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In the previous lectures, we have shown that RT ∈ Õ(d
√
T ) under the following good event G ={∣∣∣f(θT∗ a)− f(θ̂Tt a)

∣∣∣ ≤ ρ∥a∥V −1
t−1

,∀a ∈ A,∀t ∈ {d+ 1, . . . , T}
}
. In this lecture, we will show P(Gc) ≤ 1/T

using martingale concentration inequalities.

1 Martingale Concentration Inequality

Theorem 1. Let F = {Ft}t≥0 be a filtration. Let {At}t≥1 be an Rd-valued stochastic process predictable
w.r.t F , and let {ϵt}t≥1 be a real-valued martingale difference sequence adapted to {Ft}t≥1. Assume ϵt is σ-

subGaussian. Let Vt =
∑t

s=1 AsA
T
s , ξt =

∑t
s=1 Asϵs and say AT

s As ≤ C2,∀s ∈ [T ]. Suppose Vt ≥ I, ∀t > t0.

Then for all δ ≥ e
− 1√

2 , with probability at least 1− δ,

∥ξt∥V −1
t

≤ γσ
√
2d log(t) log(d/δ)

Where γ =
√
3 + 2 log(1 + 2C)

To prove this theorem, we need the following lemma.

Lemma 1. If A and B are random variables s.t E[eλA−λ2B2

2 ] ≤ 1, then ∀τ ≥
√
2 and y > 0,

P

(
|A| > τ

√
(B2 + y)

(
1 +

1

2
log

(
1 +

B2

y

)))
≤ e−

τ2

2

Remark If we don’t think of B as a random variable, but as a constant, then A is B-subGaussian by

E[eλA] ≤ e
λ2B2

2 . So we have P(|A| ≥ Bτ) ≤ 2eτ
2/2. This lemma gives a similar result when B is a random

variable.

Now we can start to prove Theorem 1.

Proof Let x ∈ Rd be given. We will apply the lemma with A = xT ξt
σ and B = ∥x∥Vt

=
√
xTVtx. First

we should check the condition E[eλA−λ2B2

2 ] ≤ 1 ∀λ.

λA− λ2B2

2
= λ

xT ξt
σ

− λ2x
TVtx

2

=

t∑
s=1

(
λ

σ
xTAsϵs −

λ2

2
xTAsA

T
s x

)
︸ ︷︷ ︸

Qs

1



As As is Fs−1 measurable, it is a non-stochastic quantity given Fs−1,

E[eQs |Fs−1] = E
[
exp

(
λ

σ
xTAsϵs −

λ2

2

∥∥xTAs

∥∥2)∣∣∣∣Fs−1

]
= E

[
exp

(
λ

σ
xTAsϵs

)∣∣∣∣Fs−1

]
exp

(
−λ2

2

∥∥xTAs

∥∥2)
≤ exp

(
σ2

2
∗ λ2

σ2

∥∥xTAs

∥∥2) exp

(
−λ2

2

∥∥xTAs

∥∥2) (as ϵs is σ-sub-Gaussian)

= 1

Therefore,

E[eλA−λ2B2

2 ] = E[e
∑t

s=1 Qs ]

= E
[
e
∑t−1

s=1 Qs E[eQt |Ft−1]
]

≤ E[e
∑t−1

s=1 Qs ]

≤ ... ≤ 1

We will now apply the lemma with y = ∥x∥22 and τ = 2 log(1/δ′). We will choose δ′ later in terms of δ

on. We require τ ≥
√
2, which is satisfied if δ′ ≤ e

− 1√
2 . Then with probability at least 1− δ′

|A| =
∣∣∣∣xT ξt

σ

∣∣∣∣ ≤
√√√√(∥x∥2Vt

+ ∥x∥22)

(
1 +

1

2
log

(
1 +

∥x∥2Vt

∥x∥22

))
︸ ︷︷ ︸

(∗)

·
√
2 log

1

δ′

Next, we will show that (∗) ∼ ∥x∥2Vt
. For t > t0, since I ≤ Vt =

∑t
s=1 AsA

T
s ≤ tC2I, we have

∥x∥22 ≤ ∥x∥2Vt
≤ tC2 ∥x∥22

∥x∥22 + ∥x∥2Vt
≤ 2 ∥x∥2Vt

We can also show that 1 + 1
2 log

(
1 +

∥x∥2
Vt

∥x∥2
2

)
≤ γ2 log(t)

2 , where γ =
√
3 + 2 log(1 + 2C) as given in the

theorem. Therefore, with probability at least 1− δ′ ∀x ∈ Rd,

∣∣xT ξt
∣∣ ≤ σγ ∥x∥Vt

√
2 log(t) log

1

δ′
(1)

We can decompose ∥ξt∥2V −1
t

in the following way.

∥ξt∥2V −1
t

= ξTt V
−1
t ξt

= ξTt V
− 1

2
t IV

− 1
2

t ξt

=

d∑
j=1

ξTt V
− 1

2
t eje

T
j V

− 1
2

t ξt

2



Now for any s > 0,

P(∥ξt∥2V −1
t

≥ ds2) = P

 d∑
j=1

ξTt V
− 1

2
t eje

T
j V

− 1
2

t ξt > ds2


≤

d∑
j=1

P
(
ξTt V

− 1
2

t eje
T
j V

− 1
2

t ξt > s2
)

=

d∑
j=1

P
(∣∣∣ξTt V − 1

2
t ej

∣∣∣ > s
)

We will apply (1) with x = V
− 1

2
t ej , δ

′ = δ/d and let s = σγ
∥∥∥V −1/2

t ej

∥∥∥
Vt

√
log(t) log(d/s) = σγ

√
log(t) log(d/s)

Finally we get

P
(
∥ξt∥2V −1

t
≥ dγ2σ2 log(t) log

d

δ

)
≤ δ

2 Bounding P(Gc)

We have proved the martingale concentration inequality so we now proceed to prove P(Gc) ≤ 1/T . We can
also use the following fact about generalized linear models.

Define gt(θ) :=
∑t

s=1 Asf(A
T
s θ), so we can write

θ̂t = argmin
θ∈Θ

∥∥∥∥∥
t∑

s=1

As

(
f(AT

s θ)−Xs

)∥∥∥∥∥
V −1
t

= argmin
θ∈Θ

∥∥∥∥∥gt(θ)−
t∑

s=1

AsXs

∥∥∥∥∥
V −1
t

Fact: By using quasi-maximum likelihood estimators in the exponential family, ∃ a unique θ̃t ∈ Rd s.t

gt(θ̃t)−
t∑

s=1

AsXs =

t∑
s=1

As

(
f(AT

s θ̃t)−Xs

)
= 0

Therefore we can write
θ̂t = argmin

θ∈Θ

∥∥∥gt(θ)− gt(θ̃t)
∥∥∥
V −1
t

Consider ∥∥∥gt(θ∗)− gt(θ̂t)
∥∥∥
V −1
t

≤
∥∥∥gt(θ∗)− gt(θ̃t)

∥∥∥
V −1
t

+
∥∥∥gt(θ̃t)− gt(θ̂t)

∥∥∥
V −1
t

≤ 2
∥∥∥gt(θ∗)− gt(θ̃t)

∥∥∥
V −1
t

= 2

∥∥∥∥∥
t∑

s=1

Asϵs

∥∥∥∥∥
V −1
t
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We now prove the claim P(Gc) ≤ 1/T , whereG =
{∣∣∣f(θT∗ a)− f(θ̂Tt a)

∣∣∣ ≤ ρ∥a∥V −1
t−1

,∀a ∈ A,∀t ∈ {d+ 1, . . . , T}
}

Proof Pick a round t ∈ {d+ 1, ..., T} and any a ∈ A. By the L-Lipschitz property of f , We know∣∣∣f(θT∗ a)− f(θ̂Tt a)
∣∣∣ ≤ L

∣∣∣(θ∗ − θ̂t)
Ta
∣∣∣

Now we bound θ∗ − θ̂t. Consider

∇gt−1(θ) =

t−1∑
s=1

AsA
T
s f

′(AT
s θ) ≥ c

t−1∑
s=1

AsA
T
s ≥ cI

As f ′ is continuous, by the fundamental theorem of calculus,

gt−1(θ∗)− gt−1(θ̂t−1) = Gt−1 ∗ (θ∗ − θ̂t−1)

Where Gt−1 =
∫ 1

0
∇gt−1

(
sθ∗ + (1− s)θ̂t−1

)
ds

(proof to be continued in the next class)
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