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In the previous lecture we proved an upper bound for the UCB and began analyzing a lower bound. In
this lecture, we will continue the proof of that lower bound which is gap independent. We will then also
provide a gap dependent lower bound for k-armed bandits. Finally, we will introduce a structured bandit
model which generalizes the K–armed setting.

1 K-armed bandits lower bounds

Lemma 1. Let ν, ν′ be two bandit models, and P, P ′ bet the prob distribution of A1, x1, ...., Ai, xi due to the
interaction of a policy π with ν, ν′ respectively, then

KL(P, P ′) =

k∑
i=1

EP [Ni,T ]KL(νi, ν
′
i)

Proof we showed from the previous lecture, for any sequence a1, x1, ....aT , xT

log

(
p(a1, x1, ....aT , xT )

p′(a1, x1, ....aT , xT )

)
=

T∑
t=1

log

(
ν̂at(xt)

ν̂′
at(xt)

)
Therefore, we have

KL(P, P ′) = Ep

[
log

(
P (A1, x1.....Ai, xi)

P ′(A1, x1......AT , xT )

)]
= Ep

[
T∑

t=1

log

(
ν̂At(xt)

ν̂′
At(xt)

)]

=

T∑
t=1

Ep

[
log

(
νAt(xt)

ν
′
At(xt)

) K∑
i=1

1(At = i)

]

=

K∑
i=1

T∑
t=1

Ep

Ep

[
log

(
νAt(xt)

ν
′
At(xt)

)
1(At = i)|At

]
︸ ︷︷ ︸

∗


=

K∑
i=1

KL(νi, ν
′

i)

(
T∑

t=1

E[1(At = i)]

)
from the result of * and KL is not related to t

=

K∑
i=1

KL(νi, ν
′

i)E[Ni,T ]
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where

∗ = 1(At = i)Ep

[
log

(
νAt(xt)

ν
′
At(xt)

)
|At

]
= 1(At = i)KL(νAt, ν

′

At)

= 1(At = i)KL(νi, ν
′

i)

This KL divergence decomposition lemma now allows us to state the following minimax lower bound for
k-armed bandits. The idea of the proof is that given any policy π, we can construct two bandit instances
such that π will perform poorly in one of them.

Theorem 1. (Minimax lower bound for k-armed bandits) Let P = {ν = νi, i ∈ [K]}, νi is σ subGaussian for all i ∈
[K]. Then, if K > 1, for some universal constant C,

inf
π

sup
ν∈P

RT (π, ν) ≥ Cσ
√
T (K − 1)

Proof Let π be given, consider the following two bandit models ν, ν
′
(constructed based on π) as follows:

• Let ν = {νi = N(µi, σ
2)i∈[K], where µ1 = δ, and µi = 0, ∀i ∈ 2, .....,K, µ = (δ, 0, 0.....0)}. Here, δ > 0

is a value we will specify shortly.

• Let Eν denote the expectation with respect to the sequence A1, x1, .....AT , xT due to π’s interaction
with ν. Since

∑k
i=1 Eν [Ni,t] = T , ∃ some j ∈ 2, ...., k s.t Eν [Nj,t] ≤ T

k−1

• Let ν
′
= {νi = N(µ

′

i, σ
2)}i∈[k] where

µ
′

i =

{
µi if i ̸= j
2δ if i = j

Therefore, µ
′
= (δ, 0, 0, ....., 2δ︸︷︷︸

j

, 0, ..., 0)

• Let P, P
′
denote the prob distributions of A1, x1, ....AT , xT due to π’s interaction with ν, ν

′
.

We know,

RT (π, ν) ≥ P

(
N1,T ≤ T

2

)
Tδ

2

RT (π, ν
′
) ≥ P

′
(
Nj,T ≤ T

2

)
Tδ

2
≥ P

′
(
N1,T ≥ T

2

)
Tδ

2

Now, note that we can write

sup
ν∈P

RT (π, ν) ≥ max(RT (ν, π), RT (ν
′
, π)) ≥ 1

2
(RT (ν, π) +RT (ν

′
, π)︸ ︷︷ ︸

(⋆)

)
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We will now bound the term (⋆) as follows

(⋆) ≥ Tδ

2

(
P (N1,T ≤ T

2
) + P

′
(N1,T >

T

2
)

)
from the definition

≥ Tδ

4
exp(−KL(p, p

′
)) from the Le Cam’s lemma

=
Tδ

4
exp

(
Eν [Nj,T ]

(2δ)2

2σ2

)
Divergece Decomposition + KL of Gaussian

≥ Tδ

4
exp

(
− T

K − 1

2δ2

σ2

)
Now, if we choose δ = σ

√
K−1
T , Then, we are able to get ∗ ≥ ( 14e

−2)
√
T (K − 1), and hence infπ supν∈P RT (π, ν) ≥

Cσ
√
T (K − 1).

2 Gap-independent lower bounds

Recall from our analysis of UCB that there are two types of bounds: gap dependent bounds (those that
depend on ∆i) and gap independent bounds (those that do not depend on ∆i). In addition to the gap
independent lower bound we just proved, there is also a gap dependent lower bound for k-armed bandits.
Although we will not prove it here, this lower bound is given by the following theorem.

Theorem 2. (Theorem 16.4 in LS)
Let ν be a given K-armed bandit model with σ-sub Gaussian rewards. Let µ = µ(ν) be the means of the arms.
Let P(ν) = {ν′ : µi(ν) ∈ [µi, µi + 2∆i], vi is σ-sub Gaussian}. Say π is a policy such that RT (π, ν

′) ≤
cT p,∀ν′ ∈ P(ν) for some c > 0 and p ∈ (0, 1). Then

RT (π, ν) ≥
1

2

∑
i:∆i>0

((
1− p) log(T ) + log(∆i

8c

))
σ2

∆i

Remark At a high level this theorem says that if a policy does well on all “similar” problems then it does
at least as poorly as the given expression on the original problem.

3 Stochastic bandits in a generalized linear model

One potential criticism of the bandit model we have studied thus far is its restriction of the action space to
K specific choices. In the generalized linear bandit model we are about to introduce, we will allow for an
infinite action space, but assume additional structure on the rewards.

Definition 1. A generalized linear bandit model consists of the following components:

1. Action space A ⊆ [−1, 1]d. For reasons of convenience which will become clear shortly, we will assume
that the basis vectors e1, . . . , ed are in A.

2. Parameter space Θ ⊆ [−1, 1]d

3. True parameter (unknown) θ∗ ∈ Θ

4. When we choose an action (arm) At, we observe Xt = f(θT∗ At) + εt where E[εt] = 0 and εt is σ-sub
Gaussian. Here εt can be thought of as noise.
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5. Here f is known and has the following properties

(a) f is strictly increasing with f ′(x) ≥ c > 0

(b) f is L-Lipschitz

(c) f ′ is continuous

Example (f is the identity in a linear bandit model): In this case we have the following expression for

the regret, RT = Tf(θT∗ a∗) − E
[∑T

t=1 Xt

]
, where a∗ = argmaxa∈A f(θT∗ a). Notice that this allows us to

recover our original bandit model and so our new framework is broader than how we first introduced k-armed
bandits.

3.1 A UCB algorithm (Based on Filippi et al. 2010)

In order to get a UCB algorithm, we need to know how to estimate θ∗ from data and construct UCBs. We
define the following quantities:

• θ̂t = argminθ∈Θ

∥∥∥∑t
s=1 As(f(A

T
s θ)−Xs)

∥∥∥
V −1
t

where vt =
∑t

s=1 AsA
T
s and ∥y∥2Q = yTQy (here Q

must be positive semi-definite)

• ρ(t) = 2Lσ
c

√
(3 + 2 log(1 + 2d)) · 2d log(t) log(dT 2) ∈ Õ(

√
d)

In the following algorithm, for the first d rounds, we pull each basis vector which is analogous to pulling
each of the k arms once at the start of our original UCB algorithm. For the remaining rounds we then pull
the arm with the highest new confidence bound which is again analogous the original UCB algorithm where
we pull the arm with the highest original confidence bound.

Algorithm 1 UCB

Require: a time horizon T
for t = 1, . . . , d do

Choose At = et (the tth basis vector)
end for
for t = d+ 1, . . . , T do

Choose At = argmaxa∈A f(θ̂Tt a)︸ ︷︷ ︸
exploitation

+ ρ(t)∥a∥V −1
t−1︸ ︷︷ ︸

exploration

end for
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