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In this lecture, we will develop upper and lower bounds for nonparametric regression and show that the
minimax rate is Θ̃(n−2/3). We will also briefly introduce nonparametric density estimation.

1 Nonparametric Regression

Assume that we observe dataset S = {(X1, Y1), (X2, Y2), · · · , (Xn, Yn)} i.i.d drawn from some distribution
PXY ∈ P, where

P = {PXY ; 0 < α0 ≤ p(x) ≤ α1 <∞,

f(x) = E[Y |X = x] is L-Lipschitz,

Var(Y |X = x) ≤ σ2},

in which p(x) is the marginal density of X.
Our target regression function will be estimated via the following loss:

ℓ(PXY , g)
∆
=

∫
[f(x)− g(x)]2p(x)dx,

where p(x) and f(x) = E[Y |X = x] are defined above.
Then the minimax risk is defined as follows:

R∗
n =inf

f̂
sup

PXY ∈P
ES∼PXY

[
ℓ(PXY , f̂)

]
=inf

f̂
sup

PXY ∈P
ES∼PXY

[∫
(f(x)− f̂(x))2p(x)dx

]
We want to show that the R∗

n is Θ(n−2/3) in two steps:

1. Establish a lower bound with Fano’s method

2. Get an upper bound by using Nadaraya-Watson Estimation

1.1 Lower bound

By noticing that ℓ(PXY , g) defined above cannot be written into the form of ℓ = Φ ◦ ρ, which means we
cannot utilize theorems and lemmas learnt in previous lectures, we circumvent this problem by constructing
a sub-class P ′ of P as follows:

P
′′
= {PXY ∈ P; p(x) = 1} 1

Then R∗
n ≥ inf

f̂
sup

PXY ∈P′′
ES∼PXY

[∫
(f(x)− f̂(x))2dx

]
, and now we can write Φ ◦ ρ(f1, f2) = ∥f1 − f2∥22 .

1here we use the uniform density p(x) = 1 for convenience, but any fixed density p(x) will still induce a metric.
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1.1.1 Constructing alternatives

Define ψ(x) =


x+ 1

2 if x ∈ [− 1
2 , 0),

−x+ 1
2 if x ∈ [0, 12 ],

0 o.w.

then we can easily note that ψ is 1-Lipschitz, and
∫
ψ2(x)dx = 1/12.

Now let h > 0 (we’ll specify its value later) and let m = 1
h , we construct a new function class

F
′
=

fω; fω(·) =
m∑
j=1

ωjϕj(·), ω ∈ Ωm


where Ωm is the Varshamov-Gilbert pruned hypercube of {0, 1}m, and ϕj(x) = Lh · ψ

(
x−(j−1/2)h

h

)
. Since

|ϕ′

j(x)| ≤ L, we know that fω is L-Lipschitz. We can now define our alternatives:

P
′
=
{
PXY ; p(x) uniform, f(x) = E[Y |X = x] ∈ F

′
, Y |X = x ∼ N (f(x), σ2)

}
.

We see that P ′ ⊂ P ′′ ⊂ P.

1.1.2 Lower bound on ∥fω − fω′}

To better organize our result, we first calculate,∫ j
m

j−1
m

ϕ2j (x)dx =

∫ j
m

j−1
m

L2h2 · ψ2

(
x− (j − 1/2)h

h

)
dx =

∫ 1/2

−1/2

L2h3ψ2(u)du =
L2h3

12
.

We then have,

ρ2(fω, fω′) =

∫ 1

0

(fω − fω′)2dx

=

m∑
j=1

∫ j
m

j−1
m

(ωjϕj(x)− ω′
jϕj(x))

2dx

=

m∑
j=1

1{ωj ̸= ω′
j}
∫ j

m

j−1
m

ϕ2j (x)dx

=
L2h3

12

m∑
j=1

1{ωj ̸= ω′
j} =

L2h3

12
·H(ωj , ω

′
j)

where H(·, ·) is the Hamming distance and the last equation holds because of the definition of it.
Since ω, ω′ ∈ Ωm, by Varshamov-Gilbert lemma, H(ωj , ω

′
j) ≥ m

8 = 1
8h . Then we have

min
ωj ,ω′

j

ρ(fω, fω′) ≥ Lh√
96

∆
= δ,

where δ is called the separation between hypotheses.
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1.1.3 Upper bound KL

Next, we will upper bound the maximum KL divergence between our alternatives. Let Pω, Pω′ ∈′. Then,

KL(Pω, Pω′) =

∫
X×Y

pω log
pω
pω′

=

∫ 1

0

∫ ∞

−∞
pω(x)pω(y|x) log

pω(x)pω(y|x)
pω′(x)pω′(y|x)

dydx

=

∫ 1

0

∫ ∞

−∞
pω(y|x) log

pω(y|x)
pω′(y|x)

dydx (as pω(x) = pω′(x) = 1)

=

∫ 1

0

KL
(
N (fω(x), σ

2),N (fω′(x), σ2)
)
dx (as Y |X = x ∼ N (f(x), σ2))

=
1

2σ2

∫ 1

0

(fω(x)− fω′(x))
2
dx

=
1

2σ2
ρ2(fω, fω′) =

L2h3 ·H(ω, ω′)

24σ2
.

Then since max
ω,ω′

H(ω, ω′) ≤ m = 1/h,

max
ω,ω′

KL(Pω, Pω′) =
L2h3

24σ2
max
ω,ω′

H(ω, ω′) ≤ L2h2

24σ2
.

1.1.4 Apply local Fano’s method

In order to apply Fano’s method, we need to satisfy max
ω,ω′

KL(Pω, Pω′) ≤ log |P′|
4n . Recall that by the

Varshamov-Gilbert lemma, |P ′| ≥ 2m/8, so it is sufficient if we have,

L2h2

24σ2
≤ log(2m/8)

4n
=
m log 2

32n
=

log 2

32nh
.

This suggests that we could choose h =
(

3 log 2
4

) 1
3 σ2/3

n1/3L2/3 .

Thus the separation between hypotheses δ = C1
L1/3σ2/3

n1/3 , where C1 is some constant, and then by local
Fano’s method,

R∗
n ≥ 1

2
Φ

(
δ

2

)
=

1

8
δ2 = C2

L2/3σ4/3

n2/3
.

Remark: In order to apply above local Fano’s method, it’s required that |P ′| ≥ 16. It’s sufficient to have
|P ′| ≥ 2m/8 ≥ 16, i.e. m = 1/h ≥ 32, which means the following must hold:

h =

(
3 log 2

4

) 1
3 σ2/3

n1/3L2/3
≤ 1

32
=⇒ n ≥ C3

σ2

L2
for some constant C3.

1.2 Upper Bound

To upper bound the minimax risk we introduce the following estimator. Later we will introduce the Nadaraya-
Watson estimator, and show that our current estimator is a special case of the Nadaraya-Watson estimator.

Our estimator f̂(t) is defiend as follows: Let N(t) =
∑n

i=1 1{Xi ∈ [t− h, t+ h]}. Then define,

f̂(t) =

{
clip

(
1

N(t)

∑n
i=1 Yi1{Xi ∈ [t− h, t+ h]}, 0, 1

)
if N(t) > 0

0 if N(t) = 0

3



where clip(x, 0, 1) means that

clip(x, 0, 1) =


x, 0 ⩽ x ⩽ 1

0, x < 0

1, x > 1.

By definition,

R(PXY , f̂) = ES

[∫
(f̂(x)− f(x))2p(x)dx

]
⩽ α1ES

[∫
(f̂(x)− f(x))2dx

]
= α1

∫ 1

0

ES

[
(f̂(t)− f(t))2

]
︸ ︷︷ ︸

err(t)

dt.

We will next provide a pointwise bound on err(t) which will translate to an integrated bound. The calculations
for the pointwise bound are very similar to an example we saw previously so we will only provide an overview
and highlight the differences.

Let Gt = {N(t) ⩾ α0nh} denote the good event that there were a sufficient number of samples in a 2h
neighborhood of t. We have,

P(Gc
t) = P

(
n∑

i=1

1{Xi ∈ [t− h, t+ h]} < α0nh

)

= P

(
n∑

i=1

(1{Xi ∈ [t− h, t+ h]} − P([t− h, t+ h])) < α0nh− nP([t− h, t+ h])

)
,

where P([t−h, t+h]) =
∫ t+h

t−h
p(x)dx ⩾ 2α0h. Thus we have α0nh−nP([t−h, t+h]) ⩽ −α0nh. By Hoeffding’s

inequality, we have P(Gc) ⩽ exp(−2α2
0nh

2). By following the calculations from our previous example, we
can show

ES

[
(f̂(t)− f(t))2

]
⩽ L2h2 +

σ2

nh
+ e−2α2

0nh
2

.

Therefore,

R(PXY , f̂) ⩽ α1

∫ 1

0

ES

[
(f̂(t)− f(t))2

]
dt ⩽ α1

(
L2h2 +

σ2

nh
+ e−2α2

0nh
2

)
.

Now we choose h = σ2/3L−2/3n−1/3, which implies that

R(PXY , f̂) ⩽ 2α1
σ4/3L2/3

n2/3
+ α1 exp

(
−2α2

0

σ4/3n1/3

L4/3

)
.

Remark: On an ancillary note, had we used the multiplication Chernoff bound instead of Hoeffding’s
inequality, we will have had the following bounds:

P(Gc) ⩽ e−α0nh/8,

R(PXY , f̂) ⩽ 2α1
σ4/3L2/3

n2/3
+ α1 exp

(
−α0

4

σ2/3n2/3

L2/3

)
.

For i.i.d Bernoulli random variables with success probability close to 0 or 1, the multiplicative Chernoff bound
can provide a tighter bound than Hoeffding’s inequality. This does not significantly alter our conclusions in
this example, but it may be significant in other use cases.
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1.3 Nadaraya-Watson Estimator

An Nadaraya-Watson Estimator (also known as the kernel estimator), is defined to be

f̂(t) =

n∑
i=1

yiwi(t), wi(t) =
K((t−Xi)/n)∑n
j=1K((t−Xj)/n)

,

where K is called a smoothing kernel. For example, in our previous case, the smoothing kernel is K(t) =
1{t ⩽ 1/2}.

Other kernel choices can lead to better rates under stronger smoothness assumptions. On such assumption
is the Hölder class in Rd, which is denoted byH(β, L) and defined to be the set of all functions whose (β−1)th
order partial derivatives are L-Lipschitz. The minimax rate in this class is Θ(n−2β/(2β+d)). To achieve this
rate, we will need to design smarter kernels in the Nadaraya-Watson estimator. The same rates hold for
density estimation in the Hölder class.

2 Density Estimation

We will briefly introduce lower and upper bounds for density estimation. Let F be the class of bounded
Lipschitz functions, i.e.

F = {f : [0, 1] → [0, B] : |f(x1)− f(x2)| ⩽ L|x1 − x2| ∀x1, x2 ∈ [0, 1]}.

The corresponding nonparametric family of densities is then defined to be

P = {P : The p.d.f. p of P is in F}.

Suppose we observe S = (X1, . . . , Xn) drawn i.i.d from some distribution P ∈ P. We wish to estimate the
p.d.f. under the L2 loss, i.e.

Φ ◦ ρ(P1, P2) =

∫
(p1(t)− p2(t))

2dt.

By definition, the minimax risk is
R∗

n = inf
p̂

sup
p∈F

ES

[
||p̂− p||22

]
.

2.1 Lower bound

The first step is to construct alternatives. For this, define

ψ(x) =


x+ 1

2 , x ∈
[
− 1

2 ,−
1
4

]
−x, x ∈

[
− 1

4 ,
1
4

]
x− 1

2 , x ∈
[
1
4 ,

1
2

]
.

Note that ψ is 1-Lipschitz and always in [−1/4, 1/4]. Moreover,
∫
ψ(t)dt = 0,

∫
ψ2(t)dt = 1/48, and

|ψ(t)| ≤ 1/4.
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