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In the last lecture we introduced a more general bandit framework and proposed an analogous UCB
algorithm. In this lecture we will analyze the algorithm and introduce the formalism of martingales so that
we can utilize their popular results.

1 Structured Bandits

Theorem 1. Consider the algorithm introduced at the end of the previous lecture. For sufficiently large T
we have

RT = Tf(θTa∗)− E[
T∑

t=1

xi] ∈ Õ(d
√
T )

where a∗ = argmax
a∈A

f(θT∗ a)

Proof We start by defining a good event analogous to the one we define in the analysis of UCB. Let
G = {|f(θTt a) − f(θ̂Tt−1a)| ≤ ρ||a||V −1

t−1
,∀a ∈ A,∀t ∈ {d + 1, . . . , T}}. Observe that here ρ||a||V −1

t−1
is playing

the role of an upper confidence bound. We will use the following two claims to aid in the proof.

Claim 1. P(Gc) ≤ 1
T . We will prove this later using some martingale concentration results.

Claim 2. Under G, f(θT∗ a∗)− (θT∗ At) ≤ 2ρ(T )||At||V −1
t−1

for all t > d.

Claim 2 can be verified via the following simple calculation.

f(θT∗ ai)− f(θT∗ At) ≤ f(θ̂t−1a∗) + ρ(t)||a∗||V −1
t−1

− (f(θ̂t−1At) + ρ(t)||At||V −1
t−1

)

≤ f(θ̂t−1At)− ρ(t)||At||V −1
t−1

− (f(θ̂t−1At) + ρ(t)||At||V −1
t−1

)

≤ 2ρ(t)||At||V −1
t−1

≤ 2ρ(T )||At||V −1
t−1

Next, to bound the regret, write the pseudo-regret R̄T = Tf(θT∗ a∗) −
∑T

i=1 f(θ
T
∗ At) so that RT = E[R̄T ].

Using the tower property, we have:

RT = E(R̄T |G)P(G)︸ ︷︷ ︸
≤1

+E(R̄T |Gc)︸ ︷︷ ︸
≤Tfmax

P(Gc)︸ ︷︷ ︸
≤ 1

T
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where fmax = max
a,a′∈A

(f(θT∗ a)− f(θT∗ a
′)). Under the good event G,

R̄t = (f(θT∗ a∗)− f(θT∗ At))

≤ dfmax +

T∑
t=d+1

min(fmax, f(θ
T
∗ a∗)− f(θT∗ At))

≤ dfmax +

T∑
t=d+1

min(fmax, 2ρ(t)||At||V −1
t−1

)

≤ dfmax + 2ρ(t)

T∑
t=d+1

min(1, ||At||2V −1
t−1

) , as fmax ≤ 2ρ(t) for sufficiently large T

≤ dfmax + 2ρ(t)

√√√√T

T∑
t=d+1

min(1, ||At||2V −1
t−1

) , by the Cauchy-Schwarz inequality,

where ai = 1, bi = min(1, ||At||2V −1
t−1

)

(1)

Next, we will bound
∑T

t=d+1 min(1, ||At||2V −1
t−1

). Consider for t > d,

det(Vt) = det(Vt−1 +AtA
T
t ), where Vt =

t∑
s=1

AsA
T
s

= det(V
1
2
t−1(I + V

− 1
2

t−1AtA
T
t V

− 1
2

t−1 )V
1
2
t−1)

= det(Vt−1) det(I + (V
− 1

2
t−1At)(V

− 1
2

t−1At)
T ) , since det(AB) = det(A) det(B)

= det(Vt−1)(1 + ||At||2V −1
t−1

), since det(I + UV T ) = 1 + UTV

(2)

Therefore, det(VT ) = det(Vd)
∏T

t=d+1(1 + ||At||2V −1
t−1

) =
∏T

t=d+1(1 + ||At||2V −1
t−1

).

This means that
T∑

t=d+1

log
(
1 + ||At||2V −1

t−1

)
= log (det(VT )) ≤ d log(T )

where the last inequality follows from the fact

det(VT ) ≤
(
Trace(Vt)

d

)d

=

(∑T
s=1 ||As||22

d

)d

=

(
dT

d

)d

= T d

We will now use the following inequality: x ≤ 2 log(1 + x), ∀x ∈ [0, 2 log(2)] ⊇ [0, 1] to get

T∑
t=d+1

min(1, ||At||22) ≤ 2

T∑
t=d+1

log
(
1 + min

(
1, ||At||2V −1

t−1

))

≤ 2

T∑
t=d+1

log
(
1 + ||At||2V −1

t−1

)
≤ 2d log(T )

Therefore, underGRT ≤ dfmax+2ρ(T )
√

2Td log(T ), and so usingRT = E[RT |G]P(G)+E[RT | Gc]︸ ︷︷ ︸
≤Tfmax

P(Gc)︸ ︷︷ ︸
≤ 1

T

,
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we can conclude that

RT ≤ (d+ 1)fmax + 2 ρ(T )︸︷︷︸
∈Õ(

√
d)

√
dT ∈ Õ(d

√
T )

Next, we need to prove Claim 1. In order to prove this result, we will begin with a review of martingales.

2 Review of martingales

In sequential decision making, information is revealed to the learner sequentially, and the learner makes
decisions based on the information available. Filtrations are a construct used to formalize the amount of
information available to the learner at a given time.

Definition 1. F = {Ft}t∈N is a filtration if ∀t, Ft is a σ-algebra and Ft ⊆ Ft+1

In the context of stochastic bandits, Ft = σ
(
{As, Xs}t−1

s=1

)
is the σ-algebra generated by actions and

rewards up to round t.

Definition 2. Predictable processes and adapted processes:

1. A stochastic process {Xt}t∈N is predictable with respect to a filtration {F}t∈N if Xt+1 is measurable
(predictable).

2. A stochastic process {Xt}t∈N is adapted to a filtration {F}t∈N if Xt is Ft-measurable.

Example 2. In stochastic bandits, the actions At are predictable as At is determined based on actions up
to round t− 1.

Definition 3. Martingales and martingale difference sequences

1. An F-adapted sequence of random variables {Xt}t∈N is a martingale if

(i) E[Xt|Ft−1] = Xt−1

(ii) E[|Xt|] < ∞

2. An F-adapted sequence of random variables {Yt}t∈N is a martingale difference sequence if

(i) E[Yt|Xt] = 0

(ii) E[|Yt|] < ∞

Example 3. If {Xt}t∈N is a martingale, then Yt = Xt −Xt−1 is a martingale difference sequence.

2.1 Martingale contraction

There are many popular martingale concentration results that we can use, such as the Hoeffding-Azuma
inequality, and a martingale version of the Bernstein inequality (e.g Freedman 2009). Often however, in
sequential feedback settings, we may need to develop a customized result suited to our problem setting. To
that end, we will introduce and prove the following result.
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Lemma 1. Let F = {Ft}t≥0 be a filtration. Let {At}t≥0 be an Rd-valued stochastic process predictable with
respect to F , and let {ε}t≥1 be a real-valued martingale difference sequence adapted to {Ft}t≥2. Assume εt is

σ-sub Gaussian, i.e. ∀λ, E[eλεt] ≤ e
λ2σ2

2 . Let Vt =
∑t

s=1 AsA
T
s and ξt =

∑t
s=1 Asξs where AT

s As ≤ c, ∀x.
Suppose vt ≽ I,∀t > t0. Then for all δ ≤ e

− 1√
2 , with probability at least 1− δ

||ξt||V −1
t

≤ γσ

√
2d log(t) log

(
d

δ

)
where γ =

√
3 + 2 log(1 + 2c)
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