, recall that with probability at least 1 −
2e−2nϵ2

R(ĥ) ≤ inf
h∈H

R(h) + c1Radn(H) + c2ϵ.

Then, with fixed n, δ, where ϵ ∈ O(
√

1
n log( 1δ )). From the previous lecture, we obtained g(n,H) ≤ 2n.

However, when g(n,H) = 2n, Radn(H) will never goes to 0. At the very least, we hope to have: g(n,H) ∈
o(2n), but ideally we would like to have g(n,H) ∈ poly(n) so that

√
log(g(n,H))

n ≲
√

log(n)
n .

2 VC dimension

In this section, we begin with the definition of Shattering.
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Definition 1. Let SX = {x1, . . . , xn} ∈ Xn be a set of n points in X. We say that SX is shattered by a
hypothesis class H if H “can realize any label on SX”. That is

|H(SX)| = 2n,

where H(SX) = {[h(x1), . . . , h(xn)] | h ∈ H}.

Then, we give two examples for Shattering under the same hypothesis class H, which is the two sided
threshold classifiers:

H = {ha(x) = 1{x≥a} | ∀a ∈ R} ∪ {ha(x) = 1{x<a} | ∀a ∈ R}.

Example 1. Consider SX = {x1, x2} and we can assume x1 < x2 without loss of generality. Therefore, we
can try different classifiers in H to achieve different labels.

• When we use ha(x) = 1{x≥x1−1}, the label is [1, 1].

• When we use ha(x) = 1{x≥ x1+x2
2 }, the label is [0, 1].

• When we use ha(x) = 1{x≥x2+1}, the label is [0, 0].

• When we use ha(x) = 1{x< x1+x2
2 }, the label is [1, 0].

Then, |H(SX)| = 22 and we can say SX is shattered by H
Example 2. Consider SX = {x1, x2, x3} and we can assume x1 < x2 < x3 without loss of generality. We
can do the similar thing as Example 1

• When we use ha(x) = 1{x≥x1−1}, the label is [1, 1, 1].

• When we use ha(x) = 1{x≥ x1+x2
2 }, the label is [0, 1, 1].

• When we use ha(x) = 1{x≥ x2+x3
2 }, the label is [0, 0, 1].

• When we use ha(x) = 1{x≥x3+1}, the label is [0, 0, 0].

• When we use ha(x) = 1{x< x1+x2
2 }, the label is [1, 0, 0].

• When we use ha(x) = 1{x< x2+x3
2 }, the label is [1, 1, 0].

However, the label [0, 1, 0] and [1, 0, 1] can’t be achieved by any h ∈ H. Then, |H(SX)| = 6 < 23 and we
can say SX can’t be shattered by H.

After introducing the shattering, we are ready to give the definition of VC-dimension. Here we use dH
to denote VC-dimension of H and we will use d when H is clear from contest.

Definition 2. The VC-dimension dH of a hypothesis class H is the size of the largest set shattered by H.

Below we introduce three examples of VC-dimension.
Example 3. Two-sided threshold classifiers

By Example 1, we can obtain d ≥ 2. By Example 2, we have d < 3. Therefore, we can conclude that
d = 2.
Example 4. One-sided threshold classifiers

The hypothesis class H is defined as

H = {ha(x) = 1{x≥a} | ∀a ∈ R}.

Similarly, we can show d = 1 by showing d ≥ 1 and d < 2.
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1. Consider SX = {x1}.

• When we use ha(x) = 1{x≥x1−1}, the label is [1].

• When we use ha(x) = 1{x≥x1+1}, the label is [0].

Then, |H(SX)| = 2 and we can say SX is shattered by H, which implies d ≥ 1

2. Consider SX = {x1, x2} and we can assume x1 < x2 without loss of generality.

• When we use ha(x) = 1{x≥x1−1}, the label is [1, 1].

• When we use ha(x) = 1{x≥ x1+x2
2 }, the label is [0, 1].

• When we use ha(x) = 1{x≥x2+1}, the label is [0, 0].

However, the label [1, 0] can’t be achieved by any h ∈ H. Then, |H(SX)| = 3 < 22 and we can say SX

can’t be shattered by H, which implies d < 2.

Example 5. Two-dimensional linear classifiers. Firstly, we consider three data points located at 2-
dimensional space, which have the triangle shape. By Figure 1, we can say the dataset generated by three
data distributed as Figure 1 can be shatter by H, which implies d ≥ 3.

Furthermore, the distribution of 4 points in 2-dimensional space can only have 4 different cases. By
Figure 2, we give an counterexample for each of 4 cases to show all the dataset contained 4 data can’t be
shattered by H, which implies d < 4.

Therefore, we have d = 3.

Figure 1: 8 different labels generated by linear classifier under 3 data in 2-dimensional space.

Figure 2: Unattainable labels by linear classifier under 4 different cases of 4 data in 2-dimensional space.

Example 6. K-dimensional linear classifiers. We directly give the result without proof here. d = K+1.
The proof of this result will appear on the next homework.
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