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In this lecture, we will introduce the K–armed bandit and then present the upper confidence bound
algorithm. Let us first quickly review the bandit framework.

1. Let ν = {νa, a ∈ A} be a bandit model

2. On round t, learner chooses At ∈ A and observes reward Xt sampled from νAt

3. A learner is characterized by a policy Π = (Πt)t∈N , where Πt maps the history {(As, Xs)}t−1
s=1 to an

action in A (or, for randomized policies, to a (deterministic) distribution over A

4. Let µa = EX∼νa [X] be the expected reward of action a, let a∗ ∈ argmaxa∈A µa be an optimal action,
and let µ∗ = µa∗ be the optimal value.

5. Regret

RT = RT (π, ν) = Tµ∗ − E[
T∑

t=1

Xt]

where E is with respect to the distribution of the action-reward sequence A1, X1, A2, X2, ...., AT , XT

induced by the interaction between the policy π and bandit model ν.
We want RT ∈ O(T ), i.e. lim

T→∞
RT

T = 0

1 K-armed bandits

A K-armed bandit is a stochastic bandit model where the action space consists of K distinct actions. We
will write A = [K]. We will assume that each νi is σ sub-Gaussian, with σ known. That is,

P = {ν = {νi, i ∈ [K]}, νi is σ-sub-Gaussian ∀i ∈ [K]}

For convenient, assume without loss of generality that 1 ≥ µ1 ≥ µ2 ≥ ... ≥ µK ≥ 0, where µi = EX∼νi [X].
(The learner is not aware of the ordering.) Finally, let ∆i = µ∗ − µi = µ1 − µi denote the gap between the
optimal arm and arm i.

2 Explore-then-Commit

One of the simplest algorithms for bandit models is the explore-then-commit algorithm, which simply pulls
each arm for a fixed number of rounds at the beginning, and for the remaining rounds, pulls the arm that
appeared to be the best. We have stated this algorithm formal in Algorithm 1.
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Algorithm 1 Explore-then-Commit Algorithm

Data: time horizon T , number of exploration rewards m (≤ T/K)
- Exploration phase: Pull each arm m times in the first mK rounds.
- Let

A = argmax
T∈[K]

µ̂i, where µ̂i =
1

m

mK∑
s=1

1(As = i)xs

- Commit phase: Pull arm A for the remaining T −mK rounds

Theorem 1. Let P denote the class of σ-subGaussian bandit models, and let ν ∈ P, Then the ETC policy
satisfies

RT (ν) ≤ m
∑

i;∆i>0

∆i + (T −mK)
∑

i;∆i>0

∆i exp

(
−m∆2

i

4σ2

)
If we choose m ≍ K−1/3T 2/3, then

sup
ν∈P

RT (ν) ∈ Õ(K1/3T 2/3)

The proof of this theorem will be in HW2.

3 The Upper Confidence Bound Algorithm

The UCB algorithm is based on the principle of optimism in the face of uncertainly, where on each round
we will pretend that the bandit model is as nice as statistically plausible. To state the algorithm, we will
first define upper confidence bounds on each arm at the end of round t as follows:

Ni,t =

t∑
s=1

1(As = i)

µ̂i,t =
1

Ni,t

t∑
s=1

1(As = i)Xs. (undefined if Ni,t = 0)

ei,t = σ

√
2 log(1/δt)

Ni,t
where δt =

1

T 2t
(undefined if Ni,t = 0)

Then, µ̂i,t + ei,t is an upper confidence bound for µi, and µ̂i,t − ei,t is a lower confidence bound for µi.
We can now state the upper confidence bound algorithm, which stipulates that we choose the arm with the

highest upper confidence bound µ̂i,t−1+ei,t−1 on each round. Intuitively, when you maximize µ̂i,t−1+ei,t−1,
the µ̂i,t−1 favors exploitation, and ei,t−1 favors exploration. The algorithm is stated formally in Algorithm 2
below.

Algorithm 2 The Upper Confidence Bound Algorithm

Data: time horizon T , number of exploration rewards m(≤ T/K)
for t = 1, · · · , k do
Pull arm t, i.e. At = t and observe Xt ∼ νt

end
for t = k + 1, · · · , T do

Pull At = argmaxi∈[K] µ̂i,t−1 + ei,t−1 and observe Xt ∼ νAt
▷ break ties arbitrarily

end
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Theorem 2. Let P denote the class of σ-subGaussian bandit models, and let ν ∈ P. Then the UCB policy
satisfies

RT (ν) ≤ 3K +
∑

i;∆i>0

24σ2 log(T )

∆i
.

Moreover,

sup
ν∈P

RT (ν) ≤ 3K + σ
√
96KT log(T ) ∈ Õ

(√
KT

)
.

Here, the first bound can be viewed as a gap-dependent bound while the second bound can be viewed as
a gap-independent bound or a worst case bound. If the gaps ∆i = µ1 − µi are large, then RT ∈ O(log(T )).

Otherwise RT ∈ Õ
(√

KT
)

Before we prove our theorem, we will first state the following decomposition of the regret.

Lemma 1 (Regret decomposition). (Applies to any policy, not just UCB)

RT (ν) =
∑

i,∆i>0

∆i E[Ni,T ],

where the expectation E is with respect to the action reward sequence A1, X1, A2, X2.....Ai, Xi

Proof

RT =

T∑
t=1

(µ1 − E[Xt])

=

T∑
t=1

(
µ1 − E[

K∑
i=1

1(At = i)Xt]

)

=

T∑
t=1

K∑
i=1

E[(µ1 −Xt)1(At = i)]

=

K∑
i=1

T∑
t=1

E[E[(µ1 −Xt)1(At = i)|At]]

=

K∑
i=1

T∑
t=1

E[1(At = i)E[(µ1 −Xt)|At]]

=

K∑
i=1

T∑
t=1

E[1(At = i)(µ1 − µAt)] (Integrating out observation)

=

K∑
i=1

T∑
t=1

E[1(At = i)(µ1 − µi)] (it will be 0 if A1 ̸= i)

=

K∑
i=1

T∑
t=1

E[∆i1(At = i)]

=

K∑
i=1

∆i E[
T∑

t=1

1(At = i)]

=

K∑
i=1

∆i E[Ni,t]
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The last step follows from the fact that

µ̂i,t =
1

Ni,t

t∑
s=1

1(As = i)Xs

Proof Proof of Theorem 2 will assume w.l.o.g that each arm samples rewards yi,rr∈N and we observe these

samples one-by-one as we pull each arm. Therefore, we can write µ̂i,t =
1

Ni,t

∑Ni,t

r=1 yi,r.

We now define the following good events, G1, Gi, ∀i s.t. ∆i > 0.

G1 = {∀t > K, µ1 < µ̂1,t + e1,t}

Gi = {∀t > K, µi > µ̂i,t − ei,t}

where G1 indicates that the true mean is below the UCB, and Gi indicates that the true mean is above the
LCB.

Claim 1. We have, P(Gc
1) ≤ 1

T , and P(Gc
i ) ≤ 1

T

P(Gc
1) = P (∃t > K, s.t. µ1 ≥ µ̂1,t + e1,t)

≤
∑
t>K

P (µ1 > µ̂1,t + e1,t)

=
∑
t>K

P

µ1 >
1

N1,t

N1,t∑
r=1

y1,r + σ

√
2 log(1/δt)

N1,t


≤
∑
t>K

P

(
∃s ∈ [t−K + 1] s.t. µ1 >

1

s

s∑
r=1

y1,r + σ

√
2 log(1/δt)

s

)

≤
∑
t>K

t−K+1∑
s=1

P

(
1

s

s∑
r=1

(y1,r − µ1) < −σ

√
2 log(1/δt)

s

)

≤
∑
t>K

t−K+1∑
s=1

exp

(
− s

2σ2
· σ2 · 2 log(1/δt)

s

)

=
∑
t>K

t−K+1∑
s=1

1

T 2t
as δt =

1

T 2t

≤
∑
t>K

1

T 2
≤ 1

T

Remark The trick we used in the fourth and fifth steps only works in K–armed bandits. For other bandit
models, we usually use martingales.
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