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In this lecture, we will continue our discussion on proving minimax lower bounds for prediction problems,
and use it to prove a lower bound for classification in a VC class. Finally, we will briefly introduce Stochastic
Bandits.

1 Excess risk in classification/regression (Cont’d)

Let Z be a data space, P be a family of distribution, and H be a hypothesis space. Let f : H×Z → R be
the instance loss, where f(h, Z) is the loss of hypothesis h on instance Z. Let F (h, P ) = EZ∼P [f(h, Z)] be
the population loss of hypothesis h on distribution P , and let L(h, P ) = F (h, P ) − infh∈H F (h, P ) denote
the excess population loss.
Then a dataset S drawn from some P ∈ P; an estimator ĥ mapping the data to a hypothesis in H. Thus,
the risk would be

R(ĥ, P ) = E[L(ĥ, P )] = E[F (ĥ, P )]− inf
h∈H

F (h, P ),

and the minimax risk is
R⋆ = inf

ĥ
sup
P∈P

R(ĥ, P ).

Example 1 (Estimation error in a hypothesis class). H ⊆ {h : X → Y}
Our estimator ĥ will choose some hypothesis in H using data. We can now view L(h, P ) as the estimation

error. Recall, that letting h∗ be the Bayes’ optimal classifier, we can write

F (h, P )− F (h∗, P ) = F (h, P )− inf
h′∈H

F (h′, P )︸ ︷︷ ︸
estimation error=L(h,P )

+ inf
h′∈H

F (h′, P )− F (h∗, P )︸ ︷︷ ︸
approximation error

.

In Homework 1, we saw that for ERM, when H has VC dimension dH, we have

R(ĥERM , P ) = ES [F (ĥERM (S), P )]︸ ︷︷ ︸
ES [EX,Y ∼P [(1(ĥERM (S)(X) ̸=Y )]]

− inf
h∈H

F (h, P ) ∈ Õ

(√
dH
n

)

We will use this framework to show a corresponding lower bound

inf
ĥ

sup
P∈P

(
ES∼P [F (ĥ(S), P )]− inf

h′∈H
F (h′, P )

)
∈ Ω

(√
dH
n

)

To proceed, we will first define the separation of two distributions, with respect to a given hypothesis
class and loss L.
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Definition 1 (Separation). For two distributions P , Q, define the separation ∆(P,Q) as

∆(P,Q) = sup{δ ≥ 0; L(h, P ) ≤ δ ⇒ L(h,Q) ≥ δ, ∀h ∈ H
L(h,Q) ≤ δ ⇒ L(h, P ) ≥ δ, ∀h ∈ H}

• P , Q are δ-separated if any hypothesis that does well on P (i.e. L(h, P ) ≤ δ), does poorly on Q (i.e.
L(h,Q) ≥ δ)

• We say a collection of distributions {P1, · · · , PN} are δ-separated if ∆(Pi, Pk) ≥ δ, ∀j ̸= k.

The following theorem can be proved using a similar technique to our previous thoerem on reducing
estimation to testing. You will do this in your homework.

Theorem 2 (Reduction to testing). Let {P1, · · · , PN} be a δ-separated subset of P. Let ψ be any test which
maps the dataset to [N ]. Then

R∗ ≥ δ inf
ψ

max
j∈[N ]

Pj(ψ ̸= j)

We can then establish the following statements from the above result when S consists of n i.i.d data
points.

Theorem 3 (Le Cam & Fano Method). 1. Le Cam: If {P0, P1} are δ-separated,

R∗ ≥ δ

2
∥P0 ∧ P1∥ ≥ δ

4
e−KL(P0,P1)

Hence, for i.i.d. data S ∼ Pn, if KL(P0, P1) ≤ log(2)
n , then R∗ ≥ δ

8

2. Local Fano Method: If {P1, · · · , PN} are δ-separated, then

R∗ ≥ δ

(
1−

1
N2

∑
j,k KL(Pj , Pk) + log(2)

log(N)

)

Hence, for i.i.d. data S ∼ Pn, if KL(Pj , Pk) ≤ log(N)
4n , and N ≥ 16, then R∗ ≥ δ

8

Remark While our focus is on prediction problems, this framework and theorems apply to any problem
for which

inf
h∈H

L(h, P ) = 0 ∀P ∈ P.

2 Application: Classification in a VC class

We will now use the above results to prove a lower bound for classification in a VC class.

Theorem 4. Let P be the set of all distributions supported on X × {0, 1}. Let H ⊆ {h : X → Y} be a
hypothesis class with VC dimension d ⩾ 8. Let S = {(X1, Y1), . . . , (Xn, Yn)} ∼iid P , where P ∈ P. Then,

for any estimator ĥ which maps the data set S to a hypothesis in H,

R∗ = inf
ĥ

sup
P∈P

(
E[F (ĥ, P )]− inf

h′∈H
F (h′, P )

)
⩾ C1

√
d

n

for some global constant C1.
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Proof Our proof will follow the usual four step recipe when applying Fano/Le Cam methods.
Step 1: Construct alternatives.
Let Xd = {x1, . . . , xd} be a set of points shattered by H. Let γ ⩽ 1/4 be a value which will be specified

later. Define

P ′ = {Pω : Pω(X = x) = d−1I{x∈Xd}, Pω(Y = 1|X = xi) =
1

2
+ (2ωi − 1)γ, ω ∈ Ωd},

where Ωd is the VG-pruned hypercube of {0, 1}d.

Remark To illustrate the above construction, consider the class of two-sided threshold classifiers with
d = 2, i.e. X2 = {x1, x2} ⊆ R. Let Pω be the distribution for ω = (0, 1) with Pω(X = x1) = Pω(X = x2) =
1/2. Then the conditional distribution of Y should be

Pω(Y = 1|X = x1) =
1

2
− γ, Pω(Y = 1|X = x2) =

1

2
+ γ

Step 2: Lower bound the separation minω,ω′ ∆(Pω, Pω′).
We have the following claim: For any Pω, Pω′ ∈ P ′, the separation satisfies

∆(Pω, Pω′) ⩾
γ

d
H(ω, ω′).

We will prove this claim in homework. Then by the Varshamov-Gilbert lemma, we have

min
ω,ω′

∆(Pω, Pω′) ⩾
γ

d

d

8
=
γ

8
≜ δ.

Step 3: Upper bound the KL divergence maxω,ω′ KL(Pω, Pω′). We have,

KL(Pω, Pω′) = EX,Y
[
log

Pω(X,Y )

Pω′(X,Y )

]
=

d∑
i=1

Pω(xi)
∑

y∈{0,1}

Pω(y|xi) log
Pω(y|xi)
Pω′(y|xi)

(as Pω(x) = Pω′(x))

=

d∑
i=1

1

d
I{ω ̸=ω′}

[
(1/2 + γ) log

1/2 + γ

1/2− γ
+ (1/2− γ) log

1/2− γ

1/2 + γ

]
︸ ︷︷ ︸

=O(r2)

⩽ C2
γ2

d
H(ω, ω′).

Therefore, with H(ω, ω′) ⩽ d, we have

max
ω,ω′

KL(Pω, Pω′) ⩽ C2γ
2.

Step 4: To conclude the proof, we will choose γ = C3

√
d/n. Then we have

max
ω,ω′

KL(Pω, Pω′) ⩽ C4
d

n
⩽

log(2d/8)

4n
⩽

log(|P ′|)
4n

,

where the last inequality is by the Varshamov-Gilbert lemma. Then, by the local Fano method, we have

R∗ ⩾
δ

2
⩾ C5

√
d

n
.
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3 Stochastic Bandits

In the next series of lectures we will be discussing sequential/adaptive decision making problems in which
there exists a sequence of interactions between a learner and an environment. Specifically, on round t, the
learner chooses an action At ∈ A, where A is a set of possible actions. Then the environment reveals an
observation Ot. In return, the learner receives a reward Xt = Xt(Ot, At). The learner’s goal is to maximize

the sum of rewards
∑T
t=1Xt. Stochastic/adversarial bandits and online learning are typical examples of

sequential/adaptive decision making problems. We will first focus on stochastic bandits.
A stochastic bandit problem will have the following components:

• Let ν = {νa, a ∈ A} denote a set of distributions indexed by actions in A. ν is called a bandit model
and is a subset of some family P.

• On round t, the learner chooses At ∈ A and observes a reward Xt sampled from νAt
.

• The learner is characterized by a policy Π = (Πt)t∈N , where Πt maps the history {(As, Xs)}t−1
s=1 to an

action in A.

• If Π is a randomized policy, Πt maps the history to a probability distribution on A, and then an action
is sampled from this distribution. Π can also be a deterministic policy.

• µa = EX∼νa [X] is defined to be the expected reward of the action a. Let a∗ ∈ argmaxa∈A µa be an
optimal action, and let µ∗ = µa∗ be the corresponding optimal value of the expected reward.

• Finally, we define the regret after T rounds of interaction as

RT = RT (π, ν) = Tµ∗ − E[
T∑
t=1

Xt]

where E is with respect to the distribution of the action-reward sequence A1, X1, A2, X2, ...., AT , XT

induced by the interaction between the policy π and bandit model ν. Here, µa, a
∗, and µ∗ should be

viewed as functions of the the bandit model ν and can be written as µa(ν), a
∗(ν), and µ∗(ν).

When designing an algorithm for bandits, at the bare minimum, we will require RT ∈ O(T ), i.e. lim
T→∞

RT

T = 0.

This implies that over time, a learner is able to eventually learn the optimal arm.
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