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In this lecture, we describe the general framework for point estimation and introduce the concept of
average (Bayesian) risk optimality.

1 Statistical Lower Bounds

We should always ask ourselves, is our learning algorithm / estimator optimal? For example, our previous

lectures have shown that the ERM process has its error decrease at a rate of around Õ(1/
√
n). It is natural

to ask if this rate of convergence can be improved any further. Such questions can be answered by studying
statistical lower bounds as they allow us to characterize the difficulty of a learning problem.

We will start with point estimation, explained below, and then extend the ideas for regression, density
estimation, and classification in subsequent lectures.

2 Point Estimation

We are interested in estimating a single parameter of a distribution (e.g mean of the distribution) using data
drawn from that distribution.

A point estimation problem consists of the following components:

1. A family of distributions: P.

2. A data set S: i.i.d for some distribution P ∈ P.

3. A parameter of interest: θ = θ(P ) ∈ R, where P is the distribution of our data S.

4. An estimator for the parameter based on the drawn data set S: θ̂ = θ̂(S) ∈ R.

5. A loss function ℓ : R× R 7→ R, which measures how well θ̂ estimates the parameter θ.

6. Risk: R(P, θ̂) = ES∼P

[
ℓ(θ(P ), θ̂(S)

]
, where we take the expectation on the loss function over data S

drawn from the distribution P .

R(P, θ̂) = ES∼P

[
ℓ(θ(P ), θ̂(S)

]
=

∫
S∼P

ℓ(θ(P ), θ̂(s))dP (s)

Example 1 (Normal Mean Estimation).

1. Distribution family P = {N(µ, σ2) : µ ∈ R}, where σ2 is known.

2. Data S = {x1, x2, . . . , xn} i.i.d from P , P ∈ P.
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3. Parameter θ = θ(P ) = EX∼P [X], P ∈ P

4. Loss function: ℓ(θ1, θ2) = (θ1 − θ2)
2, for any two parameters θ1, θ2

5. Risk: RP,θ̂ = ES ∼ P︸ ︷︷ ︸
data

[
ℓ(P, θ̂(S))

]
, P ∈ P, θ̂ a parameter estimator

6. In HW0, we showed two estimators θ̂1:

θ̂1(S) =
1

n

n∑
i=1

xi

R(θ, θ̂1) = ES∼P

[
(θ − ˆθ1(S))

2
]
=

σ2

n

and θ̂2

θ̂2(S) =
α

n

n∑
i=1

xi, α ∈ [0, 1)

R(θ, θ̂2) = ES∼P

[
(θ − θ̂2(S))

2
]
= θ2(1− α)2 +

α2σ2

n

(In both cases, when we take the expectation, θ is fixed, and θ̂ is the random variable since θ̂ = θ̂(S),
and the expectation is w.r.t data S)

Notice that R(θ̂1, θ) > R(θ̂2, θ) for some θ, while R(θ̂2, θ) > R(θ̂1, θ) for some other θ, which brings

difficulty to find a optimal estimator θ̂ that estimate well for an arbitrary parameter θ.

Extending this example, we see that the estimator θ = µ for some µ ∈ will achieve 0 risk when θ = µ
but will perform poorly elsewhere. This illustrates that we cannot find a uniformly good estimator θ̂⋆ which
minimizes R(̂, θ) for all θ.

Hence, it is customary to resort to other versions of optimality. The following to notions are common in
the literature:

1. Minimax Optimality. Find an estimator θ̂ that minimizes the maximum risk over the class of
distribution P:

min
θ̂

sup
P∈P

R(θ(P ), θ̂)

2. Average Risk Optimality. Find an estimator θ̂ which minimizes the average risk over some distri-
bution on P. We will study this next.

3 Average Risk Optimality

Before we define what average risk optimality is, we have to introduce a probability measure Λ over
the family of distributions P. This measure Λ ought to be seen as an assignment of various weights to the
parameter of interest θ := θ(P ) ∈ R, before the data is observed. In Bayesian terminology, Λ is our prior
distribution and θ is a random variable.

Definition 1 (Average Risk). The average risk of a parameter is given by:

RΛ(θ) :=

∫
R(P, θ)dΛ(P ) = E

P∼Λ
[R(P, θ)]
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Now, we are equipped to define the Bayes estimator and Bayes risk:

Definition 2 (Bayes Estimator). An estimator θ̂Λ which minimizes the average risk is called the Bayes
estimator (provided it exists).

Definition 3 (Bayes Risk). The average risk of the Bayes estimator is called the Bayes risk. Namely,

RΛ(θ̂Λ) = min
θ

RΛ(θ)

It may be difficult to find the Bayes estimator from the definition of average risk alone. Instead we can
apply the tower property for conditional expectation and rewrite the average risk as

RΛ(θ) = E
P∼Λ

[
E

S∼P
[ℓ(θ(P ), θ̂(S))|P ]

]
= E

S

[
E
P
[ℓ(θ(P ), θ̂(S))|S]

]
Thus, in order to find the Bayes estimator, it suffices to find the value of θ̂(S) that minimizes the

conditional risk EP [ℓ(θ(P ), θ̂(S))|S], with the expectation taken over the posterior distribution. As an aside,
we have dropped the distributions that S and P are coming from in the second equality above. This is due
to an abuse of notation. The inner expectation is with respect to the posterior distribution of the parameter
given the data. The outer expectation is with respect to the marginal distribution of S:

P(S ∈ A) =

∫
P (S ∈ A)dΛ(P )

Lemma 1. Under the squared error loss, ℓ(θ1, θ2) = (θ1 − θ2)
2, the Bayes estimator is the posterior mean.

Namely,
θ̂Λ(S) = E[θ(P )|S]

Proof Let θ̂(S) := E[θ(P )|S] be the posterior mean. Consider any other estimator θ̂′ with conditional
average risk:

E[(θ̂′ − θ)2|S] = E[(θ̂′ − θ̂ + θ̂ − θ)2|S] (1)

= E[(θ̂′ − θ̂)2|S]︸ ︷︷ ︸
≥0

+E[(θ̂ − θ)2|S] + 2E[(θ̂′ − θ̂)(θ̂ − θ)|S]︸ ︷︷ ︸
2(θ̂′ − θ̂)E((θ̂ − θ)|S)︸ ︷︷ ︸

=0 since E(θ|S)=θ̂

(2)

≥ E[(θ̂ − θ)2|S] (3)

Clearly θ̂ minimizes the conditional average risk (thereby minimizing the average risk) and is thus the Bayes
estimator.

We will now provide two examples on how to explicitly determine both the Bayes estimator and Bayes
risk.

Example 2. Let our data be given by S = {Xi}n1 . Now suppose Xi|θ
iid∼ N(θ, σ2) and θ ∼ Λ

d
= N(µ, τ2)

with σ2, µ, and τ2 known. Due to normal-normal conjugacy, we have θ|S ∼ N(µ̃, τ̃2) where

µ̃ :=
σ2/n

τ2 + σ2/n
µ+

τ2

τ2 + σ2/n

(
1

n

n∑
i=1

Xi

)
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τ̃2 :=

(
1

τ2
+

1

σ2/n

)−1

Since µ̃ is the posterior mean, it is the Bayes estimator. Then the Bayes risk is given by

RΛ(µ̃) = E
S

[
E
θ
[(θ − µ̃)2|S]

]
︸ ︷︷ ︸
posterior variance

= E
S
(τ̃2)

= τ̃2

As an aside, recall that the outer expectation is with respect to the marginal (unconditional) distribution of
S. In particular, Xi ∼ N(µ, σ2 + τ2). But since the posterior variance does not depend on the data (unlike
in our next example), the Bayes risk is just the posterior variance.

Example 3. Again, let our data be given by S = {Xi}n1 . Now suppose Xi|θ
iid∼ Bernoulli(θ) and θ ∼ Λ

d
=

Beta(a, b) with a, b known. We know, via Bernoulli-Beta conjugacy, that the posterior distirbution is given
by

θ|S ∼ Beta(nX̄ + a, b+ n− nX̄) where X̄ :=
1

n

n∑
i=1

Xi

Thus, the Bayes estimator can be found by taking the mean of the posterior Beta distribution. Namely,

θ̂Λ = E(θ|S) = nX̄ + a

n+ a+ b

To find the Bayes risk, we could try to follow the same process as in the example above. However, unlike in
that example, our posterior variance depends on our data through nX̄; indeed our posterior variance is given

by (nX̄+a)(b+n−nX̄)
(a+b+n)2(a+b+n+1) . As such, our outer expectation would be with respect to the marginal distribution of

nX̄ (unconditional on θ) which is difficult to calculate. Instead we can find the Bayes risk as

RΛ(θ̂Λ) = E
θ∼Beta(a,b)

[
E

nX̄|θ∼Binomial(n,θ)

(
nX̄ + a

n+ a+ b
− θ

)2
]

=
1

(n+ a+ b)2
E

θ∼Beta(a,b)

[
θ2((a+ b)2 − n) + θ(n− 2a(a+ b)) + a2

]
which can be further reduced using the first and second moments of the Beta distribution.
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