
CS861: Theoretical Foundations of Machine Learning Lecture 15 - 09/10/2023

University of Wisconsin–Madison, Fall 2023

Lecture 15: Density estimation, Lower bounds for prediction problems

Lecturer: Kirthevasan Kandasamy Scribed by: Haoyue Bai, Zexuan Sun

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.
They may be distributed outside this class only with the permission of the instructor.

In this lecture, we will first present a lower bound for nonparametric density estimation, and then
study kernel density estimation to upper bound the risk. We will conclude with a framework for proving
lower bounds for prediction problems.

1 Nonparametric Density Estimation (Cont’d)

1.1 Recap: Nonparametric Density Estimation

Consider the function space F : {f : [0, 1] → [0, B], |f(x1)−f(x2)| ≤ L|x1−x2|}. The constraint ensures the
function is Lipschitz continuous with Lipschitz constant L. We are interested in the family of distributions
P, which consists of distributions whose densities are L–Lipschitz. That is, P : {p : density p of P is in F}.
We observe samples S = {X1, ..., Xn}

iid∼ p ∈ P, where the set S represents a random sample of n data points
that are independent and identically distributed (iid) according to some unknown density p that belongs to
P.
Given the sample S, we wish to estimate the density p of P in the L2 loss. That is:

Φ ◦ ρ(p1, p2) =
∫
(p1(t)− p2(t))

2 dt

We will show that the minimax risk satisfies:

R∗
n = inf

p̂
sup
p∈F

ES [||p̂− p||22] ∈ Θ(n−
2
3 ).

1.2 Lower bound

We will first prove a lower bound via Fano’s method.
Step 1: Construct alternatives

Consider the function ψ illustrated in Figure 1. The following facts are straightforward to verify.

• ψ is 1-Lipschitz, meaning that for any two inputs λ1 and λ2: |ψ(λ1)− ψ(λ2)| ≤ |λ1 − λ2|;

•
∫
ψ = 0, which indicates that the area under the curve of the function, over its entire domain, sums

up to zero;

• − 1
4 ≤ ψ ≤ 1

4 , which gives the range of the function;

•
∫
ψ2 = 1

48 , which the squared integral of ψ.
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Figure 1: Illustrative figure for the function ψ(λ).

To construct the alternatives let h is a positive number (h > 0) that we will decide later. Let m = 1
n .

The alternative function space F ′
is:

F
′
=

{
Pω : Pω(·) = 1 +

m∑
i=1

ωjΦj(·); ω ∈ Ωm

}
.

This space defines a set of functions Pω that are formed by a linear combination of basis function Φj(t).
The vector ω resides in some set Ωm. The basic function is defined as:

Φj(t) = LhΦ

(
t− (j − 1

2 ) · h
h

)
,

where L denotes the Lipschitz constant, and h is the bandwidth.
The illustrative example in Figure 2 would provide a visual representation of the approximation.
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Figure 2: Illustrative figure for the example pω.

Step 2: Lower bound the distance ρ(pω, pω′)
The objective of this step is to determine a lower bound for the difference between pω and pω′ . We can
bound the density below:
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ρ2(pω, pω′ ) =

∫ 1

0

(pω − pω′ )2

=

m∑
j=1

∫ j
m

j−1
m

(1 + ωjΦj − (1 + ω
′

jΦj))
2

=

m∑
j=1

I(ωj ̸= ω
′

j)

∫ j
m

j−1
m

Φ2
j

=
H(ω, ω

′
)L2h3

48

By the Varshamov-Gilbert lemma, we have H(ω, ω
′
) ≥ m

8 = 1
8h as,

min
ω,ω′

||pω − pω′ || =
√
L2h3

48

min
ω,ω′

√
H(ω, ω′) ≥ Lh

8
√
6
≜ δ.

Step 3: Upper bound KL
In this step, the goal is to determine an upper bound for the Kullback-Leibler (KL) divergence between two
functions, pω and pω′ . Based on the definition of KL divergence and expanding KL for pω and pω′ :

KL(pω, pω′ ) =

∫ 1

0

pω log(
pω
pω′

)

=

m∑
j=1

(

∫ j
m

j−1
m

(1 + ωjΦj) log

(
1 + ωjΦj

1 + ω
′
jΦj

)I(ωj ̸= ω
′

j

)

After some algebra (you will do this in the homework), we have the following upperbound:

KL(pω, pω′ ) ≤ H(ω, ω
′
)
L2h3

48
⇛ ∀ω, ω

′
,KL(pω, pω′ ) ≤ L2h2

48

This suggests that regardless of the particular values of ω and ω
′
, the KL divergence between any two

functions pω and pω′ from the considered set is always less than or equal to L2h2

48 .
A formal proof of this statement is left as an exercise in a homework assignment.

Step 4: Apply local Fano
Applying local Fano’s inequality in this step, we derive conditions and constraints for the estimation problem.

We want maxω,ω′ KL(pω, pω′ ) ≤ log(ω)
4n . This relation is upper bound the maximum KL divergence between

any two functions in the set by a term that diminishes with increasing sample size n.

Sufficient if we have the equation L2h2

48 ≤ log(2
m
8 )

4n = log(2)
32nh . Choose h = C, 1

n
1
3 L

2
3
, which determines the

choice of h as a function of n and L. Then, we have the equation:

R∗
n ≥ 1

2
Φ(

Lh

2× 8
√
6
) = C

L
2
3

n
2
3

.

This offers a lower bound on the risk, R∗
n, which quantifies the error in the estimation.

The given requirements ensure the validity and applicability of the above relations:

• m ≥ 1
h ≥ 8. This is necessary for the Varshamov-Gilbert lemma to be applicable.
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• Cardinality of F ′
: |F ′ | ≥ 16 ⇐ 2

m
8 ≥ 16 ⇐ h ≤ 1

32 ⇒ satisfied if n ≥ c
L2 . This ensures a sufficient

number of observations given the Lipschitz constant L.

• KL bounding condition: h ≤ 2.72
L . This imposes the KL divergence between functions remains bounded,

and ties the bandwidth h to the Lipschitz constant L.

2 Upper Bound via Kernel Density Estimation

Kernel Density Estimation (KDE) is a non-parametric technique to estimate the probability density function
of a continuous random variable. The Kernel Density Estimation (KDE) has the following form:

p̂(t) =
1

n

n∑
i=1

1

h
K

(
t− xi
h

)
,

where p̂(t) is the estimated density at point t, n is the number of data points, and xi are the observed data
points. h is bandwidth parameters, which plays a critical role in KDE. K is a (smoothing) kernel with the
following properties:

(1) Normalization: ∫
K(u)du = 1,

This ensures the result will integrate to 1 over its entire domain, maintaining the fundamental property
of a probability density function.

(2) Symmetry:

K(u) = K(−u),

This property ensures that the kernel is symmetric around zero. As a result, the estimated density will
not be biased towards any direction from the point of estimation.
For the problem at hand, the kernel selected is K(t) = I(|t| ≤ 1

2 ), which is sufficient for Lipschitz functions.
This is a simple uniform kernel.
We can bound the risk as follows:

E[||p− p̂||22] = E[
∫
(p− p̂)2 dt]

= E[
∫
(p− E(p̂))2 dt+

∫
(E(p̂)− p̂)2 dt+2

∫
(p− E(p̂))(E(p̂)− p̂) dt]

=

∫ 1

0

(p(t)− E(p̂(t))︸ ︷︷ ︸
bias(t)

)2 dt+

∫ 1

0

E[(p̂(t)− E(p̂(t)))2]︸ ︷︷ ︸
Var(t)

dt+2

∫ 1

0

(p− E(p̂))E[E(p̂)− p̂]︸ ︷︷ ︸
=0

dt

The bias and variance terms can be written and bounded below. The bias of an estimator indicates how
far on average the estimate is from the true value. In our context, the bias term is derived from:
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bias(t) = E[p̂(t)− p(t)]

= EX∼P [
1

h
K(

t−X

h
)]− p(t) (Apply E[

1

n

∑
i

Zi] = E[Zi])

=

∫
1

h
K(

t− x

h
)p(x) dx−p(t)

=

∫
K(u)p(t+ uh) du−p(t)

∫
K(u) du

=

∫
K(u) (p(t+ uh)− p(t)) du

The bias depends on the choice of kernel and bandwidth h. Then we can bound the bias term:

|bias(t)| ≤
∫ ∫

K(u)|p(t+ uh)− p(t)| du

≤
∫
K(u)L|uh| du

= Lh

∫
K(u)|u| du

= C1Lh

where C1 =
∫
K(u)|u| du is a constant that essentially depends on the kernel, and L is the Lipschitz constant,

signifying the bound on the rate of change of our function.
Variance quantifies the dispersion of an estimator around its expected value. In the context of KDE,

variance arises from the randomness in the sample. For our setup, the variance term is captured by:

Var(t) = Var

(
1

n

n∑
i=1

1

h
K(

t−Xi

h
)

)

=
1

n
VarX∼P

(
1

h
K(

t−X

h
)

)
(Apply Var

(
1

n

n∑
i=1

Zi

)
=

1

n
Var(Z1))

≤ 1

n
EX∼P [

1

h2
K2(

t−X

h
)] (Var(Z) = E[Z2]− (E[Z])2 ≤ E[Z2])

=
1

nh2

∫
K2(

x− t

h
)p(x)dx

=
1

nh

∫
K2(u)p(t+ uh)du

≤ B

nh

∫
K2(u)du =

B

nh

Where B is a constant that bounds the product of the squared kernel and the true density.
Combine these bounds for bias and variance terms, we have

ES [∥ρ− ρ̂∥22] ≤
∫ 1

0

bias2(t)dt+

∫ 1

0

Var(t)dt

≤ C2
1L

2h2 +
B

nh

= (B + C2
1 )
L2/3

n2/3
(if h =

1

n1/3L2/3
)
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3 Lower Bounds for Prediction Problems

So far, we have talked about estimation in some metrics, for instance

ρ(θ1, θ2) = |θ1 − θ2|, θ(P ) ∈ R
ρ(θ1, θ2) = ∥θ1 − θ2∥L2

, θ(P ) ∈ {f : X −→ R}

Next, we will develop a framework for proving lower bounds for prediction problems (among others). The
framework is comprised of the following components:

1. Data space Z. This is the space from which data samples arise.

2. A family of distribution P, where ∀P ∈ P, supp(P ) ⊆ Z. This represents a collection of probability
distributions from which the data can be drawn.

3. A hypothesis/parameter space H. This contains all the potential hypotheses or models that we might
use to make predictions.

4. An “instance loss”, f : H × Z −→ R, where f(h, Z) is the loss of hypothesis h on instance Z. This
measures how well a particular hypothesis h from H performs on an instance Z from Z.

5. The population loss, F (h, P ) = EZ∼P [f(h, Z)]; Excess population loss, L(h, P ) = F (h, P )−infh′∈H F (h′, P ).
These terms indicate how well our hypothesis does on average (under distribution P ) and how it com-
pares to the best possible hypothesis in H, respectively.

6. A dataset S is drawn from some P ∈ P.

7. An estimator ĥ, which maps the dataset S to a hypothesis in H. Note that we overload notation here
for ĥ

ĥ : a map form data to H (estimator)

ĥ : as the estimate (ĥ ∈ H)

8. Risk of estimator ĥ

R(ĥ, P ) = E[L(ĥ(S), P )]

= E[F (ĥ(S), P )]− inf
h∈H

F (h, P )

9. Minimax risk:
R⋆ = inf

ĥ
sup
P∈P

R(ĥ, P )

Next, let us see an example.
Example 1. Excess risk in classification/regression

• Data space Z = X × Y, H : {h : X → Y}. This is the set of all possible prediction functions mapping
from features X to outcomes Y .

• Instance loss (in classification), f (h, (X,Y )) = 1 (h(X) ̸= Y ). This measures the discrepancy between
a predicted and actual class label.

• F (h, P ) = EX,Y∼P [1 (h(X) ̸= Y )] is the “risk”. This is the expected value of the instance loss over the
joint distribution of X and Y, and can be understood as the overall error rate of the classifier.
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• L(h, P ) = F (h, P ) − F (h⋆, P ), where h⋆ is the Bayes optimal classifier, i.e. h⋆ = argmaxy∈Y P(Y =
y|X = x), and L(h, P ) is the “excess risk” in classification. The excess risk quantifies how much worse
our classifier h performs compared to the Bayes optimal classifier h⋆.

• In regression we define f(h, (X,Y )) = (h(X)− Y )2. The typical loss function used is the squared loss.

• L(h, P ) = EX∼P [(h(X) − Y )2] − EX∼P [(h
⋆(X) − Y )2], where h⋆(x) = E[Y |X = x], L(h, P ) is the

“excess risk” in regression. the excess risk measures how much worse our regression function performs
compared to the optimal regression function h∗(x) which is the conditional expectation.

• Note that this is different to Φ ◦ ρ(h1, h2) = ∥h1−h2∥22, which captures the squared difference between

two hypotheses h1 and h2, and ES [Φ ◦ ρ(ĥ, h⋆)] measures how much estimator ĥ deviates from the
optimal hypothesis h∗.
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