$$
\begin{aligned}
& \text { CS861: Theoretical Foundations of Machine Learning Lecture 21-10/23/2023 } \\
& \text { University of Wisconsin-Madison, Fall } 2023 \\
& \text { Lecture 21: Martingale concentration and structured bandits } \\
& \text { Lecturer: Kirthevasan Kandasamy } \\
& \hline
\end{aligned}
$$

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the instructor.

In the previous lectures, we have shown that $R_{T} \in \tilde{O}(d \sqrt{T})$ under the following good event $G=$ $\left\{\left|f\left(\theta_{*}^{T} a\right)-f\left(\hat{\theta}_{t}^{T} a\right)\right| \leq \rho\|a\|_{V_{t-1}^{-1}}, \forall a \in \mathcal{A}, \forall t \in\{d+1, \ldots, T\}\right\}$. In this lecture, we will show $\mathbb{P}\left(G^{c}\right) \leq 1 / T$ using martingale concentration inequalities.

1 Martingale Concentration Inequality

Theorem 1. Let $\mathcal{F}=\left\{\mathcal{F}_{t}\right\}_{t \geq 0}$ be a filtration. Let $\left\{A_{t}\right\}_{t \geq 1}$ be an \mathbb{R}_{d}-valued stochastic process predictable w.r.t \mathcal{F}, and let $\left\{\epsilon_{t}\right\}_{t \geq 1}$ be a real-valued martingale difference sequence adapted to $\left\{\mathcal{F}_{t}\right\}_{t \geq 1}$. Assume ϵ_{t} is σ subGaussian. Let $V_{t}=\sum_{s=1}^{t} A_{s} A_{s}^{T}, \xi_{t}=\sum_{s=1}^{t} A_{s} \epsilon_{s}$ and say $A_{s}^{T} A_{s} \leq C^{2}, \forall s \in[T]$. Suppose $V_{t} \geq I, \forall t>t_{0}$. Then for all $\delta \geq e^{-\frac{1}{\sqrt{2}}}$, with probability at least $1-\delta$,

$$
\left\|\xi_{t}\right\|_{V_{t}^{-1}} \leq \gamma \sigma \sqrt{2 d \log (t) \log (d / \delta)}
$$

Where $\gamma=\sqrt{3+2 \log (1+2 C)}$
To prove this theorem, we need the following lemma.
Lemma 1. If A and B are random variables s.t $\mathbb{E}\left[e^{\lambda A-\frac{\lambda^{2} B^{2}}{2}}\right] \leq 1$, then $\forall \tau \geq \sqrt{2}$ and $y>0$,

$$
\mathbb{P}\left(|A|>\tau \sqrt{\left(B^{2}+y\right)\left(1+\frac{1}{2} \log \left(1+\frac{B^{2}}{y}\right)\right)}\right) \leq e^{-\frac{\tau^{2}}{2}}
$$

Remark If we don't think of B as a random variable, but as a constant, then A is B-subGaussian by $\mathbb{E}\left[e^{\lambda A}\right] \leq e^{\frac{\lambda^{2} B^{2}}{2}}$. So we have $\mathbb{P}(|A| \geq B \tau) \leq 2 e^{\tau^{2} / 2}$. This lemma gives a similar result when B is a random variable.

Now we can start to prove Theorem 1.
Proof Let $x \in \mathbb{R}^{d}$ be given. We will apply the lemma with $A=\frac{x^{T} \xi_{t}}{\sigma}$ and $B=\|x\|_{V_{t}}=\sqrt{x^{T} V_{t} x}$. First we should check the condition $\mathbb{E}\left[e^{\lambda A-\frac{\lambda^{2} B^{2}}{2}}\right] \leq 1 \quad \forall \lambda$.

$$
\begin{aligned}
\lambda A-\frac{\lambda^{2} B^{2}}{2} & =\lambda \frac{x^{T} \xi_{t}}{\sigma}-\lambda^{2} \frac{x^{T} V_{t} x}{2} \\
& =\sum_{s=1}^{t} \underbrace{\left(\frac{\lambda}{\sigma} x^{T} A_{s} \epsilon_{s}-\frac{\lambda^{2}}{2} x^{T} A_{s} A_{s}^{T} x\right)}_{Q_{s}}
\end{aligned}
$$

As A_{s} is \mathcal{F}_{s-1} measurable, it is a non-stochastic quantity given \mathcal{F}_{s-1},

$$
\begin{aligned}
\mathbb{E}\left[e^{Q_{s}} \mid \mathcal{F}_{s-1}\right] & =\mathbb{E}\left[\left.\exp \left(\frac{\lambda}{\sigma} x^{T} A_{s} \epsilon_{s}-\frac{\lambda^{2}}{2}\left\|x^{T} A_{s}\right\|^{2}\right) \right\rvert\, \mathcal{F}_{s-1}\right] \\
& =\mathbb{E}\left[\left.\exp \left(\frac{\lambda}{\sigma} x^{T} A_{s} \epsilon_{s}\right) \right\rvert\, \mathcal{F}_{s-1}\right] \exp \left(-\frac{\lambda^{2}}{2}\left\|x^{T} A_{s}\right\|^{2}\right) \\
& \leq \exp \left(\frac{\sigma^{2}}{2} * \frac{\lambda^{2}}{\sigma^{2}}\left\|x^{T} A_{s}\right\|^{2}\right) \exp \left(-\frac{\lambda^{2}}{2}\left\|x^{T} A_{s}\right\|^{2}\right) \quad\left(\text { as } \epsilon_{s} \text { is } \sigma \text {-sub-Gaussian }\right) \\
& =1
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathbb{E}\left[e^{\lambda A-\frac{\lambda^{2} B^{2}}{2}}\right] & =\mathbb{E}\left[e^{\sum_{s=1}^{t} Q_{s}}\right] \\
& =\mathbb{E}\left[e^{\sum_{s=1}^{t-1} Q_{s}} \mathbb{E}\left[e^{Q_{t}} \mid \mathcal{F}_{t-1}\right]\right] \\
& \leq \mathbb{E}\left[e^{\sum_{s=1}^{t-1} Q_{s}}\right] \\
& \leq \ldots \leq 1
\end{aligned}
$$

We will now apply the lemma with $y=\|x\|_{2}^{2}$ and $\tau=2 \log \left(1 / \delta^{\prime}\right)$. We will choose δ^{\prime} later in terms of δ on. We require $\tau \geq \sqrt{2}$, which is satisfied if $\delta^{\prime} \leq e^{-\frac{1}{\sqrt{2}}}$. Then with probability at least $1-\delta^{\prime}$

$$
|A|=\left|\frac{x^{T} \xi_{t}}{\sigma}\right| \leq \underbrace{\sqrt{\left(\|x\|_{V_{t}}^{2}+\|x\|_{2}^{2}\right)\left(1+\frac{1}{2} \log \left(1+\frac{\|x\|_{V_{t}}^{2}}{\|x\|_{2}^{2}}\right)\right)}}_{(*)} \cdot \sqrt{2 \log \frac{1}{\delta^{\prime}}}
$$

Next, we will show that $(*) \sim\|x\|_{V_{t}}^{2}$. For $t>t_{0}$, since $I \leq V_{t}=\sum_{s=1}^{t} A_{s} A_{s}^{T} \leq t C^{2} I$, we have

$$
\begin{gathered}
\|x\|_{2}^{2} \leq\|x\|_{V_{t}}^{2} \leq t C^{2}\|x\|_{2}^{2} \\
\|x\|_{2}^{2}+\|x\|_{V_{t}}^{2} \leq 2\|x\|_{V_{t}}^{2}
\end{gathered}
$$

We can also show that $1+\frac{1}{2} \log \left(1+\frac{\|x\|_{V_{t}}^{2}}{\|x\|_{2}^{2}}\right) \leq \frac{\gamma^{2} \log (t)}{2}$, where $\gamma=\sqrt{3+2 \log (1+2 C)}$ as given in the theorem. Therefore, with probability at least $1-\delta^{\prime} \forall x \in \mathbb{R}^{d}$,

$$
\begin{equation*}
\left|x^{T} \xi_{t}\right| \leq \sigma \gamma\|x\|_{V_{t}} \sqrt{2 \log (t) \log \frac{1}{\delta^{\prime}}} \tag{1}
\end{equation*}
$$

We can decompose $\left\|\xi_{t}\right\|_{V_{t}^{-1}}^{2}$ in the following way.

$$
\begin{aligned}
\left\|\xi_{t}\right\|_{V_{t}^{-1}}^{2} & =\xi_{t}^{T} V_{t}^{-1} \xi_{t} \\
& =\xi_{t}^{T} V_{t}^{-\frac{1}{2}} I V_{t}^{-\frac{1}{2}} \xi_{t} \\
& =\sum_{j=1}^{d} \xi_{t}^{T} V_{t}^{-\frac{1}{2}} e_{j} e_{j}^{T} V_{t}^{-\frac{1}{2}} \xi_{t}
\end{aligned}
$$

Now for any $s>0$,

$$
\begin{aligned}
\mathbb{P}\left(\left\|\xi_{t}\right\|_{V_{t}^{-1}}^{2} \geq d s^{2}\right) & =\mathbb{P}\left(\sum_{j=1}^{d} \xi_{t}^{T} V_{t}^{-\frac{1}{2}} e_{j} e_{j}^{T} V_{t}^{-\frac{1}{2}} \xi_{t}>d s^{2}\right) \\
& \leq \sum_{j=1}^{d} \mathbb{P}\left(\xi_{t}^{T} V_{t}^{-\frac{1}{2}} e_{j} e_{j}^{T} V_{t}^{-\frac{1}{2}} \xi_{t}>s^{2}\right) \\
& =\sum_{j=1}^{d} \mathbb{P}\left(\left|\xi_{t}^{T} V_{t}^{-\frac{1}{2}} e_{j}\right|>s\right)
\end{aligned}
$$

We will apply (1) with $x=V_{t}^{-\frac{1}{2}} e_{j}, \delta^{\prime}=\delta / d$ and let $s=\sigma \gamma\left\|V_{t}^{-1 / 2} e_{j}\right\|_{V_{t}} \sqrt{\log (t) \log (d / s)}=\sigma \gamma \sqrt{\log (t) \log (d / s)}$
Finally we get

$$
\mathbb{P}\left(\left\|\xi_{t}\right\|_{V_{t}^{-1}}^{2} \geq d \gamma^{2} \sigma^{2} \log (t) \log \frac{d}{\delta}\right) \leq \delta
$$

2 Bounding $\mathbb{P}\left(G^{c}\right)$

We have proved the martingale concentration inequality so we now proceed to prove $\mathbb{P}\left(G^{c}\right) \leq 1 / T$. We can also use the following fact about generalized linear models.

Define $g_{t}(\theta):=\sum_{s=1}^{t} A_{s} f\left(A_{s}^{T} \theta\right)$, so we can write

$$
\begin{aligned}
\hat{\theta}_{t} & =\underset{\theta \in \Theta}{\arg \min }\left\|\sum_{s=1}^{t} A_{s}\left(f\left(A_{s}^{T} \theta\right)-X_{s}\right)\right\|_{V_{t}^{-1}} \\
& =\underset{\theta \in \Theta}{\arg \min }\left\|g_{t}(\theta)-\sum_{s=1}^{t} A_{s} X_{s}\right\|_{V_{t}^{-1}}
\end{aligned}
$$

Fact: By using quasi-maximum likelihood estimators in the exponential family, \exists a unique $\tilde{\theta}_{t} \in \mathbb{R}^{d}$ s.t

$$
g_{t}\left(\tilde{\theta}_{t}\right)-\sum_{s=1}^{t} A_{s} X_{s}=\sum_{s=1}^{t} A_{s}\left(f\left(A_{s}^{T} \tilde{\theta}_{t}\right)-X_{s}\right)=0
$$

Therefore we can write

$$
\hat{\theta}_{t}=\underset{\theta \in \Theta}{\arg \min }\left\|g_{t}(\theta)-g_{t}\left(\tilde{\theta}_{t}\right)\right\|_{V_{t}^{-1}}
$$

Consider

$$
\begin{aligned}
\left\|g_{t}\left(\theta_{*}\right)-g_{t}\left(\hat{\theta_{t}}\right)\right\|_{V_{t}^{-1}} & \leq\left\|g_{t}\left(\theta_{*}\right)-g_{t}\left(\tilde{\theta}_{t}\right)\right\|_{V_{t}^{-1}}+\left\|g_{t}\left(\tilde{\theta}_{t}\right)-g_{t}\left(\hat{\theta}_{t}\right)\right\|_{V_{t}^{-1}} \\
& \leq 2\left\|g_{t}\left(\theta_{*}\right)-g_{t}\left(\tilde{\theta}_{t}\right)\right\|_{V_{t}^{-1}} \\
& =2\left\|\sum_{s=1}^{t} A_{s} \epsilon_{s}\right\|_{V_{t}^{-1}}
\end{aligned}
$$

We now prove the claim $\mathbb{P}\left(G^{c}\right) \leq 1 / T$, where $G=\left\{\left|f\left(\theta_{*}^{T} a\right)-f\left(\hat{\theta}_{t}^{T} a\right)\right| \leq \rho\|a\|_{V_{t-1}^{-1}}, \forall a \in \mathcal{A}, \forall t \in\{d+1, \ldots, T\}\right\}$
Proof Pick a round $t \in\{d+1, \ldots, T\}$ and any $a \in \mathcal{A}$. By the L-Lipschitz property of f, We know

$$
\left|f\left(\theta_{*}^{T} a\right)-f\left(\hat{\theta}_{t}^{T} a\right)\right| \leq L\left|\left(\theta_{*}-\hat{\theta}_{t}\right)^{T} a\right|
$$

Now we bound $\theta_{*}-\hat{\theta}_{t}$. Consider

$$
\nabla g_{t-1}(\theta)=\sum_{s=1}^{t-1} A_{s} A_{s}^{T} f^{\prime}\left(A_{s}^{T} \theta\right) \geq c \sum_{s=1}^{t-1} A_{s} A_{s}^{T} \geq c I
$$

As f^{\prime} is continuous, by the fundamental theorem of calculus,

$$
g_{t-1}\left(\theta_{*}\right)-g_{t-1}\left(\hat{\theta}_{t-1}\right)=G_{t-1} *\left(\theta_{*}-\hat{\theta}_{t-1}\right)
$$

Where $G_{t-1}=\int_{0}^{1} \nabla g_{t-1}\left(s \theta_{*}+(1-s) \hat{\theta}_{t-1}\right) d s$
(proof to be continued in the next class)

