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In this lecture, we will first upper bound the regret for UCB, providing gap-dependent and worst-case
bounds. We will then start our discussion on proving lower bounds for K–armed bandits.

1 UCB Theorem and Proof

Recall the UCB algorithm from the last class.

Algorithm 1 The Upper Confidence Bound Algorithm

Require: time horizon T
for t = 1, . . . ,K do

At ← t
Xt ∼ νt

end for
for t = K + 1, . . . , T do

At ← argmaxi∈[K]

(
µ̂i,t−1 + ei,t−1

)
▷ Break ties arbitrarily

Xt ∼ νAt

end for

We will now present the theorem for the risk upper bounds for the UCB theorem once again, and pick
up the proof where we left off.

Theorem 1 (UCB Risk Upper Bound). Let P =
{
ν = {νi}Ki=1 : νi σ-sG, EX∼νi

[X] ∈ [0, 1] ∀ i ∈ [K]
}
be the

class of σ-sub-Gaussian K-armed bandit models with means in [0, 1]. Let µi := EX∼νi
[X], µ∗ := maxi∈[K] µi,

and denote ∆i := µ∗ − µi. Then

RT (ν) ≤ 3K +
∑

i:∆i>0

24σ2 log(T )

∆i
(1)

sup
ν∈P

RT (ν) ≤ 3K + σ
√
96KT log(T ) (2)

Proof As before, WLOG, we begin by letting 1 ≥ µ1 ≥ · · · ≥ µK ≥ 0 for ease of notation. Also, we again
define our good events

G1 :=
⋂
t>K

{
µ1 < µ̂1,t + e1,t

}
Gi :=

⋂
t>K

{
µi > µ̂i,t − ei,t

}
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At the end of our previous class, we proved that P(Gc
1),P(Gc

i ) ≤ 1
T (we directly showed this for the case of

Gc
1, remarking that the case for Gc

i is nearly identical). We will now show that Ni,t :=
∑t

s=1 I{As=i} is small
for sub-optimal arms (∆i > 0) under the event G1 ∩ Gi. To show this, suppose arm i was last pulled on
round t+ 1, where t ≥ K. Hence,

µ̂i,t + ei,t ≥ max
j ̸=i

(
µ̂j,t + ej,t

)
← UCB Alg. construction

≥ µ̂1,t + e1,t

> µ1 (under G1),

and under Gi, we also have µi > µ̂i,t − ei,t. Therefore,

µ1 < µi + 2ei,t ⇒
∆i

2
< ei,t = σ

√
2 log(T 2t)

Ni,t

⇒ Ni,t <
8σ2 log(T 3)

∆2
i

← T > t

⇒ Ni,T = Ni,t + 1 ≤ 24σ2 log(T )

∆2
i

+ 1

Now, combining these results, we can write,

E[Ni,t] = E[Ni,t|G1 ∩Gi]︸ ︷︷ ︸
≤ 24σ2 log(T )

∆2
i

+1

P(G1 ∩Gi)︸ ︷︷ ︸
≤1

+E[Ni,t|Gc
1 ∪Gc

i ]︸ ︷︷ ︸
≤T

P(Gc
1 ∪Gc

i )︸ ︷︷ ︸
≤ 2

T

≤ 3 +
24σ2 log(T )

∆2
i

Then, by the regret decomposition result shown towards the end of last class, we can write,

RT (ν) ≤
∑

i:∆i>0

∆i E[Ni,t] ≤ 3K +
∑

i:∆i>0

24σ2 log(T )

∆i
,

where we leverage the fact that ∆i ∈ [0, 1] and there are at most K − 1 summands. This proves the gap-
dependent bound in (1). For the gap-independent bound, we can choose some value ∆ > 0 and rewrite our
result above as thus:

RT (ν) =
∑

i:∆i>0

∆i E[Ni,t]

=
∑

i:∆i∈(0,∆]

∆i E[Ni,t] +
∑

i:∆i>∆

∆i E[Ni,t]

≤ ∆
∑

i:∆i∈(0,∆]

E[Ni,t]︸ ︷︷ ︸
≤T

+
∑

i:∆i>∆

24σ2 log(T )

∆
+ 3K

≤ 3K +∆T +
24σ2 log(T )

∆

Then, because this holds for all ∆ > 0, we are free to optimize over values of ∆, giving us in particular

∆ = σ
√

24K log(T )
T . Therefore,

RT (ν) ≤ 3K + σ
√

96KT log(T ) ,

and because this result holds for all ν ∈ P, and the bound has no dependence on ν, then we can write,

sup
ν∈P

RT (ν) ≤ 3K + σ
√
96KT log(T ) ,
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which is exactly the statement in (2).

Next, we will present an alternative proof of the gap-independent bound. We will use similar techniques
for linear bandits in subsequent classes.

1.1 Alternative Proof for the Gap-Independent Bound

We will first decompose the regret as follows:

RT = E

[
T∑

t=1

(µ∗ −Xt)

]

= E

[
T∑

t=1

E [µ∗ −Xt | At]

]

= E

[
T∑

t=1

(µ∗ − µAt
)

]

where E
[∑T

t=1 (µ∗ − µAt)
]
is usually called the pseudo-regret. Let G = G1 ∩

⋂
i:∆i>0 Gi, then

RT = E

[
T∑

t=1

(µ1 − µAt
) | G

]
P (G) + E

[
T∑

t=1

(µ1 − µAt
) | Gc

]
P (Gc) (3)

Note we have P (G) ≤ 1, E
[∑T

t=1(µ1 − µAt
) | Gc

]
≤ T , and P (Gc) ≤ K

T . We will bound
∑T

t=1(µ1−µAt
)

under G.
Claim: Under the event G, µ1 − µAt

≤ 2eAt,t−1.

• If At is an optimal arm, then µ1 − µAt
≤ 0 ≤ 2eAt,t−1.

• If not, µ1 ≤ µ̂1,t−1 + e1,t−1 ≤ m̂uAt,t−1 + eAt,t−1 ≤ µAt + 2eAt,t−1, where the first inequality is under
G1, and the last inequality is under

⋂
i:∆i>0 Gi.

Then,

T∑
t=1

(µ1 − µAt
) ≤ K +

T∑
t=K+1

2σ

√
2 log(1/δt)

NAt,t−1

≤ K +

T∑
t=K+1

2σ

√
2 log(T 2t)

NAt,t−1

≤ K + σ
√

24 log(T )

T∑
t=K+1

1√
NAt,t−1

(4)
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We will now focus on the last summation:

T∑
t=K+1

1√
NAt,t−1

=

K∑
i=1

Ni,T−1∑
s=1

1√
s

≤ 2

K∑
i=1

√
Ni,T − 1

= 2K

(
1

K

K∑
i=1

√
Ni,T − 1

)

≤ 2K

√√√√ 1

K

K∑
i=1

(Ni,T − 1) (Jensen′s Inequality)

= 2
√
K(T −K) (5)

Here the first inequality follows from
∑m

s=1
1√
s
≤ 2
√
m, which we have proved below.

Combining (3), (4), (5), we obtain RT ≤ 2K + σ
√
96KT log(T ).

To prove,
∑m

s=1
1√
s
≤ 2
√
m, we will bound the sum of a decreasing function by an integral as follows:∑m

s=1
1√
s
≤
∫m

0
1√
s
ds = (2s1/2)

∣∣m
0

= 2
√
m.

2 K-armed bandits lower bound.

In this section, we will prove the following lower bound on the minimax regret: infΠ supν∈P RT (Π, ν) ∈
Ω(
√
KT ). To do so, recall the following results we used in the proof of Le Cam’s method (Lecture 9, Lemma

1 and Corollary 1).

Lemma 1. Let P0, P1 be two distributions and A be any event. Then,

P0(A) + P1(A
c) ≥ ∥P0 ∧ P1∥ (Neyman− Pearson Test)

= 1− TV (P0, P1)

≥ 1

2
exp(−KL(P0, P1))

When applying this inequality, the KL divergence will be between distributions of action-reward sequences
A1, X1, · · · , AT , XT induced by the interaction of a policy π with different bandit models. The following
lemma will be helpful in computing the KL divergence.

Lemma 2 (KL divergence decomposition). Let ν, ν′ be two K-armed bandits models. For a fixed policy Π,
let P , P ′ denote the probability distribution over the sequence of actions and rewards A1, X1, · · · , AT , XT

under ν, ν′, respectively. Let Eν denote the expectation under bandit model ν. Then ∀T ≥ 1,

KL(P, P ′) =

K∑
i=1

Eν [Ni,T ]KL(νi, ν
′
i)

where Ni,T =
∑T

t=1 1{At=i}

Intuitively, suppose we pulled arm 1 N1 times. As the observations are independent KL(P, P ′) =
N1KL(ν1, ν

′
1). Next, consider a nonadaptive policy which pulls arm i Ni times for i = 1, · · · ,K. We then

have KL(P, P ′) =
∑K

i=1 NiKL(νi, ν
′
i). The above lemma says that a similar result holds when we use an

adaptive policy.
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Proof Proof of Lemma 2 Consider any given sequence a1, x1, · · · , aT , xT . Let p, p′ denote the Radon-
Nikodym derivatives of P, P ′ respectively. Let ν̃i, ν̃

′
i denote the Radon-Nikodym derivatives of νi, ν

′
i, respec-

tively.
Consider for fixed action-reward sequence a1, x1, · · · , aT , xT .

p(a1, x1, · · · , aT , xT ) =

T∏
t=1

p(at, xt | a1, x1, · · · , at−1, xt−1)

=

T∏
t=1

Π(at | a1, x1, · · · , at−1, xt−1)ν̃at(xt)

Similarly, under ν′, we can write

p′(a1, x1, · · · , aT , xT ) =

T∏
t=1

Π(at | a1, x1, · · · , at−1, xt−1)ν̃at(xt)

log

(
p(a1, x1, · · · , aT , xT )

p′(a1, x1, · · · , at, xt)

)
= log

(
ν̃a1

(x1) · · · ν̃aT
(xT )

ν̃′a1
(x1) · · · ν̃′aT

(xT )

)

=

T∑
t=1

log

(
ν̃at(xt)

ν̃′at
(xt)

)
To be continued next lecture...
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