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In this lecture, we will continue the discussion on Hedge algorithm, and then start the topic of adversarial
bandits.

1 Experts problem (continued)

Consider the hedge algorithm introduced in last lecture. For any policy π, which samples action according
to Pt on round t, define

R̄T (π, ℓ, a) =

T∑
t=1

pTt ℓt −
T∑

t=1

ℓt(a)

Let a∗ = argmina∈[K]

∑T
t=1 ℓt(a). We have,

RT (π, ℓ) = E

[
T∑

t=1

ℓt(At)

]
− min

a∈[K]

T∑
t=1

ℓt(a)

= E

[
T∑

t=1

E [ℓt(At) | pt]

]
−

T∑
t=1

ℓt(a
∗)

= E[R̄(π, ℓ, a∗)]

If we bound R̄(π, ℓ, a∗), then we have a bound for R(π, ℓ).

Theorem 1 (Hedge). Let the loss vector on round t be ℓt ∈ RK
+ ∀t. Let ℓ2t ∈ RK

+ such that ℓ2t (i) = (ℓt(i))
2.

Then, for η ≤ 1, the Hedge algorithm satisfies

(i) Let l = (ℓ1, · · · , ℓT ) be an arbitrary sequence of losses and let a ∈ [K]. Then, if p⊤t ℓt ≤ 1 for all t, we
have

R̄T (π, ℓ, a) ≤
log(K)

η
+ η

T∑
t=1

pTt ℓ
2
t

(ii) If lt ∈ [0, 1]K ∀t, then

R̄T (ℓ, a) ≤
log(K)

η
+ η

(iii) If we choose η =
√

log(K)
T , then ∀a ∈ [K], and all loss vector ℓ,

R̄T (π, ℓ, a) ≤ 2
√

T log(K)
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Proof Define Φt =
1
η log

(∑K
a=1 e

−ηLt(a)
)
. Consider

Φt − Φt−1 =
1

η
log

( ∑K
a=1 e

−ηLt(a)∑K
a=1 e

−ηLt−1(a)

)

=
1

η
log

(∑K
a=1 e

−ηLt−1(a) · e−ηℓt(a)∑K
a=1 e

−ηLt−1(a)

)

=
1

η
log

(
K∑

a=1

pt(a)e
−ηlt(a)

)

≤ 1

η
log

(
K∑

a=1

pt(a)(1− ηℓt(a) + η2ℓ2t (a))

)
(As e−y ≤ 1− y + y2 ∀y ≥ −1)

=
1

η
log(1− ηpTt ℓt + η2pTt ℓ

2
t )

≤ 1

η
(−ηpTt ℓt + η2pTt ℓ

2
t ) (As log(1 + y) ≤ y ∀y ≥ −1 and since ηp⊤t ℓt ≤ 1)

= −pTt ℓt + ηpTt ℓ
2
t

We have Φt − Φt−1 ≤ −pTt ℓt + ηpTt ℓ
2
t , so ΦT − Φ0 ≤ −

∑T
t=1 p

T
t ℓt + η

∑T
t=1 p

T
t ℓ

2
t . Also

Φ0 =
1

η
log(

K∑
i=1

e−ηL0(i)) =
log(K)

η

ΦT =
1

η
log(

K∑
i=1

e−ηLT (i)) ≥ 1

η
log(e−ηLt(a)) = −LT (a)

= −
T∑

t=1

ℓt(a)

Thus

−
T∑

t=1

ℓt(a)−
log(K)

η
≤ −

T∑
t=1

pTt ℓt + η
T∑

t=1

pTt ℓ
2
t

so

R̄T (π, ℓ, a) =

T∑
t=1

pTt ℓt −
T∑

t=1

ℓt(a) ≤
log(K)

η
+ η

T∑
t=1

pTt ℓ
2
t

The proof for (i) is complete. To prove (ii), we note that ℓt ∈ [0, 1]. So ℓ2t (a) ≤ 1 ∀a ⇒ pTt ℓ
2
t ≤ 1. so

RT (π, ℓ, a) ≤ log(K)
η + ηT . Statement (iii) Follows by optimizing over η.

2 Adversarial Bandits

Adversarial bandits is a variant of the expert problem, but the learner only observes the loss for the action
taken. It has the following components:
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1. Oneach round, learner chooses At ∈ [K]. Simultaneously, the environment picks ℓt ∈ [0, 1]K .

2. The learner incurs losses ℓt(At).

3. The learner observes only ℓt(At) (Bandit feedback).

The regret RT (π, ℓ) is defined exactly the same as the expert problem:

R′
T (π, ℓ) =

T∑
t=1

ℓt(At)− min
a∈[K]

T∑
t=1

ℓt(a)

RT (π, ℓ) = E[R′
T (π, ℓ)]

As before, we are interested in bounding supℓ RT (π, ℓ).

Here, the main challenge, when compared to full information feedback, is in balancing between exploration
and exploitation.

2.1 The EXP-3 Algorithm

The main idea of EXP-3 algorithm is built on Hedge. We will estimate ℓt by only observing ℓt(At). For this,
we will use the following inverse probability weighted estimator:

ℓ̂t(a) =
ℓt(a)

pt(a)
1(a = At) =


ℓt(At)
pt(At)

, if a = At

0 , otherwise

(1)

Here, pt(a) is the probability of choosing action a in Hedge. So, ℓ̂t(a) would look as follows:

ℓ̂t(a) =
[
0 ... 0 ℓt(At)

pt(At)
0 ... 0

]T
We will show that ℓ̂t is an unbiased estimator of ℓt, i.e., E[ℓ̂t|pt] = ℓt.

The EXP3 algorithm is stated below.

Algorithm 1 EXP-3 (Exponential weights for exploration and exploitation)

Require: time horizon T , learning rate η
Set L0 ← 0K ;
for t = 1, 2, ..., T do

Set pt(a)← exp(−ηLt−1(a))∑K
j=1 exp(−ηLt−1(j))

;

Sample At ∼ pt, and incur loss ℓt(At);

Update Lt(At)← Lt−1(At) +
ℓt(At)
pt(At)

;

Update Lt(a)← Lt−1(a),∀a ̸= At;
end for

Intuitively, the exploitation for EXP3 comes from the fact that arms with large losses are discounted more
in the losses. The exploration comes from the fact that we only discount arms that were pulled, so arms
that are pulled less frequently are more likely to be pulled in future rounds.

Before, we analyze the algorithm, we will state the following lemma.

Lemma 1. If ℓ̂t is chosen as in Eq. (1), the followings are true for all a ∈ A:
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1. E[ℓ̂t(a) | pt] = ℓt

2. [ℓ̂2t (a) | pt] =
ℓ2t (a)
pt(a)

We will now state the main theorem for EXP3. We will prove this theorem in the next class.
Proof (proof of lemma above)

(i) E[ℓ̂t(a) | pt] = pt(a)
ℓt(a)
pt(a)

+ (1− pt(a)) · 0 = ℓt(a)

(ii) E[ℓ̂2t (a) | pt] = pt(a)
ℓ2t (a)

p2
t (a)

+ (1− pt(a)) · 0 =
ℓ2t (a)
pt(a)

We can get a theorem for the upper bound of the regret of EXP-3 as follows.

Theorem 2 (EXP-3). Assume the loss vectors on each round t satisfy ℓt ∈ [0, 1]K . Then, EXP-3 satisfies:

∀ℓ = [ℓ1, ..., ℓT ] , RT (π, ℓ) ≤ log(K)
η + ηKT . If we choose η =

√
log(K)
KT , then RT (π, ℓ) ≤ 2

√
KT log(K).

Remark The upper bounds of some strategies that we discussed in class are compared here.

• Hedge: Õ(
√
T ) (experts problem)

• EXP-3: Õ(
√
KT ) (adversarial bandits)

• UCB: Õ(
√
KT ) (stochastic bandits, minimax regret)

Hedge has a better regret than EXP3 since it is an easier problem. Interestingly, even though the adversarial
bandit problem subsumes the stochastic bandit problem, the worst-case regret is the same. When we prove
lower bounds for the adversarial bandit problems in the next class, we will see that the hardest stochastic
bandit problems are as hard as the hardest adversarial bandit problems.
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