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In this lecture, we will introduce Online Learning and the experts problems. We will first complete the
proof of the martingale concentration result from the last lecture.
Proof Pick a round t ∈ {d+ 1, ..., T} and any a ∈ A. By the L-Lipschitz property of f , We know∣∣∣f(θT∗ a)− f(θ̂Tt a)
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As f ′ is continuous, by the fundamental theorem of calculus,
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We will apply the martingale concentration result with t0 = d, Vt−1 =
∑t−1

s=1 AsA
T
s , c

2 = maxa∈A aTa = d
and finally δ = 1/T 2. Then, with probability ≥ 1− T 2, by (1) and (4)

∀a ∈ A,
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Applying a union bound over all t ∈ d+ 1, ..., T we have that ∀a ∈ A and ∀t ∈ d+ 1, ..., T ,∣∣∣f(θT⋆ a)− f(θ̂Tt−1a)
∣∣∣ ≤ ρ(t) ∥a∥−1
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1 The Expert Problem

To motivate the ensuing model, we will begin with two examples.
Example 1 (Online spam detection). Given a hypothesis class H of binary classifiers, where H ∈ {h : X →
{0, 1}}. Consider the following game over T rounds:

1. A learner receives an input email nt ∈ X on round t.

2. The learner chooses some ht ∈ H and predicts ht(nt) (spam or not-spam).

3. Learner sees the label yt and incurs loss 1{ht(nt) ̸= yt}.

Note that the learner knows the loss for all h ∈ H.

Example 2 (Weather forecasting). Given a set of models H. Consider the following game over T rounds:

1. Learner (weather forecaster) chooses some model h ∈ H and predicts the number ŷt.

2. Learner observes the true weather yt and incurs loss l(yt, ŷt).

We can now introduce Expert Problem, which proceeds over T rounds in the following fashion:

1. We are given a set of K experts, denoted [K].

2. On each round, the learner chooses an expert(action) At ∈ [K]. Simultanously, the environment picks
a loss vector ℓt ∈ [0, 1]K , where ℓt(i) is the loss for expert i.

3. Learner incurs loss ℓt(At).

4. Learner observes ℓt(losses for all experts).

This type of feedback, where we observe feedback for all actions is called full information feedback. In
contrast, when we observe losses or rewards only for the action we took, it is called bandit feedback.

Unlike in the stochastic bandit setting, we will not assume that the loss vectors are drawn from
some distribution. Then how do we define regret? Recall that in the stochastic setting, we let a⋆ =
argmini∈[K] EX∼νi

[X] be the action with the highest expected reward and defined the regret as follows:
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We did this for bandit feedback, but can define the regret similarly for full information feedback.
Here, in the non-stochastic setting, where loss vectors are arbitrary, we will compete against the best

fixed action in hindsight. For a policy π, and a sequence of losses, ℓ =1, ..., ℓt, define
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where E is with respect to the randomness of the policy.
For a given policy π, we wish to bound RT (π, l) for all loss sequences. That is supl RT (π, l). We wish to

do well even if the losses were generated by an adversary which had full knowledge of our policy π. Here,
we are concerned with oblivious adversaries, who can choose ℓt to only be a function of the current action,
and not previous actions.

2 The Hedge Algorithm

The most intuitive approach to solve this problem is to choose the action At = argmina∈[K]

∑t−1
s=1 ls(a) on

round t. This is called Follow The leader(FTL). For instance, for binary classification example, this would
simply be empirical risk minimization, as we will choose

ht = argmin
h∈H

t−1∑
s=1

1(h(xt) ̸= yt)

Unfortunately, this does not work. To see why, suppose K = 2, and define the loss vectors as follows:

ℓt =


(0.5, 0) if t = 1

(1, 0) if t is odd and t > 1

(0, 1) if t is even

Then, FTL will choose

At =

{
1 on odd rounds

2 on even rounds

Then the total loss of FTL will be at least T −1, while the best action in hindsight will have loss at most
T/2. Hence, the regret of FTL is at least T/2− 1 ∈ Ω(T ).

In the Hedge algorithm, we will instead use a soft version of the minimum, where we will sample from a
distribution which samples arms with small losses more frequently. We hae summarized the Hedge algorithm
below.

Algorithm 1 The Hedge Algorithm(a.k.a multiplicative weights, a.k.a exponential weights)

Given time horizon T , learning rate η
Let L0 ← 0K (all zero vector in RK)
for t = 1, ..., T do

Set Pt(a)← e−2Lt−1(a)∑K
j=1 e−2Lt−1(j) ,∀a ∈ [K]

Sample At ∼ Pt (note that Pt ∈ ∆K)
Incur loss ℓt(At), observe ℓt
Update ℓt(a)← Lt−1(a) + ℓt(a),∀a ∈ [K]

end for
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