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In this lecture, we introduce Minimax Optimality and some related concepts. We will first introduce
minimax optimality, then discuss some topics beyond point estimation.

1 Minimax Optimality

Recall that we cannot find an estimator that is uniformly better than other estimators in most cases, i.e.there
is no θ̂ better than any other θ̂′ in the sense that

R(P, θ̂) ≤ R(P, θ̂′), ∀P ∈ P,

Therefore, we wish to find an estimator which minimizes the maximum risk,

sup
P∈P

R(P, θ̂).

Definition 1. The minimax risk R∗ of a point estimation problem is defined as follows,

R∗ = inf
θ̂

sup
P∈P

R(P, θ̂) = inf
θ̂

sup
P∈P

ES∼P

[
ℓ(θ(P ), θ̂(S))

]
Note that R∗ depends on P, loss function ℓ, and the size of S. An estimator θ̂∗ which achieves the minimax
risk, i.e. supP∈P R(P, θ̂∗) = R∗ is said to be minimax-optimal.

How do you compute the minimax risk? Classically, this was done via a concept called the ”least favorable
prior”, which involved finding a Bayes’ estimator with constant (frequentist) risk.

In this class, we will follow the following recipe for computing the minimax risk, which we will also apply
to general estimation problems.

1. Design a ”good estimator” θ̂, and upper bound its risk by Un, then

R∗ ≤ sup
P∈P

R(P, θ̂) ≤ Un.

2. Design a ”good prior” Λ on P and lower bound the Bayes’ risk, say by Ln.

Recall that for any estimator θ̂,

sup
P∈P

R(P, θ̂) ≥ EP∼Λ

[
R(P, θ̂)

]
≥ EP∼Λ

[
R(P, θ̂Λ)

]
≥ Ln.

where θ̂Λ is the Bayes’ estimator. the first inequality holds since “sup ≥ average” and the second
inequality holds since the Bayes’ estimator minimizes the Bayes’ risk. By taking the infimum over all
estimators, we have R∗ ≥ Ln.
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3. Sometimes, we may need to restrict to a sub-class P ′ ⊂ P, and construct our prior Λ on P ′. We have,

sup
P∈P

R(P, θ̂) ≥ sup
P∈P′

R(P, θ̂).

4. If Un = Ln, then Un is the minimax risk and θ̂ is minimax-optimal.

5. It is not always possible to achieve exact equality. However, if Un > Ln, but Un ∈ O(Ln), then Un is

the minimax rate and θ̂ is rate-optimal.

Example 1. Let S = {X1, .., Xn} drawn i.i.d. from N (µ, σ2), P = {N (µ, σ2);µ ∈ R}, we will show that

θ̂SM (S) = 1
n

∑n
i=1 Xi is minimax-optimal.

Proof First, we find the upper bound

sup
P∈P

R(P, θ̂)
def
= sup

µ∈R
ES∼N (µ,σ2)

[
(µ− θ̂(S))2

]
= sup

µ∈R

σ2

n
=

σ2

n
=⇒ R∗ ≤ σ2

n
.

Then we find the lower bound via Bayes’ risk. Consider the prior Λ = N (0, τ2), from our example in the
last lecture,

R∗ ≥ Ln =

(
1

τ2
+

1

σ2/n

)−1

holds for every τ2,

=⇒R∗ ≥ sup
τ2>0

(
1

τ2
+

1

σ2/n

)−1

=
σ2

n
.

Combining two bounds together, we can conclude that θ̂SM is minimax-optimal and σ2

n is the minimax
risk.

Example 2. Let S = {X1, .., Xn} drawn i.i.d. from Bernoulli(θ), where θ = EX∼P [X]. Let P =

{Bernoulli(θ); θ ∈ [0, 1]}. Let us consider θ̂(S) = 1
n

∑n
i=1 Xi.

First, the upper bound is found as follows,

R(P, θ̂) = ES∼P

[
(θ − θ̂(S))2

]
=

Variance

n
=

θ(1− θ)

n
,

sup
P∈P

R(P, θ̂) = sup
θ∈[0,1]

θ(1− θ)

n
=

1

4n
=⇒ R∗ ≤ 1

4n
.

To find the lower bound, we use Λ = Beta(a, b) as the prior, then we have the following Bayes’ risk,

1

(n+ a+ b)2
[(
n− (a+ b)2

)
Eθ

[
θ2
]
+ (n− 2a(a+ b))Eθ [θ] + a2

]
.

By choosing a = b =
√
n
2 , we get

Ln =
a2

(n+ a+ b)2
=

n/4

(n+ a+ b)2
=

1

4(
√
n+ 1)2

=
1

4n+ 8
√
n+ 4

We have Un > Ln, but Un ∈ O(Ln) =⇒ θ̂SM is rate-optimal and 1
n is the minimax-rate.

As a side note, it can be shown that

θ̂∗ =

√
n

1 +
√
n

(
1

n

n∑
i=1

Xi

)
+

1

2

(
1

1 +
√
n

)
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is minimax-optimal and 1
4(

√
n+1)2

is the minimax risk.

Example 3. S = {X1, .., Xn} drawn i.i.d. from P ∈ P. P ={ all distribution with variance bounded

by B2}. We will show that θ̂SM (S) = 1
n

∑n
i=1 Xi is minimax-optimal.

Proof For the upper bound,

sup
P∈P

R(P, θ̂) = sup
P∈P

ES∼P

[
(θ̂(S)− θ)2

]
= sup

P∈P

variance

n
=

B2

n
=⇒ R∗ ≤ B2

n
.

The lower bound can be found by choosing a sub-class P ′
= {N (µ,B2);µ ∈ R},

R∗ = inf
θ̂

sup
P∈P

R(P, θ̂) ≥ inf
θ̂

sup
P∈P′

R(P, θ̂) =
B2

n
.

Combining two bounds together, we know that B2

n is the minimax risk and θ̂SM is minimax-optimal.

We will now study minimaxi optimality for general estimation problems. The following lessons from
point estimation will be useful going forward.

1) Often, the easiest way to lower bound the maximum risk is to lower bound it via the average risk, by
using the fact that the maximum is larger than the average.

2) We should be careful in how we choose a subset P and prior Λ, so that the lower bound is tight.

3) We still need to design a good estimator to establish the upper bound.

2 Beyond Point Estimation

We will now extend the ideas beyond point estimation. Our estimation problem will have the following
components:

1. A family of distributions P

2. A dataset S of n i.i.d points drawn from P ∈ P

3. A function(parameter) θ : P → Θ. We wish to estimate θ(P ) from S.

4. An estimator θ̂ = θ̂(S) ∈ Θ

5. A loss function ℓ, ℓ = Φ ◦ ρ, satisfies the following conditions:

• ρ : Θ×Θ → R+ satisfies the following properties for all θ1, θ2, θ3 ∈ Θ,

(i) ρ(θ1, θ1) = 0,

(ii) ρ(θ1, θ2) = ρ(θ2, θ1),

(iii) ρ(θ1, θ2) ≤ ρ(θ1, θ3) + ρ(θ3, θ2).

• Φ : R+ → R+ is non-decreasing.

When we estimate θ(P ) with θ̂, the loss is ℓ(θ(P ), θ̂) = Φ(ρ(θ(P ), θ̂)).

6. The risk of an estimato r θ̂ is,

R(P, θ̂) = ES∼P

[
Φ ◦ ρ(θ(P ), θ̂(S))

]
= ES

[
Φ ◦ ρ(θ, θ̂)

]
.

Note that, as before we have overloaded notation so that θ denotes the parameter θ ∈ Θ and the function
θ : P → Θ. Similarly, θ̂ denotes the estimate θ̂ ∈ Θ and the estimator, which maps the data to Θ.
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Figure 1: Figure to explain θ(P )(·). Black dots are the observed data, blue curve is the regression function θ(P )(·),
For every x, the point of intersection, which is marked in red, is the regression result E[Y |X = x].

Definition 2. We can now define the minimax risk R∗ as follows,

R∗ = inf
θ̂

sup
P∈P

ES

[
Φ ◦ ρ

(
θ(P ), θ̂(S)

)]
.

Example 4. Normal mean estimation Let S = {X1, .., Xn} drawn i.i.d. from N (µ, σ2), where σ2 is known.
Here, P = {N (µ, σ2);µ ∈ R},. We wish to estimate θ(P ) = EX∼P [X], therefore Θ = R,. If we use the
squared loss ℓ(θ1, θ2) = (θ1 − θ2)

2,, then ρ = |θ1 − θ2| and Φ(t) = t2.

Example 5. (Regression) Here, P is the set of all distributions with support on X ×R, where is the input
space. = The parameter space Θ = {h : X → R}, is the class of functions mapping X to . We wish to
estimate the regression function, which is given by

θ(P )(·) = E[Y |X = ·]︸ ︷︷ ︸
regression function: see Fig 1

=

∫
ydP (y|X = x)

We have illustrated this in Figure 1. If we use the L2 loss, ℓ(θ1, θ2) =
∫
X (θ1(x)− θ2(x))

2
dx, then, we have

ρ(θ1, θ2) =

√∫
X
(θ1(x)− θ2(x))

2
dx

∆
= ∥θ1 − θ2∥2, and Φ(t) = t2.
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